В файле 22_24.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример организации данных в файле:
ID процесса B | Время выполнения процесса B (мс) | ID процесса(ов) A |
---|---|---|
1 | 4 | 0 |
2 | 3 | 0 |
3 | 1 | 1;2 |
4 | 7 | 3 |
В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1 = 5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть, через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7 = 12 мс.
Ответы и задания для вариантов ИН2210201 и ИН2210202 тренировочная работа №2 статград пробный ЕГЭ 2023 по информатике 11 класс в формате реального экзамена ЕГЭ 2023 года, которая прошла 15 декабря 2022 года.
ИН2210201-ИН2210202-статград
Вариант ИН2210201 и ответы
Задание 1. На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что дорога АБ длиннее дороги БД. Определите длину дороги ГЖ.
Задание 2. Логическая функция F задаётся выражением: (x ≡ ¬y) → ((z → ¬w) ∧ (w → y)) Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F. Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z. В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Задание 3. В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц. Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах. На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними. Используя информацию из приведённой базы данных, определите магазин, получивший наибольшую общую сумму выручки от продаж товаров отдела «Молоко» с 10 по 12 июня. В ответе запишите число – найденную наибольшую сумму выручки в рублях.
Задание 4. Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова некоторых букв: А – 00, М – 0100, Д – 101, Х – 11. Известно также, что код слова ЛИЛИЯ содержит 17 двоичных знаков. Сколько двоичных знаков содержит код слова МИЛЯ?
Задание 5. Алгоритм получает на вход натуральное число N и строит по нему новое число R следующим образом: 1. Строится двоичная запись числа N. 2. Если сумма цифр десятичной записи заданного числа нечётна, то в конец двоичной записи дописывается 1, если чётна – 0. 3–4. Пункт 2 повторяется для вновь полученных чисел ещё два раза. 5. Результатом работы алгоритма становится десятичная запись полученного числа R.
Пример. Дано число N = 17. Алгоритм работает следующим образом: 1. Строим двоичную запись: 1710 = 100012. 2. Сумма цифр числа 17 – чётная, дописываем к двоичной записи 0, получаем 1000102 = 3410. 3. Сумма цифр числа 34 – нечётная, дописываем к двоичной записи 1, получаем 10001012 = 6910. 4. Сумма цифр числа 69 – нечётная, дописываем к двоичной записи 1, получаем 100010112 = 13910. 5. Результат работы алгоритма R = 139. Определите наименьшее возможное значение R > 1028, которое может получиться в результате работы алгоритма.
Задание 6. Исполнитель Черепаха передвигается по плоскости и оставляет след в виде линии. Черепаха может выполнять три команды: Вперёд n (n – число), Направо m (m – число), и Налево m (m – число). По команде Вперёд n Черепаха перемещается вперёд на n единиц. По команде Направо m Черепаха поворачивается на месте на m градусов по часовой стрелке, при этом соответственно меняется направление дальнейшего движения. По команде Налево m Черепаха поворачивается на месте на m градусов против часовой стрелки, при этом соответственно меняется направление дальнейшего движения.
В начальный момент Черепаха находится в начале координат и направлена вверх (вдоль положительного направления оси ординат). Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что заданная последовательность из S команд повторится k раз. Черепаха выполнила следующую программу: Повтори 4 [ Вперёд 7 Направо 90 Вперёд 7 Налево 90 Вперёд 7 Направо 90 ] Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, полученной при выполнении данной программы. Точки, расположенные на линии, не учитывать.
Задание 7. Изображение было отсканировано с разрешением 150 dpi, а затем сохранено со сжатием на 20 %. Размер полученного файла составил 4 Мбайт. Затем то же изображение было отсканировано с разрешением 300 dpi и сохранено со сжатием на 40 %. Определите размер нового файла. В ответе запишите только число – размер файла в Мбайтах.
Задание 8. Вероника составляет коды из букв слова ВЕРОНИКА. Код должен состоять из 6 букв, любую букву можно использовать произвольное число раз или не использовать вовсе. Вероника хочет, чтобы гласных в каждом коде было больше, чем согласных. Сколько кодов, удовлетворяющих этому условию, она сможет составить?
Задание 9. В каждой строке электронной таблицы записаны пять натуральных чисел. Определите, сколько в таблице строк, для которых выполнены следующие условия: – все числа в строке различны; – нечётных чисел больше, чем чётных; – сумма нечётных чисел меньше суммы чётных. В ответе запишите число – количество строк, для которых выполнены эти условия.
Задание 10. Определите, сколько раз в тексте романа Михаила Булгакова «Мастер и Маргарита» встречается фамилия Лиходеев в начальной форме.
Задание 11. В базе данных хранится информация об объектах определённой структуры. Каждый объект описывается как последовательность из 290 простых элементов, при этом всего используется 1012 различных простых элементов. Каждое описание объекта записывается как последовательность кодов простых элементов, при этом код каждого элемента содержит одинаковое для всех элементов минимально возможное число битов, а для описания в целом отводится минимально возможное целое число байтов. Сколько Кбайтов потребуется для хранения 32 768 описаний, построенных по такой схеме? В ответе запишите только число – количество Кбайтов.
Задание 12. Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр. А) заменить (v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150. Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку. Б) нашлось (v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
Задание 13. На рисунке представлена схема дорог, связывающих пункты А, Б, В, Г, Д, Е, Ж, И, К, Л, М. По каждой дороге можно передвигаться только в направлении, указанном стрелкой. Определите количество различных путей ненулевой длины, которые начинаются и заканчиваются в пункте Д, не содержат этот пункт в качестве промежуточного и проходят через любой другой пункт не более одного раза.
Задание 14. В выражении 123×37 + 4×5937 x обозначает некоторую цифру из алфавита системы счисления c основанием 37. Определите наименьшее значение x, при котором значение данного выражения кратно 36. Для найденного x вычислите частное от деления данного выражения на 36 и запишите его в ответе в десятичной системе счисления.
Задание 15. Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Укажите наименьшее целое значение A, для которого формула (ДЕЛ(144, x)→ ¬ДЕЛ(x, y)) ∨ (x + y > 100) ∨ (A – x > y) тождественно истинна при любых натуральных значениях переменных x и y.
Задание 16. Обозначим частное от деления натурального числа a на натуральное число b как a div b, а остаток как a mod b. Например, 13 div 3 = 4, 13 mod 3 = 1. Алгоритм вычисления значения функции F(n), где n – целое неотрицательное число, задан следующими соотношениями: F(0) = 0; F(n) = F(n div 10) + (n mod 10). Укажите количество таких чисел n из интервала 237 567 892 ≤ n ≤ 1 134 567 009, для которых F(n) > F(n + 1)
Задание 17. Файл содержит последовательность целых чисел, по модулю не превышающих 10 000. Назовём парой два идущих подряд элемента последовательности. Определите количество таких пар, в которых запись меньшего элемента заканчивается цифрой 5, а сумма квадратов элементов пары меньше, чем квадрат наименьшего из элементов последовательности, запись которых заканчивается цифрой 5. В ответе запишите два числа: сначала количество найденных пар, затем максимальную сумму квадратов элементов этих пар.
Задание 18. Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо, вниз, по диагонали вправо-вниз или по диагонали влево-вниз. Числа показывают расход энергии робота на прохождение клетки. Определите максимальный расход энергии при переходе робота в правую нижнюю клетку поля и количество клеток с нечётными числами, через которые робот проходит на пути с максимальным расходом энергии.
В ответе запишите два числа: сначала максимальный расход энергии, затем – количество пройденных клеток с нечётными значениями. Исходные данные записаны в электронной таблице. Пример входных данных (для таблицы размером 4×4).
При указанных входных данных максимальный расход получится при движении по маршруту 43 + 90 + 72 + 30 + 36 + 63 + 61 + 84 + 49 + 51 = 579. При этом робот проходит через 5 клеток с нечётными числами (43, 63, 61, 49, 51). В ответе в данном случае надо записать числа 579 и 5.
Задание 19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в меньшую кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. Изменять количество камней в большей куче не разрешается. Пусть, например, в начале игры в первой куче 5 камней, а во второй – 8 камней, будем обозначать такую позицию (5, 8).
Петя первым ходом должен добавлять камни в первую кучу, он может получить позиции (6, 8), (7, и (10, 8). Если Петя получает позиции (6, и (7, 8), Ваня следующим ходом тоже должен добавлять камни в первую кучу, а если Петя получает позицию (10, 8), Ваня должен добавлять камни во вторую кучу, так как теперь она стала меньшей. Игра завершается, когда общее количество камней в двух кучах становится более 80. Победителем считается игрок, сделавший последний ход, то есть первым получивший 81 или больше камней в двух кучах. В начальный момент в первой куче было 12 камней, а во второй – S камней, 1 ≤ S ≤ 68. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите минимальное из таких значений S, при которых Петя не может выиграть за один ход, но при любом ходе Пети Ваня сможет выиграть своим первым ходом.
Задание 20. Для игры, описанной в задании 19, укажите минимальное и максимальное из таких значений S, при которых Петя не может выиграть первым ходом, но у Пети есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Вани. В ответе запишите сначала минимальное значение, затем максимальное.
Задание 21. Для игры, описанной в задании 19, найдите максимальное из таких значений S, при которых у Вани есть стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, но у Вани нет стратегии, которая позволяла бы ему гарантированно выиграть первым ходом.
Задание 22. В компьютерной системе необходимо выполнить некоторое количество вычислительных процессов, которые могут выполняться параллельно или последовательно. Для запуска некоторых процессов необходимы данные, которые получаются как результаты выполнения одного или двух других процессов – поставщиков данных. Независимые процессы (не имеющие поставщиков данных) можно запускать в любой момент времени.
Если процесс B (зависимый процесс) получает данные от процесса A (поставщика данных), то процесс B может начать выполнение сразу же после завершения процесса A. Любые процессы, готовые к выполнению, можно запускать параллельно, при этом количество одновременно выполняемых процессов может быть любым, длительность процесса не зависит от других параллельно выполняемых процессов. В таблице представлены идентификатор (ID) каждого процесса, его длительность и ID поставщиков данных для зависимых процессов. Определите, какое наибольшее количество процессов может быть завершено за первые 170 мс с момента запуска первого процесса.
Задание 23. Исполнитель преобразует число на экране. У исполнителя есть две команды, которым присвоены номера: 1. Прибавить 1 2. Умножить на 2 Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя – это последовательность команд. Например, если в начальный момент на экране находится число 1, то программа 212 последовательно преобразует его в 2, 3, 6. Сколько существует программ, которые преобразуют исходное число 1 в число 14, и при этом никакая команда не повторяется более двух раз подряд?
Задание 24. Текстовый файл содержит только буквы A, C, D, F, O. Определите длину самой длинной цепочки символов, которая начинается и заканчивается буквой F, а между двумя последовательными буквами F содержит не более двух букв A и произвольное количество других букв.
Задание 25. Маска числа – это последовательность цифр, в которой могут встречаться специальные символы «?» и «*». Символ «?» означает ровно одну произвольную цифру, символ «*» означает произвольную (в том числе пустую) последовательность цифр. Пример. Маске 123*4?5 соответствуют числа 123405 и 12376415. Найдите все натуральные числа, не превышающие 109 , которые соответствуют маске 12*63?5? и при этом без остатка делятся на 3123. В ответе запишите все найденные числа в порядке возрастания.
26. На складе хранятся кубические контейнеры двух цветов различного размера. Чтобы сократить занимаемое при хранении место, контейнеры вкладывают друг в друга. Чтобы вложенные контейнеры было лучше видно, их цвета при вложении обязательно должны чередоваться, то есть нельзя вкладывать контейнер в контейнер такого же цвета. Один контейнер можно вложить в другой, если размер стороны внешнего контейнера превышает размер стороны внутреннего на 5 и более условных единиц. Группу вложенных друг в друга контейнеров называют блоком. Количество контейнеров в блоке может быть любым. Каждый блок, независимо от количества и размера входящих в него контейнеров, а также каждый одиночный контейнер, не входящий в блоки, занимает при хранении одну складскую ячейку. Зная размеры и цвета всех контейнеров, определите максимально возможное количество контейнеров в одном блоке и минимальное количество ячеек для хранения всех контейнеров.
27. Дана последовательность натуральных чисел. Назовём парой любые два числа из последовательности. Необходимо определить количество пар, в которых сумма чисел в паре делится без остатка на 4, а их произведение на 6561. Входные данные Первая строка входного файла содержит целое число N – общее количество чисел в наборе. Каждая из следующих N строк содержит одно число, не превышающее 100 000. Гарантируется, что число в ответе не превышает 2 ∙ 10 9 . Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала искомое количество пар для файла A, затем – для файла B.
Вариант ИН2210202 и ответы
1. На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что дорога АБ длиннее дороги БГ. Определите длину дороги ДЖ.
2. Логическая функция F задаётся выражением: (z ≡ ¬x) → ((w → ¬y) ∧ (y → x)) Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F. Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z. В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
3.В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц. Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах. На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними. Используя информацию из приведённой базы данных, определите магазин, получивший наибольшую общую сумму выручки от продаж товаров отдела «Мясная гастрономия» с 7 по 9 июня. В ответе запишите число – найденную наибольшую сумму выручки в рублях.
4. Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова некоторых букв: Б – 00, Г – 010, Д – 1011, О – 11. Известно также, что код слова ЗАКАЗ содержит 17 двоичных знаков. Сколько двоичных знаков содержит код слова КОЗА?
5. Алгоритм получает на вход натуральное число N и строит по нему новое число R следующим образом: 1. Строится двоичная запись числа N. 2. Если сумма цифр десятичной записи заданного числа нечётна, то в конец двоичной записи дописывается 1, если чётна – 0. 3–4. Пункт 2 повторяется для вновь полученных чисел ещё два раза. 5. Результатом работы алгоритма становится десятичная запись полученного числа R.
6. Исполнитель Черепаха передвигается по плоскости и оставляет след в виде линии. Черепаха может выполнять три команды: Вперёд n (n – число), Направо m (m – число), и Налево m (m – число). По команде Вперёд n Черепаха перемещается вперёд на n единиц. По команде Направо m Черепаха поворачивается на месте на m градусов по часовой стрелке, при этом соответственно меняется направление дальнейшего движения. По команде Налево m Черепаха поворачивается на месте на m градусов против часовой стрелки, при этом соответственно меняется направление дальнейшего движения. В начальный момент Черепаха находится в начале координат и направлена вверх (вдоль положительного направления оси ординат).
Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что заданная последовательность из S команд повторится k раз. Черепаха выполнила следующую программу: Повтори 4 [ Вперёд 6 Направо 90 Вперёд 6 Налево 90 Вперёд 6 Направо 90 ] Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, полученной при выполнении данной программы. Точки, расположенные на линии, не учитывать.
7. Изображение было отсканировано с разрешением 200 dpi, а затем сохранено со сжатием на 25 %. Размер полученного файла составил 15 Мбайт. Затем то же изображение было отсканировано с разрешением 300 dpi и сохранено со сжатием на 40 %. Определите размер нового файла. В ответе запишите только число – размер файла в Мбайтах.
8. Полина составляет коды из букв слова ПОЛИНА. Код должен состоять из 8 букв, любую букву можно использовать произвольное число раз или не использовать вовсе. Полина хочет, чтобы согласных в каждом коде было больше, чем гласных. Сколько кодов, удовлетворяющих этому условию, она сможет составить?
9. Каждой строке электронной таблицы записаны пять натуральных чисел. Определите, сколько в таблице строк, для которых выполнены следующие условия: – все числа в строке различны; – чётных чисел больше, чем нечётных; – сумма чётных чисел меньше суммы нечётных. В ответе запишите число – количество строк, для которых выполнены эти условия.
10. Определите, сколько раз в тексте романа Михаила Булгакова «Мастер и Маргарита» встречается имя Фагот в начальной форме.
11. В базе данных хранится информация об объектах определённой структуры. Каждый объект описывается как последовательность из 310 простых элементов, при этом всего используется 980 различных простых элементов. Каждое описание объекта записывается как последовательность кодов простых элементов, при этом код каждого элемента содержит одинаковое для всех элементов минимально возможное число битов, а для описания в целом отводится минимально возможное целое число байтов. Сколько Кбайтов потребуется для хранения 16 384 описаний, построенных по такой схеме? В ответе запишите только число – количество Кбайтов.
12. Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр. А) заменить (v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150. Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку. Б) нашлось (v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
13. На рисунке представлена схема дорог, связывающих пункты А, Б, В, Г, Д, Е, Ж, И, К, Л, М. По каждой дороге можно передвигаться только в направлении, указанном стрелкой. Определите количество различных путей ненулевой длины, которые начинаются и заканчиваются в пункте Д, не содержат этот пункт в качестве промежуточного и проходят через любой другой пункт не более одного раза.
14. В выражении 317×37 + 4×2937 x обозначает некоторую цифру из алфавита системы счисления c основанием 37. Определите наименьшее значение x, при котором значение данного выражения кратно 36. Для найденного x вычислите частное от деления данного выражения на 36 и запишите его в ответе в десятичной системе счисления.
15. Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Укажите наименьшее целое значение A, для которого формула (ДЕЛ(108, x)→ ¬ДЕЛ(x, y)) ∨ (x + y > 80) ∨ (A – y > x) тождественно истинна при любых натуральных значениях переменных x и y.
16. Обозначим частное от деления натурального числа a на натуральное число b как a div b, а остаток как a mod b. Например, 13 div 3 = 4, 13 mod 3 = 1. Алгоритм вычисления значения функции F(n), где n – целое неотрицательное число, задан следующими соотношениями: F(0) = 0; F(n) = F(n div 10) + (n mod 10). Укажите количество таких чисел n из интервала 765 432 015 ≤ n ≤ 1 542 613 239, для которых F(n) > F(n + 1)
17. Файл содержит последовательность целых чисел, по модулю не превышающих 10 000. Назовём парой два идущих подряд элемента последовательности. Определите количество таких пар, в которых запись меньшего элемента заканчивается цифрой 3, а сумма квадратов элементов пары меньше, чем квадрат наименьшего из элементов последовательности, запись которых заканчивается цифрой 3. В ответе запишите два числа: сначала количество найденных пар, затем максимальную сумму квадратов элементов этих пар.
18. Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо, вверх, по диагонали вправо-вверх или по диагонали влево-вверх. Числа показывают расход энергии робота на прохождение клетки. Определите максимальный расход энергии при переходе робота в правую верхнюю клетку поля и количество клеток с нечётными числами, через которые робот проходит на пути с максимальным расходом энергии. В ответе запишите два числа: сначала максимальный расход энергии, затем – количество пройденных клеток с нечётными значениями. При указанных входных данных максимальный расход получится при движении по маршруту 21 + 84 + 49 + 50 + 61 + 42 + 36 + 90 + 2 + 45 = 480. При этом робот проходит через 4 клетки с нечётными числами (21, 49, 61, 45). В ответе в данном случае надо записать числа 480 и 4.
19.Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в меньшую кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. Изменять количество камней в большей куче не разрешается. Пусть, например, в начале игры в первой куче 5 камней, а во второй – 8 камней, будем обозначать такую позицию (5, 8). Петя первым ходом должен добавлять камни в первую кучу, он может получить позиции (6, 8), (7, и (10, 8). Если Петя получает позиции (6, и (7, 8), Ваня следующим ходом тоже должен добавлять камни в первую кучу, а если Петя получает позицию (10, 8), Ваня должен добавлять камни во вторую кучу, так как теперь она стала меньшей. Игра завершается, когда общее количество камней в двух кучах становится более 60. Победителем считается игрок, сделавший последний ход, то есть первым получивший 61 или больше камней в двух кучах. В начальный момент в первой куче было 8 камней, а во второй – S камней, 1 ≤ S ≤ 52. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите минимальное из таких значений S, при которых Петя не может выиграть за один ход, но при любом ходе Пети Ваня сможет выиграть своим первым ходом.
20. Для игры, описанной в задании 19, укажите минимальное и максимальное из таких значений S, при которых Петя не может выиграть первым ходом, но у Пети есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Вани. В ответе запишите сначала минимальное значение, затем максимальное.
21. Для игры, описанной в задании 19, найдите максимальное из таких значений S, при которых у Вани есть стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, но у Вани нет стратегии, которая позволяла бы ему гарантированно выиграть первым ходом.
22. В компьютерной системе необходимо выполнить некоторое количество вычислительных процессов, которые могут выполняться параллельно или последовательно. Для запуска некоторых процессов необходимы данные, которые получаются как результаты выполнения одного или двух других процессов – поставщиков данных. Независимые процессы (не имеющие поставщиков данных) можно запускать в любой момент времени. Если процесс B (зависимый процесс) получает данные от процесса A (поставщика данных), то процесс B может начать выполнение сразу же после завершения процесса A. Любые процессы, готовые к выполнению, можно запускать параллельно, при этом количество одновременно выполняемых процессов может быть любым, длительность процесса не зависит от других параллельно выполняемых процессов. В таблице представлены идентификатор (ID) каждого процесса, его длительность и ID поставщиков данных для зависимых процессов. Определите, какое наибольшее количество процессов может быть завершено за первые 120 мс с момента запуска первого процесса.
23. Исполнитель преобразует число на экране. У исполнителя есть две команды, которым присвоены номера: 1. Прибавить 1 2. Умножить на 2 Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя – это последовательность команд. Например, если в начальный момент на экране находится число 1, то программа 212 последовательно преобразует его в 2, 3, 6. Сколько существует программ, которые преобразуют исходное число 1 в число 16, и при этом никакая команда не повторяется более двух раз подряд?
24. Текстовый файл содержит только буквы A, C, D, F, O. Определите длину самой длинной цепочки символов, которая начинается и заканчивается буквой D, а между двумя последовательными буквами D содержит не более двух букв O и произвольное количество других букв.
25. Маска числа – это последовательность цифр, в которой могут встречаться специальные символы «?» и «*». Символ «?» означает ровно одну произвольную цифру, символ «*» означает произвольную (в том числе пустую) последовательность цифр. Пример. Маске 123*4?5 соответствуют числа 123405 и 12376415. Найдите все натуральные числа, не превышающие 109 , которые соответствуют маске 12*93?1? и при этом без остатка делятся на 3127. В ответе запишите все найденные числа в порядке возрастания.
26. На складе хранятся кубические контейнеры двух цветов различного размера. Чтобы сократить занимаемое при хранении место, контейнеры вкладывают друг в друга. Чтобы вложенные контейнеры было лучше видно, их цвета при вложении обязательно должны чередоваться, то есть нельзя вкладывать контейнер в контейнер такого же цвета. Один контейнер можно вложить в другой, если размер стороны внешнего контейнера превышает размер стороны внутреннего на 7 и более условных единиц. Группу вложенных друг в друга контейнеров называют блоком. Количество контейнеров в блоке может быть любым. Каждый блок, независимо от количества и размера входящих в него контейнеров, а также каждый одиночный контейнер, не входящий в блоки, занимает при хранении одну складскую ячейку. Зная размеры и цвета всех контейнеров, определите максимально возможное количество контейнеров в одном блоке и минимальное количество ячеек для хранения всех контейнеров.
27. Дана последовательность натуральных чисел. Назовём парой любые два числа из последовательности. Необходимо определить количество пар, в которых сумма чисел в паре делится без остатка на 4, а их произведение – на 59 049.
- Статград информатика 11 класс ЕГЭ 2023 ИН2210101-ИН2210102
- Сборник Крылова Чуркина ЕГЭ 2023 информатика
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
21 июня 2022
В закладки
Обсудить
Жалоба
Реальный вариант ЕГЭ по информатике
Вариант собран по заданиям первого дня основной волны 2022.
Экзаменационная работа состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера. На выполнение экзаменационной работы по информатике и ИКТ отводится 3 часа 55 минут.
→ Вариант: osn-inf22.pdf
→ Файлы: files.zip
→ Тест в эмуляторе: kompege.ru/variant?kim=25012688
Источник: vk.com/inform_web
В решение заданий демо-версии используется язык программирования Python.
Задание 1. Анализ информационных моделей На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта D в пункт В и из пункта F в пункт A. В ответе запишите целое число. |
На графе расставим веса вершин. Далее 2 и 7 вершины ведут нас к 5, значит А это 5, оставшаяся «тройка» это вершина Е под номером 6. Сумма дорог BD + AF = 53 + 5 = 58
Ответ: 58 |
||||||||||||||||||
Задание 2. Построение таблиц истинности логических выражений Миша заполнял таблицу истинности логической функции F F= ¬(y → x) v (z→ w) v ¬z , но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z. Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z. В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно. Пример. Функция задана выражением ¬x v y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид. В этом случае первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе следует написать yx. |
¬(y → x) v (z→ w) v ¬z=0. Следовательно y → x =1, z→ w=0, z=1. Значит третий столбец z. z→ w=0, значит w=0, и это может быть только 4 столбец. y → x =1, следовательно из второй строки мы видим, что первый столбец может быть только у, а второй х.
Решение на Python
Ответ: YXZW |
||||||||||||||||||
Задание 3. Базы данных. Файловая система В прикрепленном файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в На рисунке приведена схема указанной базы данных. Используя информацию из приведённой базы данных, определите общий вес |
На третьем листе книги применим фильтр по району и получим ID четырех магазинов. На втором листе применим фильтр по товару и получим ID товара. На первом листе применим фильтры по ID товара и ID магазинов и типу операции. Все даты попадают в интервал от 1 до 8 июня. Получим: Поступило в продажу 710 упаковок. В упаковке 0,5 кг. Получим 355 кг. Ответ: 355 |
||||||||||||||||||
Задание 4. Кодирование и декодирование информации По каналу связи передаются сообщения, содержащие только буквы из набора: А, З, К, Н, Ч. Для передачи используется двоичный код,удовлетворяющий прямому условию Фано, согласно которому никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: Н – 1111, З – 110. Для трёх оставшихся букв А, К и Ч кодовые слова неизвестны. Какое количество двоичных знаков потребуется для кодирования слова КАЗАЧКА, если известно, что оно закодировано минимально возможным количеством двоичных знаков? |
Ответ: 14 |
||||||||||||||||||
Задание 5. Анализ и построение алгоритмов для исполнителей На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему 1. Строится двоичная запись числа N. Полученная таким образом запись является двоичной записью искомого числа R.Например, для исходного числа 610 = 1102 результатом является число |
Минимальное R, большее 40, это 41.
ИЛИ программное решение
Ответ: 16
|
||||||||||||||||||
Задание 6. Определение результатов работы простейших алгоритмов Исполнитель Черепаха действует на плоскости с декартовой системой координат. Черепахе был дан для исполнения следующий алгоритм: Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 5 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n– целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n– целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m– целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Определите, сколько точек с целочисленными координатами будут находиться внутри пересечения фигур, ограниченных заданными алгоритмом линиями, включая точки на границах этого пересечения. |
Сначала нужно построить фигуру.
Далее мы находим уравнения прямых, которыми ограничена фигура и решаем ИЛИ Ответ: 1 задание — 38, 2 задание — 128 |
||||||||||||||||||
Задание 7. Кодирование и декодирование информации. Передача информации Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 28 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован с разрешением в 3,5 раза выше и частотой дискретизации в 2 раза меньше, чем в первый раз. Сжатие данных не производилось. Укажите размер полученного при повторной записи файла в Мбайт. В ответе запишите только целое число, единицу измерения писать не нужно. |
I = ν ⋅ i ⋅ t ⋅ k, где ν — частота дискретизации (Гц), i — разрешение (бит), t — время (с), k — количество дорожек (1 -моно, 2- стерео, 4 — квадро) I1 = ν ⋅ i ⋅ t I2 = 3,5 · 28 = 98 Ответ: 98 |
||||||||||||||||||
Задание 8. Перебор слов и системы счисления Определите количество пятизначных чисел, записанных в восьмеричной системе счисления, в записи которых только одна цифра 6, при этом никакая нечётная цифра не стоит рядом с цифрой 6. |
* * * * * — пятизначное число. 6 * * * * — вариантов 3 ⋅ 7 ⋅ 7 ⋅ 7 = 1029 Ответ: 2961 |
||||||||||||||||||
Задание 9. Работа с таблицами Файл с данными Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия: |
Для решения этой задачи понадобится 10 вспомогательных столбцов. Сначала мы посчитаем количество повторяющихся чисел в каждой строке. Затем сумму каждой строки диапазона H:M. Если повторений нет, то эта сумма равна 6. Далее мы найдем среднее арифметическое неповторяющихся значений. Затем найдем сумму повторяющихся значений. Затем проверим соблюдение двух условий. И подсчитаем количество строк, в которых соблюдаются оба условия. Ответ: 2241 |
||||||||||||||||||
Задание 10. Поиск символов в текстовом редакторе Файл с данными Текст произведения Льва Николаевича Толстого «Севастопольские рассказы» представлен в виде файлов различных форматов. Откройте один из файлов и определите, сколько раз встречается в тексте отдельное слово «теперь» со строчной буквы. Другие формы этого слова учитывать не следует. |
В текстовом редакторе используем инструмент найти (по умолчанию он не учитывает регистр, в расширенном поиске есть кнопка больше, где можно проверить настройки). Ищем слово целиком. Ставим галочку учитывать регистр. Слово теперь со строчной буквы встречается 45 раз. Ответ: 45 |
||||||||||||||||||
Задание 11. Вычисление количества информации При регистрации в компьютерной системе каждому объекту присваивается идентификатор, состоящий из 250 символов и содержащий только десятичные цифры и символы из 1650-символьного специального алфавита. В базе данных для хранения каждого идентификатора отведено одинаковое и минимально возможное целое число байт. При этом используется посимвольное кодирование идентификаторов, все символы кодируются одинаковым и минимально возможным количеством бит. Определите объём памяти (в Кбайт), необходимый для хранения 65 536 идентификаторов. В ответе запишите только целое число – количество Кбайт. |
I = K · i, N = 2 i ID : ****….**** – всего 250 различных символов в наборе N = 10 + 1650 = 1660, 1024<1660<2048, 2048 = 211, значит для кодирования одного символа нужно 11 бит. IID = 250 · 11 = 2750 бит = 343,75 байт ≈ 344 байт – отводится на идентификатор целое число байт I65536 = 65536 ⋅ 344 = 22544384 байта = 22016 Кбайт– всего Ответ: 22016 |
||||||||||||||||||
Задание 12. Выполнение алгоритмов для исполнителей Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр. А) заменить (v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Б) нашлось (v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется. Цикл выполняется, пока условие истинно. В конструкции ЕСЛИ условие выполняется команда 1 (если условие истинно). В конструкции ЕСЛИ условие выполняется команда 1 (если условие истинно) или команда 2 (если условие ложно). Дана программа для Редактора: |
def pr(n): #функция определяет простое ли число for n in range(100): #перебираем n if ‘>2’ in s: if ‘>0’ in s: sum_s = 0 Ответ: 5 |
||||||||||||||||||
Задание 13. Поиск путей в графе На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. |
Начнем подсчет из вершины Е налево через В и возвращаемся в Е через Л.
Ответ: 21 |
||||||||||||||||||
Задание 14. Кодирование чисел. Системы счисления Операнды арифметического выражения записаны в системе счисления с основанием 15. |
for x in range(15): if n%14 == 0: Ответ: 8767 |
||||||||||||||||||
Задание 15. Преобразование логических выражений На числовой прямой даны два отрезка: D = [17; 58] и C = [29; 80]. Укажите наименьшую возможную длину такого отрезка A, для которого логическое выражение |
def deli(n,m): for A in range(1,1000): if Ok: Ответ: 94 |
||||||||||||||||||
Задание 16. Рекурсивные алгоритмы Алгоритм вычисления значения функции F(n), где n – натуральное число, |
F(2023) = 2023! = 2023 ⋅ 2022! F(2023)/F(2020) = (2023 ⋅ 2022 ⋅ 2021 ⋅ 2020!)/2020! = 2023 ⋅ 2022 ⋅ 2021 = = 8266912626 Ответ: 8266912626 |
||||||||||||||||||
Задание 17. Проверка на делимость Файл с данными В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –10 000 до 10 000 включительно. Определите количество пар последовательности, в которых |
f= open(’17.txt’) k = 0 for i in p: for i in range(1,len(p)): #Осторожно, скобки! print(k,PP) Ответ: 180 190360573 |
||||||||||||||||||
Задание 18. Робот-сборщик монет Файл с данными Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота. Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную. Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.Пример входных данных:
Для указанных входных данных ответом должна быть пара чисел 41 и 22. |
Сначала скопируем таблицу рядом, начиная со столбца АА, можно уменьшить ширину столбца до 4-5. Ячейка АА1=А1. Ячейка АВ1 = АА1+В1, протягиваем ее до АТ1. Ячейка АА2 = АА1 + А2, протягиваем ее до АА20. Далее ячейка АВ2 = В2+МАКС(АА2;АВ1), протягиваем ее на весь оставшийся диапазон, копируем только значения, не трогая стен.
Справа от стен формулы повторяют крайний левый рял, столбец АА, снизу от стен формулы копируют верхнюю строку 1. Далее делаем замену всех формул МАКС на МИН. Ответ: 1099 1026 |
||||||||||||||||||
Задание 19. Выигрышная стратегия. Задание 1 Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 129. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу из 129 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 128. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. |
При значениях S < 64 у Пети есть возможность сделать такой ход, что Ваня не сможет выиграть своим первым ходом. При значении S = 64 Петя своим первым ходом может получить 65 или 128 камней в куче. Во всех случаях Ваня увеличивает количество камней в куче в два раза и выигрывает своим первым ходом. Ответ: 64 |
||||||||||||||||||
Задание 20. Выигрышная стратегия. Задание 2 Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причем одновременно выполняются два условия:
Найденные значения запишите в порядке возрастания. |
Значение S должно быть меньше 64, поскольку иначе Ваня сможет выиграть своим первым ходом.
Ответ: 32 63 |
||||||||||||||||||
Задание 21. Выигрышная стратегия. Задание 3 Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:
Если найдено несколько значений S, в ответе запишите минимальное из них. |
Ответ: 62 |
||||||||||||||||||
Задание 22. Многопроцессорные системы В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно. Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно. |
В независимых процессах время считается от 0,
Ответ: 17 |
||||||||||||||||||
Задание 23. Анализ программы с циклами и условными операторами Исполнитель преобразует число на экране. |
def f(x, y): print (f(1,10) * f(10, 35)) Ответ: 98 |
||||||||||||||||||
Задание 24. Анализ программы с циклами и условными операторами Файл с данными Текстовый файл состоит из символов A, C, D, F и O. Определите максимальное количество идущих подряд пар символов вида согласная + гласная |
f=open(’24.txt’) PP = [‘CA’, ‘CO’, ‘DA’, ‘DO’, ‘FA’, ‘FO’] for i in range(1, len(p), 2): Ответ: 95 |
||||||||||||||||||
Задание 25. Анализ программы с циклами и условными операторами Назовём маской числа последовательность цифр, в которой также могут Например, маске 123*4?5 соответствуют числа 123405 и 12300405. Среди натуральных чисел, не превышающих 1010, найдите все числа, соответствующие маске 1?2139*4, делящиеся на 2023 без остатка. |
Самый простой способ использовать библиотеку fnmatch. или так полным перебором: y = {»,’0′,’00’,’000′} for x in range (1000): Ответ: 162139404 80148 |
||||||||||||||||||
Задание 26. Анализ программы с циклами и условными операторами В магазине для упаковки подарков есть N кубических коробок. Самой интересной считается упаковка подарка по принципу матрёшки – подарок упаковывается в одну из коробок, та в свою очередь в другую коробку и т.д. |
|||||||||||||||||||
Задание 27. Анализ программы с циклами и условными операторами У медицинской компании есть N пунктов приёма биоматериалов на анализ. Все пункты расположены вдоль автомагистрали и имеют номера, соответствующие расстоянию от нулевой отметки до конкретного пункта. Известно количество пробирок, которое ежедневно принимают в каждом из пунктов. Пробирки перевозят в специальных транспортировочных контейнерах вместимостью не более 36 штук. Каждый транспортировочный контейнер упаковывается в пункте приёма и вскрывается только в лаборатории. Файл А Дано два входных файла (файл A и файл B), каждый из которых в первой строке содержит число N (1 ≤ N ≤ 10 000 000) – количество пунктов приёма биоматериалов. В каждой из следующих N строк находится два числа: номер пункта и количество пробирок в этом пункте (все числа натуральные, количество пробирок в каждом пункте не превышает 1000). Пункты перечислены в порядке их расположения вдоль дороги, начиная от нулевой отметки. Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов. |
Ответ: 51063 5634689219329 |