1708 решу егэ физика

Задания

Версия для печати и копирования в MS Word

Солнце находится над горизонтом на высоте 45 градусов. Определите длину тени, которую отбрасывает вертикально стоящий шест высотой 1 м. (Ответ дать в метрах.)

Спрятать решение

Решение.

Так как солнце находится над горизонтом на высоте 45 в степени левая круглая скобка circ правая круглая скобка , лучи от него падают на землю также под углом 45 в степени левая круглая скобка circ правая круглая скобка . Следовательно, длина тени, которую отбрасывает вертикально стоящий шест высотой 1 м, равна 1 м.

Ответ: 1.

Спрятать решение

·

·

Максим Фрости 13.06.2016 15:38

Доб­рый день!

Почему в задаче ответ 2м, а не 1м.(tg45=1)

Антон

1 м — второй вариант ответа.

Решу егэ физика 1708

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

—>

Задание 16 № 1708

Солнце находится над горизонтом на высоте Определите длину тени, которую отбрасывает вертикально стоящий шест высотой 1 м. (Ответ дать в метрах.)

Так как солнце находится над горизонтом на высоте лучи от него падают на землю также под углом Следовательно, длина тени, которую отбрасывает вертикально стоящий шест высотой 1 м, равна 1 м.

—>

Задание 16 № 1708

Ответ дать в метрах.

Phys-ege. sdamgia. ru

27.05.2020 21:50:15

2020-05-27 21:50:15

Источники:

Https://phys-ege. sdamgia. ru/problem? id=1708

ЕГЭ–2022, физика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } Решу егэ физика 1708

Решу егэ физика 1708

Решу егэ физика 1708

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

—>

Задание 16 № 1707

Непрозрачный круг освещается точечным источником света и отбрасывает круглую тень на экран. Определите диаметр тени, если диаметр круга 0,1 м. Расстояние от источника света до круга в 3 раза меньше, чем расстояние от источника до экрана. (Ответ дать в метрах.)

Так как источник отбрасывает на экран круглую тень, он расположен на оси симметрии непрозрачного круга. Используя рисунок, получаем (из подобия треугольников):

Задание 16 № 1708

Солнце находится над горизонтом на высоте Определите длину тени, которую отбрасывает вертикально стоящий шест высотой 1 м. (Ответ дать в метрах.)

Так как солнце находится над горизонтом на высоте лучи от него падают на землю также под углом Следовательно, длина тени, которую отбрасывает вертикально стоящий шест высотой 1 м, равна 1 м.

Почему в задаче ответ 2м, а не 1м.(tg45=1)

1 м — второй вариант ответа.

Задание 29 № 6072

Пассажир автобуса едет в нём по шоссе и смотрит вбок, на поле, огороженное двумя одинаковыми заборами – рядами тёмного штакетника, параллельными дороге. Зазор между вертикальными штакетинами в каждом из заборов равен их ширине D/2 = 5 см, расстояние от наблюдателя до первого забора равно L = 50 м, а до второго — на Δl = 10 м больше. Поле, наблюдаемое пассажиром через первый забор, видно через мелькающий штакетник достаточно хорошо, а то, что пассажир видит сквозь оба забора, пересечено периодическими темными вертикальными полосами. Найдите период D (по горизонтали) этих полос на уровне первого забора, считая, что наблюдение ведётся почти перпендикулярно к заборам.

Согласно закону прямолинейного распространения света в однородной среде (воздухе), центры тёмных полос будут наблюдаться там, где центры штакетин первого забора проецируются на середины промежутков между штакетинами во втором заборе (см. рис.). Это будет наблюдаться в первый раз под углами к нормали, проведённой к первому забору. Поэтому период тёмных полос на уровне первого забора вблизи к основанию перпендикуляра, проведённого от наблюдателя к забору, будет равен

Наблюдаемое явление называется «муаровыми узорами».

Задание 24 № 9520

Капитан парусного корабля в открытом море не обнаружил в пределах видимости (до горизонта) ни одного клочка земли. Тогда он послал юнгу оглядеться с самого верха грот-мачты, который находился над уровнем моря в 4 раза выше, чем капитанский мостик. Во сколько раз при этом увеличилось расстояние до крайней точки поверхности моря, которую ещё можно было видеть?

1. Согласно закону прямолинейного распространения света в однородной среде горизонтальный луч от точки на пределе видимости (на горизонте) попадает к наблюдателю на корабле под небольшим углом к горизонтали, поскольку поверхность моря не плоская, а имеет сферическую форму. С ростом высоты наблюдателя над уровнем моря расстояние до видимого горизонта увеличивается.

2. Обозначим через R радиус Земли, R — расстояние от наблюдателя до горизонта, H — высоту наблюдателя над уровнем моря и построим ход лучей от горизонта до наблюдателя (см. рисунок).

3. По теореме Пифагора для прямоугольного треугольника с вершинами в центре Земли на горизонте и у наблюдателя имеем:

4. Отсюда с учётом того, что получаем то есть и расстояние до крайней точки поверхности моря, которую ещё можно было видеть, при увеличении высоты H в 4 раза возросла в 2 раза.

Задание 24 № 27101

Школьник решил прошедшей весной сделать модель солнечных часов. Для этого он на горизонтальной открытой площадке около своей школы в Москве установил вертикальный стержень высотой H = 1 м, окружил его кругом, разбитым на 24 одинаковых часовых сектора для отсчёта времени, и стал следить за тенью стержня в светлое время суток от восхода до заката Солнца, измеряя через каждый час длину тени от основания стержня до конца тени. Опыт он проводил в день весеннего равноденствия (20 марта 2021 г.). Широта Москвы можно считать, что восход был в 6.00, а заход — в 18.00. Постройте примерный график длины тени H от времени суток T (в промежутке от восхода до захода Солнца). Какова была при этом минимальная скорость движения конца тени по площадке?

1. В дни весеннего равноденствия ось вращения Земли перпендикулярна направлению на Солнце, поэтому длительность дня везде равна длительности ночи.

2. В полдень на экваторе Солнце находится в зените, а на широте, очевидно, его лучи идут под углом к горизонту (см. рис. 1).

3. Длина тени от стержня, как следует из построения по закону прямолинейного распространения света, при этом равна, что на широте Москвы в полдень равно и это — минимальная длина тени при данных условиях.

4. Поскольку траектория движения Солнца по небу при увеличении сплющивается от полукруга на экваторе до отрезка прямой на полюсе и в средних широтах имеет вид, изображённый на рис. 2, то вблизи полудня угловая высота Солнца над горизонтом убывает слабо, а длина тени медленно возрастает. Вблизи восхода и заката изменение происходит быстро, что приводит к резкому убыванию (от «бесконечности») и возрастанию (до «бесконечности») длины тени. Примерный график длины тени H от времени суток T имеет вид, показанный на рисунке.

Задание 29 № 6072

Задание 24 № 9520

1 м второй вариант ответа.

Phys-ege. sdamgia. ru

23.08.2018 18:18:55

2018-08-23 18:18:55

Источники:

Https://phys-ege. sdamgia. ru/test? filter=all&extra_id=309

ВПР–2022, биология–11: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } Решу егэ физика 1708

Решу егэ физика 1708

Решу егэ физика 1708

Задание 12.2 № 1708

Совокупность антикодонов тРНК имеет следующую последовательность:

ЦУГ, ГЦА, УУЦ, АЦА, ЦЦА

Определите последовательность иРНК, комплементарной тРНК, и последовательность белка, синтезированного с помощью представленных антикодонов. При выполнении задания воспользуйтесь правилом комплементарности и/или таблицей генетического кода.

Задание 12.2 № 1708

ЦУГ, ГЦА, УУЦ, АЦА, ЦЦА.

Bio11-vpr. sdamgia. ru

01.06.2019 5:16:08

2019-06-01 05:16:08

Источники:

Https://bio11-vpr. sdamgia. ru/problem? id=1708

1)

ЕДИНЫЙ ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО ФИЗИКЕ ДЛИТСЯ




235
мин

2) СТРУКТУРА КИМов — 2018 и 2019 по сравнению с 2017г. несколько ИЗМЕНИЛАСЬ:

Вариант экзаменационной работы будет состоять из двух частей и включит в себя
32 задания. Часть 1 будет содержать 24 задания с кратким ответом, в том числе задания с самостоятельной записью ответа в виде числа, двух чисел или слова, а также задания на установление
соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр. Часть 2 будет содержать 8 заданий, объединенных общим видом деятельности – решение задач.
Из них 3 задания с кратким ответом (25–27) и 5 заданий (28–32), для которых необходимо привести развернутый ответ. В работу будут включены задания трех уровней сложности. Задания базового уровня
включены в часть 1 работы (18 заданий, из которых 13 заданий с записью ответа в виде числа, двух чисел или слова и 5 заданий на соответствие и множественный выбор). Задания повышенного
уровня распределены между частями 1 и 2 экзаменационной работы: 5 заданий с кратким ответом в части 1, 3 задания с кратким ответом и 1 задание с развернутым ответом в части 2. Последние четыре
задачи части 2 являются заданиями высокого уровня сложности. Часть 1 экзаменационной работы будет включать два блока заданий: первый проверяет освоение понятийного аппарата школьного курса
физики, а второй – овладение методологическими умениями. Первый блок включает 21 задание, которые группируются, исходя из тематической принадлежности: 7 заданий по механике, 5 заданий по МКТ и
термодинамике, 6 заданий по электродинамике и 3 по квантовой физике.

Новым заданием базового уровня сложности является последнее задание первой части (24 позиция), приуроченное к возвращению курса астрономии в школьную программу. Задание имеет
характеристику типа «выбор 2 суждений из 5».
Задание 24, как и другие аналогичные задания в
экзаменационной работе, оценивается максимально в 2 балла, если верно указаны оба элемента ответа, и в 1 балл, если в одном из элементов допущена ошибка. Порядок записи цифр в ответе значения не
имеет. Как правило, задания будут иметь контекстный характер, т.е. часть данных, необходимых для выполнения задания будут приводиться в виде таблицы, схемы или графика.

В соответствии с этим заданием в кодификаторе добавился подраздел «Элементы астрофизики» раздела «Квантовая физика и элементы астрофизики», включающий следующие пункты:

·

Солнечная система: планеты земной
группы и планеты-гиганты, малые тела Солнечной системы.

·

Звёзды: разнообразие звездных
характеристик и их закономерности. Источники энергии звезд.

·

Современные представления о
происхождении и эволюции Солнца и звёзд. Наша галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной.

·

Современные взгляды на строение и
эволюцию Вселенной.

подробнее о структуре КИМ-2018 Вы можете узнать, посмотрев вебинар с участием М.Ю. Демидовой https://www.youtube.com/watch?v=JXeB6OzLokU либо в документе, приведенном ниже.

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.

S
=
(30 + 20) с
10 м/с = 250 м.
2

Ответ.
250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.

Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза

a

=

v
= (8 – 2) м/с = 2 м/с 2 .
t
3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T
mg
= ma

(2);

из формулы (2) модуль силы натяжения

Т
= m
(g
+ a

) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ
. 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?

Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N
= 16 Н · 1,5 м/с = 24 Вт.

Ответ.
24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.

Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.

= T ; m
= T
2
; m
= k
T
2
; m
= 200 H/м
(4 с) 2 = 81,14 кг ≈ 81 кг.
k

2

2
39,438

Ответ:
81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.

  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h
    , нужно вытянуть участок веревки длиной 3h
    .
  4. Для того чтобы медленно поднять груз на высоту h
    h
    .

Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h
    , нужно вытянуть участок веревки длиной 2h
    .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ.
45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.

Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a

, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a

. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a

mg
= 0; (1) Выразим силу натяжения F
упр = mg
F a

(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a

= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a

, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ.
13.

Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg
cosα

Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.

Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=


mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.

На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a

; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma

(5); F
тр = m
(g
sinα
a

) (6); Помним, что сила трения пропорциональна силе нормального давления N
.

По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.

μ
=
F
тр
= m
(g
sinα
a

)

= tgα
a (8).
N
mg
cosα
g
cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ.
A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ.
48 г.

Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ.
25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ
1 = 10 % ; φ
2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P
2
= φ
2
= 35 = 3,5
P
1
φ
1
10

Ответ.
Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ.
14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑
n
U i =
0 (1);
i
= 1

где ∆U
– изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ.
23.

Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)

Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ.
от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d
– расстояние между пластинами.

Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ.
20 мкКл.

Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.

Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t
    = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t
    = 0,1 с t
    = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ.
13.

По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t
= 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I

= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

|

Ɛ
|

= 2 ·10 –6 В, или 2 мкВ.

Ответ.
2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).

Запишем закон преломления

sinβ
=
sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ
. 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x
+ y
;

Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x
= 1; y
= 2

Ответ.
1 – α
-частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E

= mc
2 (1) и p
= mc
(2), тогда

E
= pc
(3),

где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E
2
= p
2
= 8,18;
E
1
p
1

Ответ округляем до десятых и получаем 8,2.

Ответ.
8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ.
21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d
sinφ
= k
λ
(1),

где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ.
42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U
= I
R
(3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ.
13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T
= 2π (1);

l

– длина математического маятника; g
– ускорение свободного падения.

По условию

Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ.
14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F
А = I
LB
sinα
;

F
А = 0,6 Н

Ответ. F
А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение.
Энергия магнитного поля катушки рассчитывается по формуле

По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.

I

1 2 =

2W
1
; I

2 2 =
2W
2
;
L
L

Тогда отношение токов

I

2 2

= 49; I

2

= 7
I
1 2
I

1

Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.

Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ.
Загорится вторая лампа.

Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l

= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2

Решение.
Выполним поясняющий рисунок.

– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);

F
a = Sl
ρ
в g
(2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М
(Т
) = 0 – момент силы натяжения; (3)

М
(N) = NL
cosα
– момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL
cosα
+ Sl

ρ
в g
(L

l ) cosα
= SL
ρ
a

g

L
cosα
(7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:

F д = [ 1 L
ρ
a

– (1 –

l )l

ρ
в ]Sg
(8).

2 2L

Подставим числовые данные и получим, что

F
д = 0,025 Н.

Ответ.
F
д = 0,025 Н.

Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.

Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m
2 =
m
1
M
2
T
1
(5).
5 M
1
T
2

После подстановки числовых данных m
2 = 28 г.

Ответ.
m
2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C
U
2
+ L
I

2

= L
I
m
2
(1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

Подставим (4) в (3). В результате получим:

I

= I m
(5)

Таким образом, сила тока в катушке в момент времени t
равна

I
= 4,0 мА.

Ответ.
I

= 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение.
Сделаем поясняющий рисунок

α
– угол падения луча;

β
– угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD

tgβ
= h
tgβ
= h
sinα = h
sinβ = h
sinα (4)
cosβ

Получаем следующее выражение:

Подставим числовые значения в полученную формулу (5)

Ответ.
1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.

Онлайн тест ЕГЭ по физике, который вы можете пройти на образовательном портале сайт, поможет вам лучше подготовиться к единому государственному экзамену. ЕГЭ – это очень ответственное мероприятие, от которого будет завесить поступление в институт. А от будет зависеть ваша будущая профессия. Поэтому следует ответственно подойти к вопросу подготовки к ЕГЭ. Лучше всего воспользоваться всеми доступными средствами, что бы улучшить свой результат по такому ответственному экзамену.

Различные варианты подготовки к ЕГЭ

Каждый сам решает, каким образом готовить к ЕГЭ. Кто-то полностью надеются на школьные знания. И некоторым удаётся показать отличные результаты благодаря исключительно школьной подготовке. Но тут определяющую роль играет не конкретная школа, а школьник, который ответственно относился к занятиям и занимался саморазвитием. Другие прибегают к помощи репетиторов, которые в короткие сроки могут натаскать школьника на решений типовых задач из ЕГЭ. Но к выбору репетитора стоит отнестись ответственно, ведь многие рассматривают репетиторство как источник заработка и не заботятся о будущем своего подопечного. Кто-то поступают на специализированные курсы подготовке к ЕГЭ. Тут опытные специалисты учат детей справляться с различными задачами и готовя не только к ЕГЭ, но и поступлению в институт. Лучше всего если такие курсы действуют при . Тогда профессора из университета будут учить ребёнка. Но есть и самостоятельные способы подготовки к ЕГЭ – онлайн тесты.

Пробные онлайн тесты ЕГЭ по физике

На образовательном портале Uchistut.ru можно пройти пробные онлайн тесты ЕГЭ по физике, что бы лучше подготовиться к реальному ЕГЭ. Тренировка в интернете позволит понять, какие бывают вопросы на ЕГЭ. Так же можно выявить свои слабые и сильные стороны. Так как на пробных онлайн тестах не ограничено время, то можно найти в учебниках ответ на задачу, решение которого не известно. Постоянные тренировки помогут снизить уровень стреса на реальном экзамене. А специалисты утверждают, что более тридцати процентов неудач на ЕГЭ связано именно со стрессом и растерянностью во время ЕГЭ. Для ребёнка это очень большая нагрузка, ответственность, которая сильно давит на школьника и мешает ему сосредоточиться на поставленных заданиях. А ЕГЭ по физики считается одним из самых сложных, поэтому подготовиться к нему необходимо как можно лучше. Ведь от результатов ЕГЭ по физике зависит поступлении в лучшие технические ВУЗы Москвы. А это очень престижные учебные заведения, попасть в которые мечтают многие.

Образовательный портал «РЕШУ ЕГЭ» — мой личный благотворительный проект. Он развивается мной, а также моими друзьями и коллегами, заботящимися об образовании детей более, чем о себе самих. Никем не финансируется.

Дистанционная обучающая система для подготовки к государственным экзаменам «РЕШУ ЕГЭ» (http://решуегэ.рф, http://ege.sdamgia.ru) создана творческим объединением «Центр интеллектуальных инициатив». Руководитель — Гущин Д. Д., учитель математики, физики и информатики, почетный работник общего образования РФ, Учитель года России — 2007, член Федеральной комиссии по разработке контрольно-измерительных материалов по математике для проведения единого государственного экзамена по математике (2009—2010), эксперт Федеральной предметной комиссии ЕГЭ по математике (2011—2012), заместитель председателя региональной предметной комиссии ГИА по математике (2012—2014), ведущий эксперт ЕГЭ по математике (2014—2015), федеральный эксперт (2015—2017).

СЕРВИСЫ ОБРАЗОВАТЕЛЬНОГО ПОРТАЛА «РЕШУ ЕГЭ»

  • Для организации тематического повторения разработан классификатор экзаменационных заданий, позволяющий последовательно повторять те или иные небольшие темы и сразу же проверять свои знания по ним.
  • Для организации текущего контроля знаний предоставляется возможность включения в тренировочные варианты работ произвольного количества заданий каждого экзаменационного типа.
  • Для проведения итоговых контрольных работ предусмотрено прохождение тестирования в формате ЕГЭ нынешнего года по одному из предустановленных в системе вариантов или по индивидуальному случайно сгенерированному варианту.
  • Для контроля уровня подготовки система ведет статистику изученных тем и решенных заданий.
  • Для ознакомления с правилами проверки экзаменационных работ дана возможность узнать критерии проверки заданий с развернутым ответом и проверить в соответствии с ними задания с открытым ответом.
  • Для предварительной оценки уровня подготовки после прохождения тестирования сообщается прогноз тестового экзаменационного балла по стобалльной шкале.

Каталоги заданий разрабатываются специально для портала «РЕШУ ЕГЭ» и являются интеллектуальной собственностью редакции. Задания открытого банка заданий ФИПИ, демонстрационные версии экзаменов, задания прошедших экзаменов, разработанные Федеральным институтом педагогических измерений, диагностические работы, подготовленные Московским институтом открытого образования, задания из литературных источников используются в соответствии с лицензиями правообладателей. Пользователи портала также имеют возможность добавлять в каталоги свои собственные задания, публиковать теоретические материалы, создавать обучающие курсы, переписываться со своими читателями.

Все используемые в системе задания снабжены ответами и подробными решениями.

Если вы планируете регулярно пользоваться сайтом, зарегистрируйтесь. Это позволит системе вести статистику решенных вами заданий и давать рекомендации по подготовке к экзамену.

Все сервисы портала бесплатны.

Сделано в Санкт-Петербурге, Норильске, Славянске-на-Кубани, Воронеже, Озёрске, Москве, Пензе, Новочеркасске, Париже.

Копирование материалов сайта в том числе, но не ограничиваясь: рубрикаторов, заданий, ответов, пояснений и решений, ответов на вопросы читателей, справочников категорически запрещено. Работа на портале означает согласие с этими условиями. Вы можете поставить ссылку на страницы проекта.

Информируем!

Генеральный директор ООО «Экзамер» Дегтярёв Артём из Таганрога назвал страницы своего платного сайта «РЕШУ ЕГЭ». Ловкий и креативный директор объяснил, что такова политика его компании. Внутри портала обучающие материалы с ошибками.

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.

S
=
(30 + 20) с
10 м/с = 250 м.
2

Ответ.
250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.

Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза

a

=

v
= (8 – 2) м/с = 2 м/с 2 .
t
3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T
mg
= ma

(2);

из формулы (2) модуль силы натяжения

Т
= m
(g
+ a

) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ
. 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?

Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N
= 16 Н · 1,5 м/с = 24 Вт.

Ответ.
24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.

Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.

= T ; m
= T
2
; m
= k
T
2
; m
= 200 H/м
(4 с) 2 = 81,14 кг ≈ 81 кг.
k

2

2
39,438

Ответ:
81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.

  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h
    , нужно вытянуть участок веревки длиной 3h
    .
  4. Для того чтобы медленно поднять груз на высоту h
    h
    .

Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h
    , нужно вытянуть участок веревки длиной 2h
    .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ.
45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.

Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a

, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a

. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a

mg
= 0; (1) Выразим силу натяжения F
упр = mg
F a

(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a

= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a

, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ.
13.

Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg
cosα

Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.

Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=


mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.

На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a

; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma

(5); F
тр = m
(g
sinα
a

) (6); Помним, что сила трения пропорциональна силе нормального давления N
.

По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.

μ
=
F
тр
= m
(g
sinα
a

)

= tgα
a (8).
N
mg
cosα
g
cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ.
A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ.
48 г.

Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ.
25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ
1 = 10 % ; φ
2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P
2
= φ
2
= 35 = 3,5
P
1
φ
1
10

Ответ.
Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ.
14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑
n
U i =
0 (1);
i
= 1

где ∆U
– изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ.
23.

Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)

Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ.
от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d
– расстояние между пластинами.

Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ.
20 мкКл.

Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.

Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t
    = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t
    = 0,1 с t
    = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ.
13.

По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t
= 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I

= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

|

Ɛ
|

= 2 ·10 –6 В, или 2 мкВ.

Ответ.
2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).

Запишем закон преломления

sinβ
=
sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ
. 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x
+ y
;

Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x
= 1; y
= 2

Ответ.
1 – α
-частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E

= mc
2 (1) и p
= mc
(2), тогда

E
= pc
(3),

где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E
2
= p
2
= 8,18;
E
1
p
1

Ответ округляем до десятых и получаем 8,2.

Ответ.
8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ.
21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d
sinφ
= k
λ
(1),

где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ.
42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U
= I
R
(3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ.
13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T
= 2π (1);

l

– длина математического маятника; g
– ускорение свободного падения.

По условию

Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ.
14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F
А = I
LB
sinα
;

F
А = 0,6 Н

Ответ. F
А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение.
Энергия магнитного поля катушки рассчитывается по формуле

По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.

I

1 2 =

2W
1
; I

2 2 =
2W
2
;
L
L

Тогда отношение токов

I

2 2

= 49; I

2

= 7
I
1 2
I

1

Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.

Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ.
Загорится вторая лампа.

Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l

= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2

Решение.
Выполним поясняющий рисунок.

– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);

F
a = Sl
ρ
в g
(2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М
(Т
) = 0 – момент силы натяжения; (3)

М
(N) = NL
cosα
– момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL
cosα
+ Sl

ρ
в g
(L

l ) cosα
= SL
ρ
a

g

L
cosα
(7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:

F д = [ 1 L
ρ
a

– (1 –

l )l

ρ
в ]Sg
(8).

2 2L

Подставим числовые данные и получим, что

F
д = 0,025 Н.

Ответ.
F
д = 0,025 Н.

Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.

Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m
2 =
m
1
M
2
T
1
(5).
5 M
1
T
2

После подстановки числовых данных m
2 = 28 г.

Ответ.
m
2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C
U
2
+ L
I

2

= L
I
m
2
(1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

Подставим (4) в (3). В результате получим:

I

= I m
(5)

Таким образом, сила тока в катушке в момент времени t
равна

I
= 4,0 мА.

Ответ.
I

= 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение.
Сделаем поясняющий рисунок

α
– угол падения луча;

β
– угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD

tgβ
= h
tgβ
= h
sinα = h
sinβ = h
sinα (4)
cosβ

Получаем следующее выражение:

Подставим числовые значения в полученную формулу (5)

Ответ.
1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.

S
=
(30 + 20) с
10 м/с = 250 м.
2

Ответ.
250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.

Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза

a

=

v
= (8 – 2) м/с = 2 м/с 2 .
t
3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T
mg
= ma

(2);

из формулы (2) модуль силы натяжения

Т
= m
(g
+ a

) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ
. 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?

Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N
= 16 Н · 1,5 м/с = 24 Вт.

Ответ.
24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.

Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.

= T ; m
= T
2
; m
= k
T
2
; m
= 200 H/м
(4 с) 2 = 81,14 кг ≈ 81 кг.
k

2

2
39,438

Ответ:
81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.

  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h
    , нужно вытянуть участок веревки длиной 3h
    .
  4. Для того чтобы медленно поднять груз на высоту h
    h
    .

Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h
    , нужно вытянуть участок веревки длиной 2h
    .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ.
45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.

Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a

, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a

. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a

mg
= 0; (1) Выразим силу натяжения F
упр = mg
F a

(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a

= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a

, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ.
13.

Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg
cosα

Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.

Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=


mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.

На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a

; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma

(5); F
тр = m
(g
sinα
a

) (6); Помним, что сила трения пропорциональна силе нормального давления N
.

По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.

μ
=
F
тр
= m
(g
sinα
a

)

= tgα
a (8).
N
mg
cosα
g
cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ.
A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ.
48 г.

Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ.
25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ
1 = 10 % ; φ
2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P
2
= φ
2
= 35 = 3,5
P
1
φ
1
10

Ответ.
Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ.
14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑
n
U i =
0 (1);
i
= 1

где ∆U
– изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ.
23.

Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)

Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ.
от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d
– расстояние между пластинами.

Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ.
20 мкКл.

Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.

Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t
    = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t
    = 0,1 с t
    = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ.
13.

По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t
= 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I

= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

|

Ɛ
|

= 2 ·10 –6 В, или 2 мкВ.

Ответ.
2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).

Запишем закон преломления

sinβ
=
sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ
. 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x
+ y
;

Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x
= 1; y
= 2

Ответ.
1 – α
-частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E

= mc
2 (1) и p
= mc
(2), тогда

E
= pc
(3),

где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E
2
= p
2
= 8,18;
E
1
p
1

Ответ округляем до десятых и получаем 8,2.

Ответ.
8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ.
21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d
sinφ
= k
λ
(1),

где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ.
42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U
= I
R
(3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ.
13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T
= 2π (1);

l

– длина математического маятника; g
– ускорение свободного падения.

По условию

Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ.
14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F
А = I
LB
sinα
;

F
А = 0,6 Н

Ответ. F
А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение.
Энергия магнитного поля катушки рассчитывается по формуле

По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.

I

1 2 =

2W
1
; I

2 2 =
2W
2
;
L
L

Тогда отношение токов

I

2 2

= 49; I

2

= 7
I
1 2
I

1

Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.

Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ.
Загорится вторая лампа.

Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l

= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2

Решение.
Выполним поясняющий рисунок.

– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);

F
a = Sl
ρ
в g
(2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М
(Т
) = 0 – момент силы натяжения; (3)

М
(N) = NL
cosα
– момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL
cosα
+ Sl

ρ
в g
(L

l ) cosα
= SL
ρ
a

g

L
cosα
(7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:

F д = [ 1 L
ρ
a

– (1 –

l )l

ρ
в ]Sg
(8).

2 2L

Подставим числовые данные и получим, что

F
д = 0,025 Н.

Ответ.
F
д = 0,025 Н.

Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.

Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m
2 =
m
1
M
2
T
1
(5).
5 M
1
T
2

После подстановки числовых данных m
2 = 28 г.

Ответ.
m
2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C
U
2
+ L
I

2

= L
I
m
2
(1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

Подставим (4) в (3). В результате получим:

I

= I m
(5)

Таким образом, сила тока в катушке в момент времени t
равна

I
= 4,0 мА.

Ответ.
I

= 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение.
Сделаем поясняющий рисунок

α
– угол падения луча;

β
– угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD

tgβ
= h
tgβ
= h
sinα = h
sinβ = h
sinα (4)
cosβ

Получаем следующее выражение:

Подставим числовые значения в полученную формулу (5)

Ответ.
1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.

1)

ЕДИНЫЙ ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО ФИЗИКЕ ДЛИТСЯ




235
мин

2) СТРУКТУРА КИМов — 2018 и 2019 по сравнению с 2017г. несколько ИЗМЕНИЛАСЬ:

Вариант экзаменационной работы будет состоять из двух частей и включит в себя
32 задания. Часть 1 будет содержать 24 задания с кратким ответом, в том числе задания с самостоятельной записью ответа в виде числа, двух чисел или слова, а также задания на установление
соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр. Часть 2 будет содержать 8 заданий, объединенных общим видом деятельности – решение задач.
Из них 3 задания с кратким ответом (25–27) и 5 заданий (28–32), для которых необходимо привести развернутый ответ. В работу будут включены задания трех уровней сложности. Задания базового уровня
включены в часть 1 работы (18 заданий, из которых 13 заданий с записью ответа в виде числа, двух чисел или слова и 5 заданий на соответствие и множественный выбор). Задания повышенного
уровня распределены между частями 1 и 2 экзаменационной работы: 5 заданий с кратким ответом в части 1, 3 задания с кратким ответом и 1 задание с развернутым ответом в части 2. Последние четыре
задачи части 2 являются заданиями высокого уровня сложности. Часть 1 экзаменационной работы будет включать два блока заданий: первый проверяет освоение понятийного аппарата школьного курса
физики, а второй – овладение методологическими умениями. Первый блок включает 21 задание, которые группируются, исходя из тематической принадлежности: 7 заданий по механике, 5 заданий по МКТ и
термодинамике, 6 заданий по электродинамике и 3 по квантовой физике.

Новым заданием базового уровня сложности является последнее задание первой части (24 позиция), приуроченное к возвращению курса астрономии в школьную программу. Задание имеет
характеристику типа «выбор 2 суждений из 5».
Задание 24, как и другие аналогичные задания в
экзаменационной работе, оценивается максимально в 2 балла, если верно указаны оба элемента ответа, и в 1 балл, если в одном из элементов допущена ошибка. Порядок записи цифр в ответе значения не
имеет. Как правило, задания будут иметь контекстный характер, т.е. часть данных, необходимых для выполнения задания будут приводиться в виде таблицы, схемы или графика.

В соответствии с этим заданием в кодификаторе добавился подраздел «Элементы астрофизики» раздела «Квантовая физика и элементы астрофизики», включающий следующие пункты:

·

Солнечная система: планеты земной
группы и планеты-гиганты, малые тела Солнечной системы.

·

Звёзды: разнообразие звездных
характеристик и их закономерности. Источники энергии звезд.

·

Современные представления о
происхождении и эволюции Солнца и звёзд. Наша галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной.

·

Современные взгляды на строение и
эволюцию Вселенной.

подробнее о структуре КИМ-2018 Вы можете узнать, посмотрев вебинар с участием М.Ю. Демидовой https://www.youtube.com/watch?v=JXeB6OzLokU либо в документе, приведенном ниже.

Изменений в заданиях ЕГЭ по физике на 2019
год нет.

Структура заданий ЕГЭ по физике-2019

Экзаменационная работа состоит из двух частей, включающих в себя 32 задания
.

Часть 1
содержит 27 заданий.

  • В заданиях 1–4, 8–10, 14, 15, 20, 25–27 ответом является целое число или конечная десятичная дробь.
  • Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр.
  • Ответом к заданиям 19 и 22 являются два числа.

Часть 2
содержит 5 заданий. Ответ к заданиям 28–32 включает в себя подробное описание всего хода выполнения задания. Вторая часть заданий (с развёрнутым ответом) оцениваются экспертной комиссией на основе .

Темы ЕГЭ по физике, которые будут в экзаменационной работе

  1. Механика
    (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны).
  2. Молекулярная физика
    (молекулярно-кинетическая теория, термодинамика).
  3. Электродинамика и основы СТО
    (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО).
  4. Квантовая физика и элементы астрофизики
    (корпускулярноволновой дуализм, физика атома, физика атомного ядра, элементы астрофизики).

Продолжительность ЕГЭ по физике

На выполнение всей экзаменационной работы отводится 235 минут
.

Примерное время на выполнение заданий различных частей работы составляет:

  1. для каждого задания с кратким ответом – 3–5 минут;
  2. для каждого задания с развернутым ответом – 15–20 минут.

Что можно брать на экзамен:

  • Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка.
  • Перечень дополнительных устройств и , использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.

Важно!!!
не стоит рассчитывать на шпаргалки, подсказки и использование технических средств (телефонов, планшетов) на экзамене. Видеонаблюдение на ЕГЭ-2019 усилят дополнительными камерами.

Баллы ЕГЭ по физике

  • 1 балл — за 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, 27 задания.
  • 2 балла — 5, 6, 7, 11, 12, 16, 17, 18, 21, 24.
  • З балла — 28, 29, 30, 31, 32.

Всего: 52 баллов
(максимальный первичный балл).

Что необходимо знать при подготовки заданий в ЕГЭ:

  • Знать/понимать смысл физических понятий, величин, законов, принципов, постулатов.
  • Уметь описывать и объяснять физические явления и свойства тел (включая космические объекты), результаты экспериментов… приводить примеры практического использования физических знаний
  • Отличать гипотезы от научной теории, делать выводы на основе эксперимента и т.д.
  • Уметь применять полученные знания при решении физических задач.
  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

С чего начать подготовку к ЕГЭ по физике:

  1. Изучать теорию, необходимую для каждого заданий.
  2. Тренироваться в тестовых заданиях по физике, разработанные на основе ЕГЭ. На нашем сайте задания и варианты по физике будут пополняться.
  3. Правильно распределяй время.

Желаем успеха!

ЕГЭ по физике

– экзамен, который не входит в перечень испытаний обязательных для сдачи всеми выпускниками. Физику выбирают потенциальные студенты инженерных специальностей. Причем, каждый ВУЗ устанавливает свою планку – в престижных учебных заведениях она может быть очень высокой. Это должен понимать выпускник, начиная подготовку к экзамену.
Цель экзамена

– проверка уровня знаний и умений, полученных в ходе школьного обучения, на соответствие нормам и стандартам, указанным в программе.

  • На экзамен отводится практически 4 часа – 235 минут, это время необходимо правильно распределить между заданиями, чтобы успешно справиться со всеми, не теряя ни одной минуты.
  • Разрешается брать с собой калькулятор, поскольку для выполнения заданий требуется множество сложных расчетов. Также можно взять линейку.
  • Работа состоит из трех частей, каждая имеет свои особенности, состоит из заданий разного уровня сложности.

Первая часть

экзаменационной работы состоит из обычных тестов с несколькими вариантами ответов, из которых требуется выбрать правильный. Цель первой части – проверка базовых знаний, умения применять теорию на практике на начальном уровне. При изучении новой темы в классе, подобные задания могли даваться для закрепления нового материала. Для успешного прохождения этого уровня, требуется выучить и повторить законы, теории, формулы, определения, чтобы иметь возможность воспроизвести их на экзамене. Также эта часть содержит задания, в которых требуется правильно установить соответствия. Формулируется задача и предлагается несколько вопросов к ней. К каждому вопросу необходимо подобрать правильный ответ из предложенных, и указать в бланке. Цель данной части испытания — проверка умения устанавливать связи между величинами, применять несколько формул и теорий, проводить вычисления на основе теоретических данных.
Вторая часть

делится на 2 блока. В первом блоке необходимо применять формулы, законы и теории для решения заданий и получения ответа. Экзаменуемому предлагаются варианты, из которых нужно выбрать правильный.
Во втором блоке – задачи, требуется предоставить детальное решение, полное объяснение каждого действия. Лица, проверяющие задание, должны также увидеть здесь формулы, законы, которые используются для решения – с них нужно начать детальный разбор задания.

Физика относится к сложным предметам, приблизительно каждый 15-1 сдает этот экзамен ежегодно, чтобы поступить в технический ВУЗ. Предполагается, что выпускник с такими целями не будет учить предмет «с нуля», чтобы подготовиться к ЕГЭ.
Чтобы удачно пройти испытание, необходимо:

  • Начинать повторение материала заранее, подходить к вопросу комплексно;
  • Активно применять теорию на практике – решать много заданий разного уровня сложности;
  • Заниматься самообразованием;
  • Проходить онлайн тестирование по вопросам за прошлые годы.

Эффективные помощники в подготовке – онлайн курсы, репетиторы. При помощи профессионального репетитора можно анализировать ошибки, быстро получать обратную связь. Онлайн курсы и ресурсы с заданиями помогут накопить опыт в решении различных заданий. «Решу ЕГЭ по физике» – возможность результативно тренироваться перед тестированием.

ЕГЭ по физике

– экзамен, который не входит в перечень испытаний обязательных для сдачи всеми выпускниками. Физику выбирают потенциальные студенты инженерных специальностей. Причем, каждый ВУЗ устанавливает свою планку – в престижных учебных заведениях она может быть очень высокой. Это должен понимать выпускник, начиная подготовку к экзамену.
Цель экзамена

– проверка уровня знаний и умений, полученных в ходе школьного обучения, на соответствие нормам и стандартам, указанным в программе.

  • На экзамен отводится практически 4 часа – 235 минут, это время необходимо правильно распределить между заданиями, чтобы успешно справиться со всеми, не теряя ни одной минуты.
  • Разрешается брать с собой калькулятор, поскольку для выполнения заданий требуется множество сложных расчетов. Также можно взять линейку.
  • Работа состоит из трех частей, каждая имеет свои особенности, состоит из заданий разного уровня сложности.

Первая часть

экзаменационной работы состоит из обычных тестов с несколькими вариантами ответов, из которых требуется выбрать правильный. Цель первой части – проверка базовых знаний, умения применять теорию на практике на начальном уровне. При изучении новой темы в классе, подобные задания могли даваться для закрепления нового материала. Для успешного прохождения этого уровня, требуется выучить и повторить законы, теории, формулы, определения, чтобы иметь возможность воспроизвести их на экзамене. Также эта часть содержит задания, в которых требуется правильно установить соответствия. Формулируется задача и предлагается несколько вопросов к ней. К каждому вопросу необходимо подобрать правильный ответ из предложенных, и указать в бланке. Цель данной части испытания — проверка умения устанавливать связи между величинами, применять несколько формул и теорий, проводить вычисления на основе теоретических данных.
Вторая часть

делится на 2 блока. В первом блоке необходимо применять формулы, законы и теории для решения заданий и получения ответа. Экзаменуемому предлагаются варианты, из которых нужно выбрать правильный.
Во втором блоке – задачи, требуется предоставить детальное решение, полное объяснение каждого действия. Лица, проверяющие задание, должны также увидеть здесь формулы, законы, которые используются для решения – с них нужно начать детальный разбор задания.

Физика относится к сложным предметам, приблизительно каждый 15-1 сдает этот экзамен ежегодно, чтобы поступить в технический ВУЗ. Предполагается, что выпускник с такими целями не будет учить предмет «с нуля», чтобы подготовиться к ЕГЭ.
Чтобы удачно пройти испытание, необходимо:

  • Начинать повторение материала заранее, подходить к вопросу комплексно;
  • Активно применять теорию на практике – решать много заданий разного уровня сложности;
  • Заниматься самообразованием;
  • Проходить онлайн тестирование по вопросам за прошлые годы.

Эффективные помощники в подготовке – онлайн курсы, репетиторы. При помощи профессионального репетитора можно анализировать ошибки, быстро получать обратную связь. Онлайн курсы и ресурсы с заданиями помогут накопить опыт в решении различных заданий. «Решу ЕГЭ по физике» – возможность результативно тренироваться перед тестированием.

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.

S
=
(30 + 20) с
10 м/с = 250 м.
2

Ответ.
250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.

Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза

a

=

v
= (8 – 2) м/с = 2 м/с 2 .
t
3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T
mg
= ma

(2);

из формулы (2) модуль силы натяжения

Т
= m
(g
+ a

) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ
. 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?

Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N
= 16 Н · 1,5 м/с = 24 Вт.

Ответ.
24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.

Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.

= T ; m
= T
2
; m
= k
T
2
; m
= 200 H/м
(4 с) 2 = 81,14 кг ≈ 81 кг.
k

2

2
39,438

Ответ:
81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.

  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h
    , нужно вытянуть участок веревки длиной 3h
    .
  4. Для того чтобы медленно поднять груз на высоту h
    h
    .

Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h
    , нужно вытянуть участок веревки длиной 2h
    .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ.
45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.

Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a

, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a

. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a

mg
= 0; (1) Выразим силу натяжения F
упр = mg
F a

(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a

= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a

, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ.
13.

Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg
cosα

Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.

Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=


mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.

На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a

; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma

(5); F
тр = m
(g
sinα
a

) (6); Помним, что сила трения пропорциональна силе нормального давления N
.

По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.

μ
=
F
тр
= m
(g
sinα
a

)

= tgα
a (8).
N
mg
cosα
g
cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ.
A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ.
48 г.

Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ.
25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ
1 = 10 % ; φ
2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P
2
= φ
2
= 35 = 3,5
P
1
φ
1
10

Ответ.
Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ.
14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑
n
U i =
0 (1);
i
= 1

где ∆U
– изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ.
23.

Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)

Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ.
от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d
– расстояние между пластинами.

Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ.
20 мкКл.

Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.

Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t
    = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t
    = 0,1 с t
    = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ.
13.

По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t
= 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I

= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

|

Ɛ
|

= 2 ·10 –6 В, или 2 мкВ.

Ответ.
2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).

Запишем закон преломления

sinβ
=
sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ
. 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x
+ y
;

Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x
= 1; y
= 2

Ответ.
1 – α
-частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E

= mc
2 (1) и p
= mc
(2), тогда

E
= pc
(3),

где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E
2
= p
2
= 8,18;
E
1
p
1

Ответ округляем до десятых и получаем 8,2.

Ответ.
8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ.
21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d
sinφ
= k
λ
(1),

где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ.
42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U
= I
R
(3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ.
13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T
= 2π (1);

l

– длина математического маятника; g
– ускорение свободного падения.

По условию

Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ.
14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F
А = I
LB
sinα
;

F
А = 0,6 Н

Ответ. F
А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение.
Энергия магнитного поля катушки рассчитывается по формуле

По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.

I

1 2 =

2W
1
; I

2 2 =
2W
2
;
L
L

Тогда отношение токов

I

2 2

= 49; I

2

= 7
I
1 2
I

1

Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.

Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ.
Загорится вторая лампа.

Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l

= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2

Решение.
Выполним поясняющий рисунок.

– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);

F
a = Sl
ρ
в g
(2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М
(Т
) = 0 – момент силы натяжения; (3)

М
(N) = NL
cosα
– момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL
cosα
+ Sl

ρ
в g
(L

l ) cosα
= SL
ρ
a

g

L
cosα
(7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:

F д = [ 1 L
ρ
a

– (1 –

l )l

ρ
в ]Sg
(8).

2 2L

Подставим числовые данные и получим, что

F
д = 0,025 Н.

Ответ.
F
д = 0,025 Н.

Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.

Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m
2 =
m
1
M
2
T
1
(5).
5 M
1
T
2

После подстановки числовых данных m
2 = 28 г.

Ответ.
m
2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C
U
2
+ L
I

2

= L
I
m
2
(1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

Подставим (4) в (3). В результате получим:

I

= I m
(5)

Таким образом, сила тока в катушке в момент времени t
равна

I
= 4,0 мА.

Ответ.
I

= 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение.
Сделаем поясняющий рисунок

α
– угол падения луча;

β
– угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD

tgβ
= h
tgβ
= h
sinα = h
sinβ = h
sinα (4)
cosβ

Получаем следующее выражение:

Подставим числовые значения в полученную формулу (5)

Ответ.
1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.

S
=
(30 + 20) с
10 м/с = 250 м.
2

Ответ.
250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.

Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза

a

=

v
= (8 – 2) м/с = 2 м/с 2 .
t
3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T
mg
= ma

(2);

из формулы (2) модуль силы натяжения

Т
= m
(g
+ a

) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ
. 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?

Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N
= 16 Н · 1,5 м/с = 24 Вт.

Ответ.
24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.

Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.

= T ; m
= T
2
; m
= k
T
2
; m
= 200 H/м
(4 с) 2 = 81,14 кг ≈ 81 кг.
k

2

2
39,438

Ответ:
81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.

  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h
    , нужно вытянуть участок веревки длиной 3h
    .
  4. Для того чтобы медленно поднять груз на высоту h
    h
    .

Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h
    , нужно вытянуть участок веревки длиной 2h
    .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ.
45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.

Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a

, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a

. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a

mg
= 0; (1) Выразим силу натяжения F
упр = mg
F a

(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a

= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a

, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ.
13.

Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg
cosα

Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.

Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=


mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.

На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a

; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma

(5); F
тр = m
(g
sinα
a

) (6); Помним, что сила трения пропорциональна силе нормального давления N
.

По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.

μ
=
F
тр
= m
(g
sinα
a

)

= tgα
a (8).
N
mg
cosα
g
cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ.
A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ.
48 г.

Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ.
25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ
1 = 10 % ; φ
2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P
2
= φ
2
= 35 = 3,5
P
1
φ
1
10

Ответ.
Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ.
14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑
n
U i =
0 (1);
i
= 1

где ∆U
– изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ.
23.

Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)

Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ.
от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d
– расстояние между пластинами.

Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ.
20 мкКл.

Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.

Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t
    = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t
    = 0,1 с t
    = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ.
13.

По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t
= 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I

= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

|

Ɛ
|

= 2 ·10 –6 В, или 2 мкВ.

Ответ.
2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).

Запишем закон преломления

sinβ
=
sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ
. 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x
+ y
;

Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x
= 1; y
= 2

Ответ.
1 – α
-частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E

= mc
2 (1) и p
= mc
(2), тогда

E
= pc
(3),

где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E
2
= p
2
= 8,18;
E
1
p
1

Ответ округляем до десятых и получаем 8,2.

Ответ.
8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ.
21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d
sinφ
= k
λ
(1),

где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ.
42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U
= I
R
(3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ.
13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T
= 2π (1);

l

– длина математического маятника; g
– ускорение свободного падения.

По условию

Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ.
14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F
А = I
LB
sinα
;

F
А = 0,6 Н

Ответ. F
А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение.
Энергия магнитного поля катушки рассчитывается по формуле

По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.

I

1 2 =

2W
1
; I

2 2 =
2W
2
;
L
L

Тогда отношение токов

I

2 2

= 49; I

2

= 7
I
1 2
I

1

Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.

Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ.
Загорится вторая лампа.

Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l

= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2

Решение.
Выполним поясняющий рисунок.

– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);

F
a = Sl
ρ
в g
(2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М
(Т
) = 0 – момент силы натяжения; (3)

М
(N) = NL
cosα
– момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL
cosα
+ Sl

ρ
в g
(L

l ) cosα
= SL
ρ
a

g

L
cosα
(7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:

F д = [ 1 L
ρ
a

– (1 –

l )l

ρ
в ]Sg
(8).

2 2L

Подставим числовые данные и получим, что

F
д = 0,025 Н.

Ответ.
F
д = 0,025 Н.

Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.

Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m
2 =
m
1
M
2
T
1
(5).
5 M
1
T
2

После подстановки числовых данных m
2 = 28 г.

Ответ.
m
2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C
U
2
+ L
I

2

= L
I
m
2
(1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

Подставим (4) в (3). В результате получим:

I

= I m
(5)

Таким образом, сила тока в катушке в момент времени t
равна

I
= 4,0 мА.

Ответ.
I

= 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение.
Сделаем поясняющий рисунок

α
– угол падения луча;

β
– угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD

tgβ
= h
tgβ
= h
sinα = h
sinβ = h
sinα (4)
cosβ

Получаем следующее выражение:

Подставим числовые значения в полученную формулу (5)

Ответ.
1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.

Изменений в заданиях ЕГЭ по физике на 2019
год нет.

Структура заданий ЕГЭ по физике-2019

Экзаменационная работа состоит из двух частей, включающих в себя 32 задания
.

Часть 1
содержит 27 заданий.

  • В заданиях 1–4, 8–10, 14, 15, 20, 25–27 ответом является целое число или конечная десятичная дробь.
  • Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр.
  • Ответом к заданиям 19 и 22 являются два числа.

Часть 2
содержит 5 заданий. Ответ к заданиям 28–32 включает в себя подробное описание всего хода выполнения задания. Вторая часть заданий (с развёрнутым ответом) оцениваются экспертной комиссией на основе .

Темы ЕГЭ по физике, которые будут в экзаменационной работе

  1. Механика
    (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны).
  2. Молекулярная физика
    (молекулярно-кинетическая теория, термодинамика).
  3. Электродинамика и основы СТО
    (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО).
  4. Квантовая физика и элементы астрофизики
    (корпускулярноволновой дуализм, физика атома, физика атомного ядра, элементы астрофизики).

Продолжительность ЕГЭ по физике

На выполнение всей экзаменационной работы отводится 235 минут
.

Примерное время на выполнение заданий различных частей работы составляет:

  1. для каждого задания с кратким ответом – 3–5 минут;
  2. для каждого задания с развернутым ответом – 15–20 минут.

Что можно брать на экзамен:

  • Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка.
  • Перечень дополнительных устройств и , использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.

Важно!!!
не стоит рассчитывать на шпаргалки, подсказки и использование технических средств (телефонов, планшетов) на экзамене. Видеонаблюдение на ЕГЭ-2019 усилят дополнительными камерами.

Баллы ЕГЭ по физике

  • 1 балл — за 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, 27 задания.
  • 2 балла — 5, 6, 7, 11, 12, 16, 17, 18, 21, 24.
  • З балла — 28, 29, 30, 31, 32.

Всего: 52 баллов
(максимальный первичный балл).

Что необходимо знать при подготовки заданий в ЕГЭ:

  • Знать/понимать смысл физических понятий, величин, законов, принципов, постулатов.
  • Уметь описывать и объяснять физические явления и свойства тел (включая космические объекты), результаты экспериментов… приводить примеры практического использования физических знаний
  • Отличать гипотезы от научной теории, делать выводы на основе эксперимента и т.д.
  • Уметь применять полученные знания при решении физических задач.
  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

С чего начать подготовку к ЕГЭ по физике:

  1. Изучать теорию, необходимую для каждого заданий.
  2. Тренироваться в тестовых заданиях по физике, разработанные на основе ЕГЭ. На нашем сайте задания и варианты по физике будут пополняться.
  3. Правильно распределяй время.

Желаем успеха!

1)

ЕДИНЫЙ ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО ФИЗИКЕ ДЛИТСЯ




235
мин

2) СТРУКТУРА КИМов — 2018 и 2019 по сравнению с 2017г. несколько ИЗМЕНИЛАСЬ:

Вариант экзаменационной работы будет состоять из двух частей и включит в себя
32 задания. Часть 1 будет содержать 24 задания с кратким ответом, в том числе задания с самостоятельной записью ответа в виде числа, двух чисел или слова, а также задания на установление
соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр. Часть 2 будет содержать 8 заданий, объединенных общим видом деятельности – решение задач.
Из них 3 задания с кратким ответом (25–27) и 5 заданий (28–32), для которых необходимо привести развернутый ответ. В работу будут включены задания трех уровней сложности. Задания базового уровня
включены в часть 1 работы (18 заданий, из которых 13 заданий с записью ответа в виде числа, двух чисел или слова и 5 заданий на соответствие и множественный выбор). Задания повышенного
уровня распределены между частями 1 и 2 экзаменационной работы: 5 заданий с кратким ответом в части 1, 3 задания с кратким ответом и 1 задание с развернутым ответом в части 2. Последние четыре
задачи части 2 являются заданиями высокого уровня сложности. Часть 1 экзаменационной работы будет включать два блока заданий: первый проверяет освоение понятийного аппарата школьного курса
физики, а второй – овладение методологическими умениями. Первый блок включает 21 задание, которые группируются, исходя из тематической принадлежности: 7 заданий по механике, 5 заданий по МКТ и
термодинамике, 6 заданий по электродинамике и 3 по квантовой физике.

Новым заданием базового уровня сложности является последнее задание первой части (24 позиция), приуроченное к возвращению курса астрономии в школьную программу. Задание имеет
характеристику типа «выбор 2 суждений из 5».
Задание 24, как и другие аналогичные задания в
экзаменационной работе, оценивается максимально в 2 балла, если верно указаны оба элемента ответа, и в 1 балл, если в одном из элементов допущена ошибка. Порядок записи цифр в ответе значения не
имеет. Как правило, задания будут иметь контекстный характер, т.е. часть данных, необходимых для выполнения задания будут приводиться в виде таблицы, схемы или графика.

В соответствии с этим заданием в кодификаторе добавился подраздел «Элементы астрофизики» раздела «Квантовая физика и элементы астрофизики», включающий следующие пункты:

·

Солнечная система: планеты земной
группы и планеты-гиганты, малые тела Солнечной системы.

·

Звёзды: разнообразие звездных
характеристик и их закономерности. Источники энергии звезд.

·

Современные представления о
происхождении и эволюции Солнца и звёзд. Наша галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной.

·

Современные взгляды на строение и
эволюцию Вселенной.

подробнее о структуре КИМ-2018 Вы можете узнать, посмотрев вебинар с участием М.Ю. Демидовой https://www.youtube.com/watch?v=JXeB6OzLokU либо в документе, приведенном ниже.

Добавлено: 8 февраля 2021 в 11:10

Решу ЕГЭ физика: как справиться с тестовой частью?

Первая часть ЕГЭ по физике состоит из 24 заданий с кратким ответом. Если верно ответить на все вопросы, вы получите 34 первичных или 64 тестовых балла, что уже само по себе неплохо. Для сравнения скажем, что средний результат выпускников в 2020 году составил 54,5 балла, то есть далеко не все успешно справляются даже с первой частью экзамена. Давайте разберемся, как отвечать на тестовые задания и на что обратить внимание при подготовке. Эта задача особенно актуальна для тех, кто ставит перед собой цель: «Решу ЕГЭ физика на 80+ баллов».

Особенности 1 части ЕГЭ по физике

В первый блок заданий включены:

  • 21 задание базового уровня, которые проверяют, насколько хорошо ученик освоил наиболее значимые понятия и законы физики;
  • 3 задания повышенной сложности проверяют навыки использования теоретических знаний для анализа физических явлений и для решения несложных задач.

Оба типа заданий требуют краткого ответа в следующем формате:

  • в виде 1-2 цифр или одного слова;
  • в виде последовательности цифр, которая отражает результат множественного выбора или составления последовательности из предложенных вариантов.

Сразу отметим, что угадать результаты тестов не получится. В том или ином виде это небольшие задачи, которые необходимо решать с опорой на графики, схемы, таблицы и, конечно же, на собственные знания теоретического материала. Поэтому первой части следует уделить внимание, сопоставимое с решением задач высокого уровня из второй части экзамена. На наших курсах ЕГЭ по физике преподаватели акцентировано готовят учеников в этом направлении. При самостоятельной подготовке вы можете ориентироваться на рекомендации из этой статьи.

Решу ЕГЭ физика: задания базового уровня

Настраивая себя на цель: «Решу ЕГЭ физика на максимум», следует начать с простого — с заданий «стоимостью» в 1 балл. При этом следует уделить внимание формулам и правилам, которые включены в кодификатор ФИПИ. Также не стоит забывать о справочных материалах, приведенных в самих КИМ ЕГЭ. Если вы забудете соотношение между метрами и микрометрами, парсеками и астрономическими единицами, эти материалы помогут вам.

Еще один важный нюанс: несовпадение размерности в исходных данных и ответе. К примеру, в условии задачи дано давление в паскалях, площадь в см2, а ответ необходимо получить в килограммах. Для этого при расчете нужно перевести см2 в м2. Многие участники ЕГЭ об этом забывают, получая 0 баллов за задачу с правильным ходом решения, но неверным ответом. Разберем примеры заданий части 1 из актуальной демоверсии 2021 года.

Решу ЕГЭ физика: как справиться с тестовой частью?

Раздел «Механика»

Это типовая задача на взаимосвязь массы тела, давления, силы и площади, к которой она приложена.

Дано:

давление блока p = 2500 Па

площадь S = 740 см2

Найти:

m = ? кг

Решение:

Сразу вспоминаем, что размерности нужно привести к стандартному виду в системе СИ. То есть, площадь будет равна:

S = 740 см2 = 0,074 м2

Далее вспоминаем соотношение между давлением, силой тяжести F и площадью: p = F/S. Так как F = g·m, то выражение приобретает следующий вид:

р = g·m / S,

где g – ускорение силы тяжести, (в школьном курсе принято использовать значение 10 м/с2).

Выразим из указанного уравнения массу и подставим исходные данные:

m = p·S / g = 2500 · 0,074 / 10 = 18,5 кг

Ответ: 18,5 кг.

Раздел «Молекулярная физика»

Решу ЕГЭ физика: как справиться с тестовой частью?

В качестве образца возьмем задание №8, которое служит еще одним примером использования базовых знаний для решения задач.

Дано:

Ек1 – начальная кинетическая энергия аргона, Дж;

Ек2 – конечная кинетическая энергия аргона, Дж;

Ек1 / Ек2= 4

Т1 — начальная температура аргона, К;

Т2 — конечная температура аргона, К;

Т12 = 600 К

Найти:

Т1 = ?

Решение

Для решения воспользуемся формулой зависимости кинетической энергии идеального газа от температуры:

Ек = (i/2)·k·T = (3/2) · k·T,

где i — число степеней свободы (в нашем случае для одноатомного аргона i = 3).

Подставив значения температур и кинетических энергий в указанное выражение, получим:

Ек1 = (3/2) · k·T1,

Ек2 = (3/2) · k·T2.

По условию задачи Ек1 / Ек2 = 4, тогда T1/ T2 = 4. Выразим T1 через T2 :

T1 = 4 · T2.

Зная, что Т1 — Т2 = 600 К, преобразуем это выражение:

Т1 — Т2 = 4 · T2 — Т2 = 3·T2 = 600 К.

Если 3·T2 = 600 К, то конечная температура равна T2 = 600 / 3 = 200 К.

Ответ: 200 К.

Решу ЕГЭ физика: задания повышенного уровня

Как мы успели убедиться, задачи базового уровня требуют знаний основных законов физики и умения их применять для решения типовых примеров. Задания повышенного уровня, которые оцениваются в 2 балла, отличаются тем, что автору при оценке физических явлений приходится демонстрировать навыки аналитического мышления. В качестве примера рассмотрим задание №18 из раздела «Электродинамика».

Решу ЕГЭ физика: как справиться с тестовой частью?

Перед нами схема колебательного контура, где С – конденсатор, К – переключатель, L – катушка. В начальный момент времени переключатель стоит в положении 1, то есть конденсатор заряжается от источника питания. При этом обратим внимание не клеммы: правая обкладка имеет отрицательный, а левая — положительный заряд. В заданный момент времени переключатель переключается из положения 1 в положение 2, после чего конденсатор начинает разряжаться, а катушка создает магнитное поле. После возникновения ЭДС самоиндукции процесс зарядки конденсатора продолжается, но меняется полярность.

Проанализируем график А. Так как приведенная кривая размещена в положительной области, она может представлять либо вариант №1 (энергия магнитного поля катушки), либо вариант №4 (энергия электрического поля конденсатора). Поскольку в начальный момент времени при t=0 график имеет нулевое значение, то правильный вариант №1, когда конденсатор заряжен и еще не начал разряжаться на катушку.

Проанализируем график Б. Кривая размещена в обеих частях графика, но сразу после переключения ключа в положение 2 имеет отрицательной значение, что соответствует заряду правой обкладки конденсатора. В итоге правильным оказывается вариант №3.


Занимайтесь на курсах ЕГЭ и ОГЭ в паре TwoStu и получите максимум баллов на экзамене:

Владислав Барышников

Эксперт по подготовке к ЕГЭ, ОГЭ и ВПР

Задать вопрос

Закончил Московский физико-технический институт (Физтех) по специальности прикладная физика и математика. Магистр физико-математических наук. Преподавательский стаж более 13 лет. Соучредитель курсов ЕГЭ и ОГЭ в паре TwoStu.

Занимайтесь на курсах подготовки к ЕГЭ и ОГЭ (ГИА) в паре TwoStu и получите максимум баллов на ЕГЭ и ОГЭ!

  • ГДЗ

  • /

    7 класс

  • /

    Физика

  • /

    Сборник задач 7-9 Пёрышкин

  • /

    1708

Сборник задач по физике 7-9 класс Пёрышкин

Автор:
А.В. Перышкин

Издательство:

Экзамен 2015

Тип книги: Сборник задач

Рекомендуем посмотреть

Подробное решение номер № 1708 по физике Сборник задач для учащихся 7‐9 класса , авторов Перышкин 2015

Решебник / номер / 1708

ГДЗ по физике 7‐9 класс  Перышкин Сборник задач  номер - 1708, Решебник

Решить моё задание

Сообщить об ошибке

Видеорешение / номер / 1708

Расскажите об ошибке

ГДЗ по физике 7‐9 класс Перышкин Сборник задач номер — 1708

Сообщение должно содержать от 10 до 250 символов

Спасибо! Ваше сообщение успешно отправлено!

This site is protected by reCAPTCHA and the Google
Privacy Policy and
Terms of Service apply.

Решения из этого учебника доступны авторизованным пользователям

Нажмите кнопку “Войти”, чтобы посмотреть решение

Решения из этого учебника доступны авторизованным пользователям

Нажмите кнопку “Войти”, чтобы посмотреть решение

Задание 17607

Внимательно прочитайте текст задания и выберите верный ответ из списка

Решение

Задание 18112

Внимательно прочитайте текст задания и выберите верный ответ из списка

Решение

Задание 18147

Внимательно прочитайте текст задания и выберите верный ответ из списка

Решение

Задание 22497

Внимательно прочитайте текст задания и выберите верный ответ из списка

Решение

Задание 22532

Внимательно прочитайте текст задания и выберите верный ответ из списка

Решение

ЕГЭ
Справочник

vkontakte

youtube

© 2023 ЕГЭ.Справочник24. Все права защищены.

09.03.2023

Пятый тренировочный вариант, составленный на основе демоверсии ЕГЭ 2023 года по физике от ФИПИ. Вариант включает все задания кодификатора 2023 года и учитывает все изменения, которые произошли в 2023 году (полный список изменений). Вариант содержит правильные ответы и подробные разборы для второй части теста — задания повышенной сложности. Ответы сохранены в конце варианта.

  • Другие тренировочные варианты по физике

В варианте присутствуют задания на знание физических законов и явлений, на проведение простых физических экспериментов, на расчет физических величин, а также на решение задач. Сам тренировочный вариант состоит из нескольких частей. В первой части обычно представлены задания на знание физических законов и явлений, а также на проведение простых физических экспериментов. Вторая часть содержит задания на расчет физических величин, таких как скорость, ускорение, работа, мощность и т.д. Третья часть включает задания на решение задач, в которых учащиеся должны применить свои знания физики для решения конкретной задачи.

Задания из тренировочного варианта №5

Задание 1. Материальная точка движется вдоль оси OX. Её координата изменяется с течением времени по закону x=3+3t-2t2 (все величины даны в СИ). Чему равна проекция скорости материальной точки на ось OX в момент времени t = 2 с?

Задание 2. Тело массой 1,5 кг лежит на горизонтальном столе. На него почти мгновенно начинает действовать сила, направленная вертикально вверх. Через 3 с после начала действия силы модуль скорости этого тела равен 9 м/с. Чему равен модуль приложенной к телу силы?

Задание 3. Координата тела массой 8 кг, движущегося вдоль оси x, изменяется по закону x=x0 + vxt, где . x0 = 6 м; vx = 8 м/с. Чему равна кинетическая энергия тела в момент времени t = 10 с?

Задание 4. Два одинаковых бруска толщиной 5 см и массой 1 кг каждый, связанные друг с другом, плавают в воде так, что уровень воды приходится на границу между ними (см. рисунок). Из приведенного ниже списка выберите все правильные утверждения.

  1. Плотность материала, из которого сделаны бруски, равна 500 кг/м3.
  2. Если на верхний брусок положить груз массой 0,7 кг, то бруски утонут..
  3. Если воду заменить на керосин, то глубина погружения брусков уменьшится.
  4. Сила Архимеда, действующая на бруски, равна 20 Н.
  5. Если в стопку добавить еще 2 таких же бруска, то глубина её погружения увеличится на 10 см.

Задание 7. Какое изменение температуры Δt (в градусах Цельсия) соответствует нагреву на 27 К?

Задание 8. Рабочее тело тепловой машины с КПД 40% за цикл получает от нагревателя количество теплоты, равное 50 Дж. Какое количество теплоты рабочее тело за цикл отдает холодильнику?

Задание 9. Кусок свинца, находившийся при температуре +27,5 °C, начали нагревать, подводя к нему постоянную тепловую мощность. Через 39 секунд после начала нагревания свинец достиг температуры плавления +327,5 °C. Через сколько секунд после этого момента кусок свинца расплавится? Потери теплоты отсутствуют.

Задание 13. На сколько отличаются наибольшее и наименьшее значения модуля силы, действующей на прямой провод длиной 20 см с током 10 А, при различных положениях провода водородном магнитном поле, индукция которого равна 1 Тл?

Задание 14. На какой частоте корабли передают сигнал SOS, если по Международному соглашению длина радиоволн должна быть равна 600м?

Задание 20. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

  1. При увеличении частоты звуковой волны скорость ее распространения увеличивается.
  2. При изотермическом сжатии идеального газа его давление уменьшается.
  3. Сопротивление резистора не зависит от силы тока через него.
  4. При переходе света из воздуха в стекло угол падения меньше, чем угол преломления.
  5. Работа выхода электронов из металла при фотоэффекте не зависит от энергии падающих фотонов.

Задание 26. Поток фотонов выбивает из металла электроны. Энергия фотона равна 2 эВ. Если длину волны падающего излучения уменьшить в 2,5 раза, то максимальная скорость фотоэлектронов, вылетающих из этого металла, увеличится в 2 раза. Определите работу выхода электронов из металла.

Задание 27. В горизонтальном цилиндрическом сосуде, закрытым поршнем, находится одноатомный идеальный газ. Первоначальное давление газа p1 = 4105 Па. Расстояние от дна сосуда до поршня L = 0,3 м. Площадь поперечного сечения поршня S. В результате медленного нагревания газ получил количество теплоты Q = 1,65 кДж, а поршень сдвинулся на расстояние x = 10 см. При движении поршня на него со стороны стенок сосуда действует сила трения величиной Fтр = 3103 Н. Найдите S. Считать, что сосуд находится в вакууме.

Задание 29. В плоскости, параллельной плоскости тонкой собирающей линзы, по окружности со скоростью v = 5 м/с движется точечный источник света. Расстояние между плоскостями d = 15 см. Центр окружности находится на главной оптической оси линзы. Фокусное расстояние линзы F = 10 см. Найдите скорость движения изображения точечного источника света. Сделайте пояснительный чертеж, указав ход лучей в линзе.

Смотреть в PDF:

Или прямо сейчас: cкачать в pdf файле.


ОСНОВНОЕ МЕНЮ

Грамотеи


НАЧАЛЬНАЯ ШКОЛА


РУССКИЙ ЯЗЫК

Тетрадкин Град


ЛИТЕРАТУРА

Урок биологии


АНГЛИЙСКИЙ ЯЗЫК


НЕМЕЦКИЙ ЯЗЫК


ИСТОРИЯ


БИОЛОГИЯ


ГЕОГРАФИЯ


МАТЕМАТИКА


ИНФОРМАТИКА

Сила знаний


Поиск


ОБЩЕСТВОЗНАНИЕ


ФИЗИКА

Школярик


ХИМИЯ

Веселый ранец


ТЕХНОЛОГИЯ


Поделиться


ОБЖ


АСТРОНОМИЯ


ОСНОВЫ ХРИСТИАНСКОЙ ЭТИКИ


МУЗЫКА


МХК


ИЗО


ФИЗКУЛЬТУРА


ИНТЕРЕСЕНКИ ОТ ЗНАЕВА


ПСИХОЛОГ


ДОСУГ ШКОЛЬНИКА


ГОЛОВОЛОМКИ ДЛЯ ШКОЛЬНИКОВ

Понравилась статья? Поделить с друзьями:
  • 17 задание егэ литература количество слов
  • 17 задание егэ информатика школково
  • 17 задание егэ информатика 2022 эксель
  • 17 баллов за сочинение по русскому егэ это сколько вторичных
  • 1694 английский решу егэ