1412 решу егэ физика

Задания

Версия для печати и копирования в MS Word

Тип 12 № 1412

На участке цепи, изображенном на рисунке, сопротивление каждого из резисторов равно R=1Ом. Чему равно полное сопротивление участка при замкнутом ключе К?

Спрятать решение

Решение.

После замыкания ключа левая половина схемы окажется закороченной, получившаяся схема будет эквивалента просто одному резистору.

Полное сопротивление участка при замкнутом ключе К равно R=1Ом.

Ответ: 1.

Раздел кодификатора ФИПИ/Решу ЕГЭ: 3.2.7 Параллельное и последовательное соединение проводников

Спрятать решение

·

·

Сообщить об ошибке · Помощь

Показать содержание

← Предыдущее

Следующее →

Решебник

9 класс / Законы взаимодействия и движения тел / 1412

Показать содержание

← Предыдущее

Следующее →

Все ГДЗ по
Физике

7 класс

УМК

Все ГДЗ по
Физике

8 класс

УМК

Все ГДЗ по
Физике

9 класс

УМК

ГДЗ решение к заданию № 1412 Сборник задач по физике 7-9 класс Перышкин А.В. Экзамен 2016 ФГОС бесплатно на гдз.мода!

  • ГДЗ

  • /

    7 класс

  • /

    Физика

  • /

    Сборник задач 7-9 Пёрышкин

  • /

    1412

Сборник задач по физике 7-9 класс Пёрышкин

Автор:
А.В. Перышкин

Издательство:

Экзамен 2015

Тип книги: Сборник задач

Рекомендуем посмотреть

Подробное решение номер № 1412 по физике Сборник задач для учащихся 7‐9 класса , авторов Перышкин 2015

Решебник / номер / 1412

ГДЗ по физике 7‐9 класс  Перышкин Сборник задач  номер - 1412, Решебник

Решить моё задание

Сообщить об ошибке

Видеорешение / номер / 1412

Расскажите об ошибке

ГДЗ по физике 7‐9 класс Перышкин Сборник задач номер — 1412

Сообщение должно содержать от 10 до 250 символов

Спасибо! Ваше сообщение успешно отправлено!

This site is protected by reCAPTCHA and the Google
Privacy Policy and
Terms of Service apply.

Решения из этого учебника доступны авторизованным пользователям

Нажмите кнопку “Войти”, чтобы посмотреть решение

Решения из этого учебника доступны авторизованным пользователям

Нажмите кнопку “Войти”, чтобы посмотреть решение

К однородному медному цилиндрическому проводнику длиной 40 м приложили разность потенциалов 10 В. Каким будет изменение температуры проводника DT через 15 с? Изменением сопротивления проводника и рассеянием тепла при его нагревании пренебречь. (Удельное сопротивление меди 1,7´10–8 Ом´м.)

На рисунке показана схема устройства для предварительного отбора заряженных частиц для последующего детального исследования. Устройство представляет собой конденсатор, пластины которого изогнуты дугой радиусом  см. Предположим, что в промежуток между обкладками конденсатора из источника заряженных частиц (и. ч.) влетают ионы, как показано на рисунке. Напряжённость электрического поля в конденсаторе по модулю равна 5 кВ/м. Скорость ионов равна 105 м/с. При каком значении отношения заряда к массе ионы пролетят сквозь конденсатор, не коснувшись его пластин? Считать, что расстояние между обкладками конденсатора мало, напряжённость электрического поля в конденсаторе всюду одинакова по модулю, а вне конденсатора электрическое поле отсутствует. Влиянием силы тяжести пренебречь.

По прямому горизонтальному проводнику длиной 1 м с площадью поперечного сечения  подвешенному с помощью двух одинаковых невесомых пружинок жёсткостью 100 Н/м, течёт ток  (см. рисунок).

Какой угол  составляют оси пружинок с вертикалью после включения вертикального магнитного поля с индукцией  если абсолютное удлинение каждой из пружинок при этом составляет ? (Плотность материала проводника )

В электрической цепи, показанной на рисунке, ЭДС источника тока равна 12 В, емкость конденсатора 2 мФ, индуктивность катушки 5 мГн, сопротивление лампы 5 Ом и сопротивление резистора 3 Ом.

В начальный момент времени ключ К замкнут. Какая энергия выделится в лампе после размыкания ключа? Внутренним сопротивлением источника тока, и проводов пренебречь.

Пылинка, имеющая массу  и заряд  влетает в электрическое поле вертикального высокого конденсатора в точке, находящейся посередине между его пластинами (см. рисунок, вид сверху).

Чему должна быть равна минимальная скорость, с которой пылинка влетает в конденсатор, чтобы она смогла пролететь его насквозь? Длина пластин конденсатора 10 см, расстояние между пластинами 1 см, напряжение на пластинах конденсатора 5 000 В. Система находится в вакууме.

Плоская горизонтальная фигура площадью 0,1 м2, ограниченная проводящим контуром, имеющим сопротивление 5 Ом, находится в однородном магнитном поле. Проекция вектора магнитной индукции на вертикальную ось Оz медленно и равномерно возрастает от некоторого начального значения B1z до конечного значения B2z = 4,7 Тл. За это время по контуру протекает заряд Δq= 0,08 Кл. Найдите B1z.

В электрической схеме, показанной на рисунке, ключ К замкнут.

Заряд конденсатора  ЭДС батарейки  её внутреннее сопротивление  сопротивление резистора  Найдите количество теплоты, которое выделяется на резисторе после размыкания ключа К в результате разряда конденсатора. Потерями на излучение пренебречь.

Тонкий алюминиевый брусок прямоугольного сечения, имеющий длину L = 0,5 м, соскальзывает из состояния покоя по гладкой наклонной плоскости из диэлектрика в вертикальном магнитном поле индукцией В = 0,1 Тл (см. рисунок). Плоскость наклонена к горизонту под углом a = 30°. Продольная ось бруска при движении сохраняет горизонтальное направление. Найдите величину ЭДС индукции на концах бруска в момент, когда брусок пройдёт по наклонной плоскости расстояние l = 1,6 м.

Проводящий стержень длиной l = 20 см движется поступательно в однородном магнитном поле со скоростью v = 1 м/с так, что угол между стержнем и вектором скорости = 30° (см. рисунок). ЭДС индукции в стержне равна 0,05 В. Какова индукция магнитного поля?

Как и во сколько раз изменится мощность, выделяющаяся на резисторе  в цепи, схема которой изображена на рисунке, если перевести ключ К из положения 1 в положение 2? Параметры цепи:     

На уроке физики школьник собрал схему, изображенную на рисунке. Ему было известно, что сопротивления резисторов равны  и  Токи, измеренные школьником при помощи идеального амперметра А при последовательном подключении ключа К к контактам 1, 2 и 3, оказались равными, соответственно,    Чему было равно сопротивление резистора ?

В цепи, схема которой изображена на рисунке, вначале замыкают ключ  а затем, спустя длительное время, ключ  Известно, что после этого через ключ  протек заряд, равный по модулю  Чему равна ЭДС  источника тока, если ? Источник считайте идеальным.

В цепи, изображённой на рисунке, сопротивление диода в прямом направлении пренебрежимо мало, а в обратном многократно превышает сопротивление резисторов. При подключении к точке А положительного полюса, а к точке В отрицательного полюса батареи с ЭДС 12 В и пренебрежимо малым внутренним сопротивлением потребляемая мощность равна 14,4 Вт. При изменении полярности подключения батареи потребляемая мощность оказалась равной 21,6 Вт. Укажите, как течёт ток через диод и резисторы в обоих случаях, и определите сопротивления резисторов в этой цепи.

В цепи, изображённой на рисунке, сопротивления резисторов равны между собой: R1R2 = R3 = R. При разомкнутом ключе К через резистор R3 течёт ток I0 =1,4 А. Загорится ли лампа после замыкания ключа, если она загорается при силе тока I = 0,5 А? Сопротивление лампы в этом режиме Rл = 3R. Внутренним сопротивлением источника пренебречь, диод считать идеальным.

Решение

1. Из рисунка видно, что диод включен противоположно направлению тока. Так как диод идеальный, то ток через него и резистор  не потечёт.

2. При разомкнутом ключе резисторы  и  подключены последовательно, а значит, сила тока в этом случае по закону Ома равна

3. Когда ключ замыкают, лампа включается параллельно резистору  а значит, сопротивление участка с параллельным соединением проводов будет:

Ток в цепи в этом случае:

Напряжение на параллельных участках одинаково и равно 

Тогда через лампу будет проходить ток:

что меньше величины необходимого тока, а значит, лампа не загорится.

Задача 16

Одни и те же элементы соединены в электрическую цепь сначала по схеме 1, а затем по схеме 2 (см. рисунок). Сопротивление резистора равно R, сопротивление амперметра  сопротивление вольтметра  Найдите отношение мощностей  выделяемых на резисторах в этих схемах. Внутренним сопротивлением источника и сопротивлением проводов пренебречь.

Решение

Пусть  — сопротивление амперметра,  — сопротивление вольтметра,  — ЭДС источника. В схеме 1 напряжение на резисторе определяется с помощью закона Ома для замкнутой цепи:  где — сопротивление участка цепи, содержащего резистор и вольтметр. Отсюда:

В схеме 2 с помощью закона Ома найдём силу тока через резистор:

Отношение мощностей 

Задача 17

Маленький шарик с зарядом  и массой 3 г, подвешенный на невесомой нити с коэффициентом упругости 100 Н/м, находится между вертикальными пластинами плоского воздушного конденсатора. Расстояние между обкладками конденсатора 5 см. Какова разность потенциалов между обкладками конденсатора, если удлинение нити 0,5 мм?

Решение

Условия равновесия:   Возведем оба равенства в квадрат и сложим их:  откуда

Напряженность электрического поля в конденсаторе: 

Таким образом, 

Задача 18

По П-образному проводнику  постоянного сечения скользит со скоростью  медная перемычка  длиной  из того же материала и такого же сечения.

Проводники, образующие контур, помещены в постоянное однородное магнитное поле, вектор индукции которого направлен перпендикулярно плоскости проводников (см. рисунок). Какова индукция магнитного поля  если в тот момент, когда  разность потенциалов между точками  и  равна ? Сопротивление между проводниками в точках контакта пренебрежимо мало, а сопротивление проводов велико.

Решение

При движении перемычки в ней возникает ЭДС

Закон Ома для замкнутой цепи :

где  — сопротивление перемычки  Следовательно, 

Задача 19

Два плоских конденсатора ёмкостью С и 2С соединили параллельно и зарядили до напряжения U. Затем ключ К разомкнули, отключив конденсаторы от источника (см. рисунок). Пространство между их обкладками заполнено жидким диэлектриком с диэлектрической проницаемостью ε. Какой будет разность потенциалов между обкладками, если из правого конденсатора диэлектрик вытечет?

Решение

В соответствии с определением понятия «ёмкость» для суммарного заряда конденсаторов имеем:

где 3С — суммарная ёмкость конденсаторов, когда оба они заполнены жидким диэлектриком. После вытекания диэлектрика из правого конденсатора суммарный заряд останется прежним. Так как для плоского конденсатора C~ε, то суммарная ёмкость станет равной (С + 2С/ε), а напряжение будет равно U1, так что

Решая систему уравнений (1) и (2), получим ответ:

Задача 20

Катод фотоэлемента с работой выхода  освещается светом частотой  Вылетевшие из катода электроны попадают в однородное магнитное поле с индукцией  перпендикулярно линиям индукции этого поля. Чему равен максимальный радиус окружности R, по которой движутся электроны?

Решение

№ этапа Содержание этапа решения Чертёж, график, формула Оценка этапа в баллах
1 Записано уравнение Эйнштейна для фотоэффекта: 1
2 Записано уравнение, связывающее силу Лоренца, действующую на электрон, с величиной центростремительного ускорения:

Уравнение преобразовано к виду, устанавливающему связь между кинетической энергией электрона и радиусом орбиты:

1
3 Решена система уравнений и получен ответ в алгебраической форме:

Подставлены значения констант и параметров и получен ответ в числовой форме:

1
Максимальный балл 3

Задача 21

В однородном магнитном поле, индукция которого  протон движется перпендикулярно вектору магнитной индукции В по окружности радиусом 5 м. Определите скорость протона.

Решение

Из уравнения, связывающего на основе второго закона Ньютона силу Лоренца, действующую на протон, с модулем центростремительного ускорения:  . Откуда выражаем искомую скорость.

Задача 22

К одному концу лёгкой пружины жёсткостью k = 100 Н/м прикреплён массивный груз, лежащий на горизонтальной плоскости, другой конец пружины закреплён неподвижно (см. рисунок). Коэффициент трения груза по плоскости  Груз смещают по горизонтали, растягивая пружину, затем отпускают с начальной скоростью, равной нулю. Груз движется в одном направлении и затем останавливается в положении, в котором пружина уже сжата. Максимальное растяжение пружины, при котором груз движется таким образом, равно d = 15 см. Найдите массу m груза.

Решение

1. Начальная энергия системы равна потенциальной энергии растянутой пружины:  После того, как пружину отпустили, она остановится в положении, при котором она сжата на величину Тогда конечная энергия системы равна потенциальной энергии сжатой пружины: 

Приращение полной энергии системы равно работе силы трения 

где  — модуль силы реакции опоры.

2. В момент, когда груз остановился, по второму закону Ньютона равнодействующая всех сил стала равна нулю. Пружина сжата, поэтому сила упругости пружины направлена вправо. Её уравновешивает сила трения покоя, которая направлена против возможного движения, причём эта сила максимальна, т. к. по условию начальное положение пружины соответствует максимальному растяжению пружины, при котором груз движется таким образом.

Запишем закон Ньютона для вертикальной и горизонтальной оси:

3. Подставим полученное выражение для  в равенство из пункта 1:

 

После подстановки получим 

Задача 23

Хорошо проводящая рамка площадью  вращается в однородном магнитном поле с индукцией перпендикулярной оси вращения рамки, с частотой  Скользящие контакты от рамки присоединены к цепи, состоящей из резистора сопротивлением  к которому последовательно присоединены два параллельно соединенных резистора сопротивлениями  и  (см. рис.). Найти максимальную силу тока, текущего через резистор  в процессе вращения рамки. Индуктивностью цепи можно пренебречь.

Решение

При вращении рамки в магнитном поле в ней возникает ЭДС индукции, равная, по закону электромагнитной индукции Фарадея,

(здесь  — угловая частота вращения рамки).

В цепи из резисторов, присоединенной к рамке, под действием этой ЭДС возникает ток, равный, согласно закону Ома для полной цепи,  где согласно формулам для сопротивления цепи, состоящей из последовательно и, параллельно соединенных резисторов, 

Поскольку падение напряжения на параллельно соединенных резисторах  и  одинаково, по закону Ома для участка цепи  причем в точке разветвления тока  Из всех записанных уравнений следует, что

откуда искомая максимальная сила тока  равна, очевидно,

Подставляя числовые данные и проверяя размерность, получаем:

Задача 24

На двух вертикальных лёгких проводах длиной l каждый подвешен в горизонтальном положении массивный проводящий стержень длиной L. Верхние концы проводов присоединены к обкладкам конденсатора ёмкостью С. Система находится в вертикальном однородном магнитном поле с индукцией В (см. рисунок). Стержень отклоняют от положения равновесия параллельно самому себе на небольшое расстояние  и отпускают с нулевой начальной скоростью. Найдите зависимость от времени t заряда q конденсатора, считая, что в начальный момент, при  конденсатор был не заряжен. Трением, сопротивлением всех проводников и контактов между ними, а также силами взаимодействия токов в проводниках с магнитным полем пренебречь.

Решение

Согласно условию задачи, взаимодействие токов в проводниках с магнитным полем пренебрежимо мало. Поэтому после отпускания стержень будет совершать свободные колебания, как математический маятник, с круговой частотой  по закону  где x — текущее отклонение стержня от положения равновесия.

Поток вектора магнитной индукции через замкнутый контур, содержащий все проводники и конденсатор, равен

По закону электромагнитной индукции Фарадея при колебаниях стержня в данном контуре будет возникать ЭДС индукции, равная

Поскольку сопротивлением проводников мы также пренебрегаем, то по закону Ома для полной цепи эта ЭДС равняется напряжению между обкладками конденсатора:  откуда

Задача 25

В однородном магнитном поле с индукцией  протон движется перпендикулярно вектору  индукции со скоростью  Определите радиус траектории протона.

Задача 26

Ядро изотопа водорода  — дейтерия — движется в однородном магнитном поле индукцией перпендикулярно вектору В индукции по окружности радиусом 10 м. Определите скорость ядра.

Задача 27

В однородном магнитном поле с индукцией B, направленной вертикально вниз, равномерно вращается в горизонтальной плоскости против часовой стрелки положительно заряженный шарик массой m, подвешенный на нити длиной l (конический маятник). Угол отклонения нити от вертикали равен  скорость движения шарика равна v. Найдите заряд шарика q.

Решение

Задача 28

На непроводящей горизонтальной поверхности стола проводящая жёсткая рамка массой m из однородной тонкой проволоки, согнутая в виде квадрата ACDE со стороной  (см. рисунок). Рамка находится в однородном горизонтальном магнитном поле, вектор индукции  которого перпендикулярен сторонам АЕ и CD и равен по модулю В. По рамке течёт ток в направлении, указанном стрелками (см. рисунок). При какой минимальной силе тока рамка начнет поворачиваться вокруг стороны CD?

Решение

Для того, чтобы рамка начала поворачиваться вокруг оси CD, вращательный момент сил, действующих на рамку и направленных вверх, должен быть не меньше суммарного момента сил, направленных вниз.

На проводник с током в магнитном поле действует сила Ампера  Если направление тока и магнитного поля параллельны, то сила Ампера не действует. В данном случае на сторону АЕ действует сила Ампера  которая по правилу буравчика направлена вверх (на рисунке — на нас). На каждую из сторон действует сила тяжести т. к. масса всего квадрата равна 

Запишем условие моментов:  где  и  — плечи сил относительно оси CD.

Отсюда находим минимальную силу тока 

Задача 29

Ион ускоряется в электрическом поле с разностью потенциалов  кВ и попадает в однородное магнитное поле перпендикулярно к вектору его индукции  (см. рисунок). Радиус траектории движения иона в магнитном поле  м, модуль индукции магнитного поля равен 0,5 Тл. Определите отношение массы иона к его электрическому заряду Кинетической энергией иона при его вылете из источника пренебрегите.

Решение

Разность потенциалов сообщает иону кинетическую энергию

 

В магнитном поле, на движущийся ион действует сила Лоренца, которая сообщает ему центростремительное ускорение:

 

Приравнивая правые части полученных равенств, имеем

 

Задача 30

Горизонтальный проводящий стержень прямоугольного сечения поступательно движется с ускорением вверх по гладкой наклонной плоскости в вертикальном однородном магнитном поле (см. рисунок).

По стержню протекает ток I. Угол наклона плоскости  Отношение массы стержня к его длине Модуль индукции магнитного поля  Ускорение стержня  Чему равна сила тока в стержне?

Решение

1) На рисунке показаны силы, действующие на стержень с током:

— сила тяжести  направленная вертикально вниз;

— сила реакции опоры  направленная перпендикулярно к наклонной плоскости;

— сила Ампера  направленная горизонтально вправо, что вытекает из условия задачи.

2) Модуль силы Ампера 

3) Систему отсчёта, связанную с наклонной плоскостью, считаем инерциальной. Для решения задачи достаточно записать второй закон Ньютона в проекциях на ось х (см. рисунок):

Отсюда находим 

Задача 31

В зазоре между полюсами электромагнита вращается с угловой скоростью ω = 100 с–1проволочная рамка в форме полуокружности радиусом r = 5 см, содержащая N = 20 витков провода. Ось вращения рамки проходит вдоль оси О рамки и находится вблизи края области с постоянным однородным магнитным полем с индукцией В = 1 Тл (см. рисунок), линии которого перпендикулярны плоскости рамки. Концы обмотки рамки замкнуты через скользящие контакты на резистор с сопротивлением R = 25 Ом. Пренебрегая сопротивлением рамки, найдите тепловую мощность, выделяющуюся в резисторе.

Решение

При вращении рамки в магнитном поле в ней возникает ЭДС индукции, равная по модулю

 

За малое время  рамка поворачивается на угол  и её площадь, находящаяся в магнитном, поле увеличивается на  так что

 

Так происходит до тех пор, пока площадь рамки в поле увеличивается. После того как вся рамка окажется в поле, эта площадь начнёт уменьшаться с такой же скоростью, так что ЭДС поменяет знак, но сохранит своё значение.

Таким образом, согласно закону Ома для замкнутой цепи, в рамке всё время будет течь ток с одинаковым значением  периодически изменяя своё направление на противоположное.

По закону Джоуля — Ленца тепловая мощность, выделяющаяся при этом процессе в резисторе, не зависит от направления тока и равняется

 

Задача 32

На шероховатой плоскости, наклонённой под углом  к горизонту, находится однородный цилиндрический проводник массой от  г и длиной  см (см. рисунок). По проводнику пропускают ток в направлении «от нас», за плоскость рисунка, и вся система находится в однородном магнитном поле с индукцией направленной вертикально вниз. При какой силе тока  цилиндр будет оставаться на месте, не скатываясь с плоскости и не накатываясь на неё?

РешениеНарисуем силы, действующие на проводник с током: силу тяжести  направленную вертикально вниз, силу нормального давления  перпендикулярную плоскости, и силу Ампера  равную по модулю  и направленную в данном случае, согласно правилу левой руки, горизонтально влево (см. рисунок). Заметим, что все эти три силы приложены таким образом, что они не создают моментов сил относительно оси цилиндра. Поэтому в равновесии сила сухого трения цилиндра о шероховатую наклонную плоскость децствительно должна равняться нулю — иначе он бы покатился.

Спроецируем эти силы на направление вдоль плоскости и на перпендикуляр к ней. Условия равновесия имеют вид 

Из первого уравнения находим искомую величину силы тока при равновесии цилиндра:  Подставляя это значение  во второе уравнение, находим  (хотя эту величину находить по условию не требовалось).

Задача 33

Проводник движется равноускоренно в однородном вертикальном магнитном поле. Направление скорости перпендикулярно проводнику. Длина проводника — 2 м. Индукция перпендикулярна проводнику и скорости его движения. Проводник перемещается на 3 м за некоторое время. При этом начальная скорость проводника равна нулю, а ускорение 5 м/с2. Найдите индукцию магнитного поля, зная, что ЭДС индукции на концах проводника в конце движения равна 2 В.

Решение

При движении проводника в магнитном поле на электроны в проводнике действует сила Лоренца. Сила Лоренца равна  Напряжённость поля внутри проводника можно рассчитать по формуле  Напряжение на концах проводника равно  Движение равноускоренное, поэтому путь, пройденный проводником рассчитывается по формуле  откуда  Следовательно,  откуда

 

Задача 34

Плоская горизонтальная фигура площадью 0,1 м2, ограниченная проводящим контуром, имеющим сопротивление 5 Ом, находится в однородном магнитном поле. Проекция вектора магнитной индукции на вертикальную ось Оz медленно и равномерно возрастает от некоторого начального значения B1z до конечного значения B2z = 4,7 Тл. За это время по контуру протекает заряд Δq= 0,08 Кл. Найдите B1z.

Решение

Выражение для модуля ЭДС индукции в случае однородного поля:  где S — площадь фигуры;

 

Закон Ома: E = IR, где R — сопротивление контура;  — ток в контуре за время Δt изменения магнитного поля.

Выражение для заряда, протекающего по цепи: 

 

Задача 35

К конденсатору С1 через диод и катушку индуктивности L подключён конденсатор ёмкостью С2 = 2 мкФ. До замыкания ключа К конденсатор С1 был заряжен до напряжения U = 50 В, а конденсатор С2 не заряжен. После замыкания ключа система перешла в новое состояние равновесия, в котором напряжение на конденсаторе С2 оказалось равным U2 = 20 В. Какова ёмкость конденсатора С1? (Активное сопротивление цепи пренебрежимо мало.)

Решение

Энергия заряженного конденсатора С1 до замыкания ключа К:Заряд конденсатора С1:

q = C1U.

Суммарная энергия заряженных конденсаторов после замыкания ключа К:

Так как процесс зарядки конденсатора С2 происходит медленно, нет потерь энергии на излучение, а следовательно, после замыкания ключа К первоначальная энергия заряженного конденсатора С1 в новом состоянии равновесия распределяется между конденсаторами:

Wэ = Wэ1 + Wэ2.

Кроме того, выполняется закон сохранения заряда: q = q1 + q2 = C1U1 + C2U2. Объединяя соотношения, получаем систему уравнений

Решая эту систему, получаем 

Задача 36

Математический маятник, грузик которого имеет массу m = 8 г, совершает малые колебания в поле силы тяжести с периодом T1 = 0,7 с. Грузик зарядили и включили направленное вниз однородное вертикальное электрическое поле, модуль напряжённости которого равен E = 3 кВ/м. В результате этого период колебаний маятника стал равным T2 = 0,5 с. Найдите заряд q грузика.

Решение

1. В первом случае период колебаний математического маятника равен  где l — длина нити подвеса маятника.

2. Во втором случае период колебаний шарика в электрическом поле, направленном вниз, уменьшился, значит, сила натяжения нити подвеса увеличилась и заряд шарика — положительный.

3. При малых колебаниях математического маятника с грузиком массой m и с зарядом q в поле тяготения модуль силы натяжения нити близок к mg + qE. Уравнение движения грузика в проекции на горизонтальную ось Х имеет вид:  где  — угол отклонения нити от вертикали, x — смещение грузика. Отсюда получаем уравнение гармонических колебаний:  или  где  Период этих колебаний равен 

4. Из последнего уравнения находим заряд шарика маятника:

 мкКл. 

Задача 37

По горизонтально расположенным шероховатым рельсам с пренебрежимо малым сопротивлением могут скользить два одинаковых стержня массой и сопротивлением  каждый. Расстояние между рельсами  а коэффициент трения между стержнями и рельсами  Рельсы со стержнями находятся в однородном вертикальном магнитном поле с индукцией  (см. рисунок). Под действием горизонтальной силы, действующей на первый стержень вдоль рельс, оба стержня движутся поступательно равномерно с разными скоростями. Какова скорость движения первого стержня относительно второго? Самоиндукцией контура пренебречь.

Решение

 

Задача 38

Два параллельных друг другу рельса, лежащих в горизонтальной плоскости, находятся в однородном магнитном поле, индукция B которого направлена вертикально вниз (см. рисунок, вид сверху). На рельсах находятся два одинаковых проводника. Левый проводник движется вправо со скоростью V, а правый — покоится. С какой скоростью v надо перемещать правый проводник направо, чтобы в три раза уменьшить силу Ампера, действующую на левый проводник? (Сопротивлением рельсов пренебречь.)

Решение

ГДЗ по физике 7‐9 класс  Перышкин Сборник задач  номер - 1412

Автор: .

Издательство:

Экзамен 2015

Тип: Сборник задач

Подробный решебник (ГДЗ) по Физике за 7‐9 (седьмой‐девятый) класс Сборник задач — готовый ответ номер — 1412. Авторы учебника: Перышкин. Издательство: Экзамен 2015.

Решебник / номер / 1412

Оцените решебник:

4.4/5

Количество оценивших
1586

ГДЗ (готовое домашние задание из решебника) на Номер задания №1412 по учебнику Физика. 7-9 классы. Сборник задач к учебникам / А.В. Перышкин — 9ое издание. Экзамен, 2013-2017г.

Материальная точка движется равномерно вдоль оси ОХ. В момент времени tx = 2 с ее координата равна 6 м, а в момент времени t2 = 4 с ее координата равна 2 м. Найдите скорость движения точки. Запишите закон движения точки x(t). Найдите перемещение и путь, пройденный точкой за любые три секунды движения.

Другие задачи из этого учебника

За это задание ты можешь получить 2 балла. Уровень сложности: повышенный.
Средний процент выполнения: 67.9%
Ответом к заданию 4 по физике может быть последовательность цифр, чисел или слов. Порядок записи имеет значение.

Разбор сложных заданий в тг-канале

Задачи для практики

Задача 1

На рисунке изображён график зависимости проекции скорости тела массой m от времени (t). На основании графика выберите два верных утверждения из приведённого ниже списка для момента времени t. Укажите их номера.

  1. Движущаяся сила вычисляется по формуле F = m · v · t.
  2. Работу силы можно найти по формуле $A = {m· v}/{2t}$.
  3. Движущаяся сила вычисляется по формуле $F = {mv}/{t}$.
  4. Работу силы можно найти по формуле $A = {m·v^2}/{2}$.
  5. Работу силы можно найти по формуле $A = {m·v^2}/{2t^2}$.
Решение

3) Движущаяся сила $F=ma$, где $a={υ-υ_0}/{y}={υ}/{t}$, поскольку $υ_0=0$, что видно графика. Тогда $F=ma={mυ}/{t}$.

4) Работа силы равна изменению кинетической энергии, т.е. $A=∆E_к={mυ^2}/{2}-{mυ_0^2}/{2}$, поскольку $υ_0=0$, то $A={mυ^2}/{2}-0={mυ^2}/{2}$.

Ответ: 34

Задача 2

По экспериментальным данным построен график зависимости координаты колебания от времени на рисунке. Из приведённого ниже списка на основании анализа представленного графика выберите все верные утверждения и укажите их номера.

  1. В момент времени, равный 10 периодам колебаний, тело находится в точке с координатой x = 6 см.
  2. Координату тела в момент времени t можно найти по формуле x = 6 sin(π · t).
  3. В момент времени, равный 10 периодам колебаний, тело находится в точке с координатой x = 0 см.
  4. Координату тела в момент времени t можно найти по формуле x = 6 cos(2π · t).
  5. Координату тела в момент времени t можно найти по формуле x = 6 sin(2π · t).
Решение

1) Из графика видно, что период колебаний тела $T=1с$, амплитудное значение координаты $x_m=6$см. Значит, угловая частота тела $ω={2π}/{T}={2π}/{1}=2π$. Запишем уравнение колебаний в общем виде: $x=x_m·sin({2π}/{T}·t)$. Подставим наши данные, имеем: $x=6·sin({2πt}/{1})=6·sin(2π·t)$. Координата колебания подчиняется закону синуса, следовательно, в момент времени, равный 10 периодам колебаний, тело находится в точке с координатой $х=0$ см.

Ответ: 35

Задача 3

Координата колеблющегося тела меняется так, как показано на графике рисунке. Из приведённого ниже списка на основании анализа представленного графика выберите все верные утверждения и укажите их номера.

  1. Период колебаний тела равен 1 с.
  2. Координату тела в момент времени t можно найти по формуле x = 0,1 sin(π · t + π/4).
  3. Тело совершает колебания с периодом 0,1 с.
  4. Координату тела в момент времени t можно найти по формуле x = 10 sin(2π · t).
  5. Координату тела в момент времени t можно найти по формуле x = 10 cos(2π · t + π/4).
Решение

1) Из графика видно, что период колебаний тела равен 1с.

4) Поскольку координата колеблющегося тела изменяется по закону синуса, $x_m=10$см — амплитудное значение координаты и начальная фаза $ϕ_0=0$, то координату тела в момент времени $t$ можно найти по формуле $x=10·sin(2π·t)$.

Ответ: 14

Задача 4

Ученик исследовал зависимость модуля силы упругости F пружины от её растяжения x. Результаты эксперимента приведены в таблице. Из приведённого ниже списка выберите два правильных утверждения и укажите их номера.

F, H 0 0,5 1 1,5 2 2,5
x, м 0 0,02 0,04 0,06 0,08 0,10
  1. Коэффициент упругости пружины равен 2,5 Н/м.
  2. При увеличении массы груза растяжение пружины уменьшается.
  3. Потенциальная энергия пружины пропорциональна растяжению пружины.
  4. Потенциальная энергия пружины при её растяжении на 0,08 м равна 0,08 Дж.
  5. При подвешенном к пружине грузе массой 100 г её удлинение составит 4 см.
Решение

Исходя из теории упругости и результатов опыта, определим $E_n={kx^2}/{2}={25·0.08^2}/{2}=0.08$Дж. $k={E}/{x}={2}/{0.08}=25$н/м, а при $F_т=1H; x=0.04$м.

Ответ: 45

Задача 5

Грузик, подвешенный на нити, совершает гармонические колебания. В таблице представлены значения координаты грузика через одинаковые промежутки времени. Из приведённого ниже списка выберите все правильные утверждения и укажите их номера.

t, c 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
x, см 6 3 0 3 6 3 0 3
  1. Максимальная скорость грузика равна 0,15 м/с.
  2. Период колебаний шарика равен 0,4 с.
  3. В момент времени 0,1 с кинетическая энергия шарика максимальна.
  4. Полная механическая энергия шарика остаётся неизменной.
  5. Амплитуда колебаний шарика равна 6 мм.
Решение

Исходя из теории о гармонических колебаниях и данной таблицы, полная механическая энергия шарика остается неизменной. (4 — верно).
Период колебании — время за которое происходит одно полное колебание — 0,4 с (2 — верно)
Максимальная скорость шарика связана с амплитудой ( $υ_{max}=А ω ={А2π}/{T}= {0,03* 2*3.14}/{0,4}=0,471$м/с. (1 — неверно)
Максимальная кинетическая энергия будет в момент прохождения шариком положения равновесия x=3 см, это соответствует времени t=0,1 с (3 — верно)
Амплитуда колебания — это максимальное отклонение от положения равновесия, так как координата колеблется между значениями 6 см и 0, положению равновесия будет соответствовать координата х=3 см, значит амплитуда: А=6-3=3 см (5 — неверно)

Ответ: 234

Задача 6

Тело массой 15 кг движется вдоль оси Ox в инерциальной системе отсчёта. График зависимости проекции скорости vx этого тела на ось Ox от времени представлен на рисунке. Из приведённого ниже списка выберите два верных утверждения на основании анализа представленного графика и укажите их номера.

  1. В течение первых двух секунд перемещение тела равно 2 м.
  2. Модуль ускорения тела в промежутке времени от 1 с до 2 с на 25% больше модуля ускорения тела в промежутке времени от 3 с до 4 с.
  3. В течение первой секунды кинетическая энергия тела увеличилась на 30 Дж.
  4. В промежутке времени от 1 с до 2 с импульс тела увеличился в 2 раза.
  5. В момент времени 4 с модуль равнодействующей сил, действующих на тело, равен 22,5 Н.
Решение

Из теории кинематики и данного графика можно сказать, что модуль ускорения тела с 1 до 2 на 25% больше 3-4, т.е. $a_{1-2}=2м/с^2; a_{3-4}=1.5м/с^2$. В момент времени 4с модуль равнодействующих сил, $F=22.5H$, т.к. $a_4=1.5м/с^2$, $F_p=ma_4=15·1.5=22.5H$

Ответ: 25

Задача 7

На рисунке представлен график зависимости скорости V от времени t для тела, движущегося прямолинейно. Используя данные графика, выберите из приведённого ниже списка все верные утверждения и укажите их номера.

  1. Первые две секунды тело двигалось равноускоренно.
  2. Со 2-й по 6-ю секунду тело переместилось на 40 м.
  3. Со 2-й по 6-ю секунду тело переместилось на меньшее расстояние, чем за первые две секунды.
  4. Средняя скорость тела во время движения со 2-й по 10-ю секунду равна 12,5 м/с.
  5. С 6-й по 10-ю секунду тело двигалось равноускоренно.
Решение

1) Неверно, так как равноускоренному движению соответствует линейный график: $v(t)=v_0+at$.

2)Верно. Из данного рисунка видно, что с 2 по 6 сек, тело прошло 40 м (площадь под графиком)

3) Неверно. Площадь под графиком со 2 по 6-ю секунды гораздо больше, чем площадь под графиком за первые две секунды.

4)Чтобы найти среднюю скорость, нужно разделить весь путь со 2-й по 10-ю секунду на всё соответствующее время, т.е. на 8 с. При этом путь определяем как площадь под графиком, так как у нас есть график в координатах v(t):
$S=S_1+S_2=8·10+{4·7,5}/2=110$ м.
Тогда $v_{ср}={110}/8=13,75$. Утверждение 4 — неверно.

5) Верно. С 6 по 10 сек, тело двигалось равноускоренно, т.к. за равные промежутки времени скорость увеличивается на одну ту же величину (линейная зависимость v(t)).

Ответ: 25

Задача 8

Математический маятник совершает незатухающие колебания между точками А и Б. Точка О соответствует положению равновесия маятника. Используя текст и рисунок, выберите из предложенного ниже списка все верные утверждения. Укажите их номера.

  1. За время, равное периоду колебаний, маятник проходит путь, равный длине дуги АБ.
  2. При перемещении маятника из положения О в положение В потенциальная энергия уменьшается, а кинетическая энергия увеличивается.
  3. В точке О кинетическая энергия маятника максимальна.
  4. Расстояние АБ соответствует амплитуде колебаний координаты.
  5. В точках А и Б потенциальная энергия маятника принимает максимальное значение.
Решение
  1. За время, равное периоду колебаний, маятник проходит путь, равный ДВУМ длинам дуги АБ — «туда и обратно». 1 — неверно.
  2. При перемещении маятника из положения О в положение В потенциальная энергия УВЕЛИЧИВАЕТСЯ (т.к. высота растёт), а кинетическая энергия УМЕНЬШАЕТСЯ (т.к. маятник замедляется). 2 — неверно
  3. В точке О кинетическая энергия маятника максимальна, так как положение равновесия груз маятника проходит с наибольшей скоростью — верно
  4. Амплитуда колебаний координаты — это половина расстояния АБ — отклонение от положения равновесия. 4 — неверно.
  5. В точках А и Б потенциальная энергия маятника принимает максимальное значение, так как груз находится на наибольшей высоте. 5 — верно.

В точке О кинетическая энергия максимальна. Потенциальная энергия принимает максимальное значение в точках А и Б.

Ответ: 35

Задача 9

Координата колеблющегося тела меняется так, как показано на графике рисунка. Из приведённого ниже списка выберите все верные утверждения на основании анализа представленного графика и укажите их номера.

  1. Период колебаний тела равен 1 с.
  2. Амплитуда колебаний равна 8 см.
  3. Частота колебаний равна 1,25 Гц.
  4. Амплитуда колебаний равна 4 см.
  5. Период колебаний тела равен 0,4 с.
Решение

Из данного графика очевидно, что $A=4$см (2 — неверно, 4 — верно), период колебаний T=0.8 c (1, 5 — неверно), а частота $v={1}/{T}={1}/{0.8}=1.25$Гц.(3 — верно)

Ответ: 34

Задача 10

На рисунке приведён график зависимости длины пружины от величины нагрузки. Из приведённого ниже списка выберите два утверждения, соответствующих результатам этого эксперимента, и укажите их номера.

  1. Коэффициент упругости пружины примерно равен 20 Н/м.
  2. Коэффициент упругости пружины примерно равен 30 Н/м.
  3. Коэффициент упругости пружины примерно равен 50 Н/м.
  4. Коэффициент упругости пружины примерно равен 10 Н/м.
  5. Для данного эксперимента выполняется закон Гука.
Решение

$k=F/(l-l_0)$
Если продолжить прямую, видно, что длина недеформированной пружины 10 см
$k=2/(0.2-0.1)=20$ Н/м

Ответ: 15

Задача 11

Бусинка скользит по неподвижной горизонтальной спице. На графике изображена зависимость координаты бусинки от времени. Ось Ox параллельна спице. Из приведённого ниже списка на основании графика выберите два верных утверждения о движении бусинки и укажите их номера.

  1. На участке 1 проекция ускорения ax бусинки отрицательна.
  2. На участке 1 модуль скорости остаётся неизменным, а на участке 2 — уменьшается.
  3. На участке 1 модуль скорости увеличивается, а на участке 2 — уменьшается.
  4. На участке 1 модуль скорости уменьшается, а на участке 2 — остаётся неизменным.
  5. В процессе движения вектор скорости бусинки менял направление на противоположное.
Решение

Скорость — это производная координаты по времени. Графически это $tgα$ наклонной графика зависимости координаты от времени. Заметим, что координата все время растет, но на участке 1 — скорость уменьшается, следовательно, проекция ускорения отрицательна. На участке 2, скорость неизменна, а координата растет, тело не меняет направление движения.

Ответ: 14

Задача 12

На рисунке представлен схематичный вид графика изменения кинетической энергии тела с течением времени. Выберите два верных утверждения, описывающих движение в соответствии с данным графиком.

  1. В конце наблюдения кинетическая энергия тела равна нулю.
  2. Кинетическая энергия тела в течение всего времени наблюдения увеличивается.
  3. Кинетическая энергия тела в начальный момент времени максимальна.
  4. Тело брошено вертикально вверх с балкона и упало на Землю.
  5. В конце наблюдения скорость тела не равна нулю.
Решение

1) В конце наблюдения $E_к=0$, неверно, т.к. при $t=t_к⇒E_к≠0$, если $E_к=0$, то график должен проходить через ось ординат.

2) $E_к$, в течении всего времени увеличивается, неверно, т.к. при $t={t_к}/{2}$ $E_к=min$, в середине пути кинетическая энергия минимальна.

3) Исходя из графика $E_к$ максимальная в момент (верно) $t=0$.

4) Неверно, т.к. график вертикально брошенного тела, выглядит иначе.

5) При $t_к=t; E_к≠0$ (верно), т.к. $υ≠0⇔E_к≠0$.

Ответ: 35

Задача 13

На рисунке приведены графики зависимости координаты от времени для двух тел A и B, движущихся по прямой, вдоль которой и направлена ось Ox. Из приведённого ниже списка выберите два верных утверждения о характере движения тел и укажите их номера.

  1. Тело A движется равномерно.
  2. Тело A движется с постоянным ускорением, равным 5 м/с2.
  3. Первый раз тела A и B встретились в момент времени, равный 3 с.
  4. Вторично тела A и B встретились в момент времени, равный 7 с.
  5. В момент времени t = 5 с тело B достигло максимальной скорости движения.
Решение

1) Тело А движется равномерно, т.к. равномерное движение — это движение, при котором тело за равные промежутки времени проходит одинаковые расстояния (подходит).

2) Ускорение тела А равно нулю, т.к. оно движется с постоянной скоростью $υ={20-10}/{7-3}=2.5м/с$ (не подходит).

3) Графики зависимости координаты от времени для двух тел А и В пересекаются в момент времени $t=3c$, значит, первый раз тела А и В встретились в момент времени, равный 3с (подходит).

Ответ: 13

Задача 14

При проведении эксперимента ученик исследовал зависимость модуля силы упругости пружины, которая выражается формулой F (l) = k|l − l0|, где l0 — длина пружины в недеформированном состоянии, от её длины. График полученной зависимости приведён на рисунке. Из приведённого ниже списка выберите все верные утверждения на основании анализа графика и укажите их номера.

  1. Длина пружины в недеформированном состоянии равна 6 см.
  2. Длина пружины в недеформированном состоянии равна 3 см.
  3. При действии силы 2 Н деформация пружины равна 2 см.
  4. При действии силы 4 Н деформация пружины равна 2 см.
  5. Коэффициент жёсткости пружины равен 50 Н/м.
Решение

1) Из графика видно, что длина пружины в не деформированном состоянии равна 3 см, т.к. при l=3см сила упругости $F=OH$(не подходит).

2) Длина пружины в не деформированном состоянии равна 3 см (подходит).

3) При действии сила 2Н деформация пружины равна |2см-3см|=|-1см|=1см или |4см-3см|=1см (не подходит).

4) При действии сила 4Н пружина сжимается или растягивается на 2см, поскольку |1см-3см|=|-2см|=1см или |5см-3см|=2см (подходит).

Ответ: 24

Задача 15

На рисунке приведена зависимость координаты движущегося тела от времени. Из приведённого ниже списка выберите два верных утверждения

  1. Скорость движения тела в интервале времени от 30 до 50 с на 2 м/с больше, чем скорость в интервале времени от 0 до 30 с.
  2. Скорость тела возрастала в интервале времени от 0 до 30 с и убывала в интервале от 30 до 50 с.
  3. Максимальная скорость движения на всём пути равна 2,4 м/с.
  4. За всё время движения тело прошло путь 120 м.
  5. За всё время движения тело прошло путь 240 м.
Решение

1) $υ_1[30-50c]={x_к-x_н}/{t_к-t_н}={0-120}/{50-30}=-{120}/{20}=-6м/с$. Знак «минус» говорит о том, что тело движется в обратном направлении, поэтому возьмем по модулю $υ[30-50c]=6м/с; υ_2[0-30c]={x_к-x_н}/{t_к-t_н}={120-0}/{30-0}={120}/{30}=4м/с; ∆υ=υ_1[30-50c]-υ_2[0-30c]=6-4=2м/с$(подходит).

2) Скорость тела возрастала в интервале времени от 0 до 30с и в интервале от 30 до 50с (не подходит).

3) Максимальная скорость на всем пути равна 6м/с (не подходит).

4) За все время движения тело прошло путь: $S=S_1+S_2=υ_1·∆t_1+υ_1·∆t_2=6·(50-30)+4·(30-0)=6·20+4·30=120+120=240$м (не подходит).

5) За все время движения тело прошло путь 240м (подходит).

Ответ: 15

Задача 16

На рисунке приведена стробоскопическая фотография движущегося шарика по жёлобу, образующему некоторый угол с горизонтом. Положения шарика на фотографии показаны через равные промежутки времени. Из приведённого ниже списка выберите два верных утверждения на основании анализа стробоскопической фотографии и укажите их номера.

  1. Движение шарика равномерное.
  2. Скорость шарика увеличивается.
  3. Шарик движется под действием переменной силы.
  4. Если промежуток времени между двумя последовательными положениями шарика равен 2 с, то его ускорение равно 0,5 см/с2.
  5. Импульс шарика в процессе движения остаётся постоянным.
Решение

1) Шарик за одинаковые промежутки времени проходит разные расстояния, значит, его движение неравномерное (не подходит).

2) Движение шарика равноускоренное, значит, скорость шарика увеличивается (подходит).

3) Шарик движется под действием постоянной силы $F↖{→}=ma↖{→}$ (не подходит).

4) $S=0.16м; t=4·2=8c; υ_0=0м/с; a=0.005м/с^2$. При равноускоренном движении перемещение равно: $S=υ_0е+{at^2}/{2}=0·8+{0.005·(8)^2}/{2}={0.005·64}/{2}=32·0.005=0.16=16$см (подходит).

Ответ: 24

Задача 17

На рисунке приведена стробоскопическая фотография движущегося шарика по жёлобу, образующему некоторый угол с горизонтом. Положения шарика на фотографии показаны через равные промежутки времени. Из приведённого ниже списка выберите два верных утверждения на основании анализа стробоскопической фотографии и укажите их номера.

  1. Шарик движется с переменным ускорением.
  2. Скорость шарика уменьшается.
  3. Шарик движется под действием постоянной силы.
  4. Если промежуток времени между двумя последовательными положениями шарика равен 2 с и он начинал движение из состояния покоя, то его скорость в точке с координатой 9 см равна 3 см/с.
  5. Импульс шарика в процессе движения уменьшается.
Решение

1) Шарик движется с постоянным ускорением (не подходит).

2) Скорость шарика увеличивается, т.к. за равные промежутки времени он проходит все больше расстояния (не подходит).

3) Шарик движется под действием постоянной силы $F=m·a$ (подходит).

4) $υ_k=υ_0+at$(1), т.к. $υ_0=0$м/с, поскольку начинает движение из состояния покоя, то $υ_k=at$(2). Перемещение $S={at^2}/{2}⇒a={2·S}/{t^2}$(3), где $S=0.09$м, $t=6c$ (т.к. 3 вспышки стробослота), тогда $a={2·0.09}/{36}=0.005$, тогда $υ=at=0.005·6=0.03=3$см/с (подходит).

Ответ: 34

Задача 18

На рисунке приведён график зависимости кинетической энергии тела от времени t. Выберите все верные утверждения на основании анализа представленного графика.

  1. Тело движется под действием постоянной силы.
  2. Потенциальная энергия тела в точке Б равна 1,5 Дж.
  3. Период колебаний тела равен 4 с.
  4. Максимальное значение потенциальной энергии равно значению потенциальной энергии в точке А.
  5. Полная механическая энергия тела равна 4 Дж.
Решение

1. Из графика видно, что время одного полного колебания равно 4с, т.к. в течение одного полного колебания тело проходит три максимальных значения (или три минимальных значения) кинетической энергии, т.е. период колебаний тела равен 4с (верно).

2. Поскольку полная механическая энергия тела равна: $E=E_{к,max}=E_{к,max}=E_к+Е_п$(1), а максимальная кинетическая энергия тела равна 4 Дж, то полная механическая энергия тела равна 4 Дж (верно).

Ответ: 35

Задача 19

На рисунке приведён график зависимости кинетической энергии тела от времени t. Из приведённого ниже списка выберите все верные утверждения на основании анализа представленного графика и укажите их номера.

  1. Тело совершает гармонические колебания.
  2. Потенциальная энергия тела в точке A равна 1 Дж.
  3. Период колебаний тела равен 2 с.
  4. Максимальное значение потенциальной энергии равно потенциальной энергии в точке Б.
  5. Частота колебаний тела равна 4 Гц.
Решение

1. Тело совершает гармонические колебания, т.к. гармонические колебания — это колебания, подчиняющиеся закону синуса или косинуса, а на графике мы видим синусоиду (1 — верно).

2. Поскольку полная механическая энергия тела равна: $E=E_{п,max}=E_{п,max}=E_к+Е_п$(1), где $E_к$ — кинетическая энергия тела, $E_{к,max}=4$Дж, $E_п$ — потенциальная энергия тела. В точке А $E_к=3$Дж, значит, $E_п=E-E_к=E_{к,max}-E_к=4-3=1$Дж (2 — верно)

3. За один период колебаний тела, успевает произойти два колебания кинетической энергии, поэтому период колебаний тела равен 4с, а не 2. (3 — неверно)

4. Максимальное значение потенциальной энергии будет в той точке, в которой кинетическая энергия минимальна. Точка Б под это условие не подходит (4 — неверно)

5. Частота колебания тела равна: $v=1/T=1/4=0,25$ Гц (5 — неверно)

Ответ: 12

Задача 20

На рисунке представлены графики зависимости проекции скорости v на некоторую ось от времени t для пяти тел. Из приведённого ниже списка выберите два верных утверждения на основании анализа представленных графиков и укажите их номера.

  1. Наибольшей начальной скоростью обладало второе тело.
  2. Первое тело покоится.
  3. Наименьший путь за первые три секунды прошло второе тело.
  4. Третье тело движется равноускоренно.
  5. Пятое тело совершает равнопеременное движение.
Решение

Из графика видно, что в момент времени t=0с наибольшей начальной скоростью обладает тело 2.

Третье тело движется равноускоренно, т.к. график скорости напрвлен вверх.

Ответ: 14

Рекомендуемые курсы подготовки

Понравилась статья? Поделить с друзьями:
  • 14 задание информатика егэ демоверсия
  • 14 задание егэ профиль математика с подробным решением
  • 14 задание егэ по русскому языку 2019 практика тесты созданы на основе демоверсии фипи 2019
  • 14 задание егэ по русскому теория таблица шпаргалка
  • 14 задание егэ математика змейка