Задания
Версия для печати и копирования в MS Word
Найдите наибольшее значение функции
Спрятать решение
Решение.
Выделим полный квадрат:
Отсюда имеем:
Поэтому наибольшее значение функции достигается в точке −2, и оно равно 3.
Ответ: 3.
Примечание.
Приведем другое решение.
Квадратный трехчлен с отрицательным старшим коэффициентом достигает наибольшего значения в точке В нашем случае наибольшее значение достигается в точке −2 и равно 9. Поскольку функция возрастает и определена в точке 9, для исходной функции имеем:
- ЗАДАЧИ ЕГЭ С ОТВЕТАМИ
- АНГЛИЙСКИЙ без ГРАНИЦ
2012-07-11
НЕ ОТКЛАДЫВАЙ! Заговори на английском!
ДОЛОЙ обидные ошибки на ЕГЭ!!
Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!
Конструктор упражнений для позвоночника!
Добавить комментарий
*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.
- РубрикиРубрики
- Задачи по номерам!
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16
- МЕТКИ
БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие
- ОСТЕОХОНДРОЗУ-НЕТ!
Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.
Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.
Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.
Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.
Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.
Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.
Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.
Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.
Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .
Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.
Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?
Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.
Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.
Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).
Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.
Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.
Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]
Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.
Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.
Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.
Задание 17.
Найдите все значения a, при каждом из которых система уравнений
begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}
не имеет решений.
Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?
Источник варианта: СтатГрад/statgrad.org.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 3
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.
315127 решу егэ математика профиль
Задание 11 № 245176
Найдите наибольшее значение функции
Выделим полный квадрат:
Поэтому наибольшее значение функции достигается в точке −2, и оно равно 3.
Приведем другое решение.
Квадратный трехчлен с отрицательным старшим коэффициентом достигает наибольшего значения в точке В нашем случае наибольшее значение достигается в точке −2 и равно 9. Поскольку функция возрастает и определена в точке 9, для исходной функции имеем:
Задание 11 № 245176
Найдите наибольшее значение функции.
Ege. sdamgia. ru
24.03.2018 0:46:39
2018-03-24 00:46:39
Источники:
Https://ege. sdamgia. ru/problem? id=245176
ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 315127 решу егэ математика профиль
315127 решу егэ математика профиль
315127 решу егэ математика профиль
Задание 11 № 315635
Найдите наименьшее значение функции на отрезке
Найдем производную заданной функции:
Найдем нули производной на заданном отрезке:
Отметим на рисунке нули производной и поведение функции на заданном отрезке:
Следовательно, наименьшим значением функции на заданном отрезке является ее значение в точке минимума. Найдем его:
Задание 11 № 315635
Найдите наименьшее значение функции на отрезке.
Ege. sdamgia. ru
30.12.2018 11:43:51
2018-12-30 11:43:51
Источники:
Https://ege. sdamgia. ru/test? pid=315635
Проект «Разговоры о важном» цикл внеурочных занятий 2022-2023 учебный год, презентации, сценарий, видеоролики, интерактивные задания, рабочие листы для проведения классного часа каждый понедельник в школах России для 1-2, 3-4, 5-7, 8-9, 10-11 класс и СПО. Ниже вы можете скачать на сайте все материалы для проведения занятия.
Март
Февраль
Январь
Сентябрь
Октябрь
Ноябрь
Декабрь
- Рабочие листы для классных часов «Разговоры о важном»
- Рабочие программы внеурочной деятельности с КТП
- Расписание и темы классных часов 2022-2023
- Дневник классного руководителя для занятий
Официальные методические материалы взяты с официального сайта сервиса razgovor.edsoo.ru для классных руководителей и опубликованы в удобной для вас форме, выше вы можете скачать или открыть материал для занятия. Все разработки публикуются за неделю до даты классного часа.
Минпросвещения России с 1 сентября 2022 года запускает в российских школах масштабный проект – цикл внеурочных занятий «Разговоры о важном».
Во всех школах России учебная неделя будет начинаться с классного часа «Разговоры о важном», посвященного самым различным темам, волнующим современных ребят. Центральными темами «Разговоров о важном» станут патриотизм и гражданское воспитание, историческое просвещение, нравственность, экология и др.
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
- ОГЭ по математике
Подборка тренировочных вариантов по математике для 9 класса в формате ОГЭ 2023 с ответами и критериями оценивания.
Изменений относительно 2022 года нет, потому актуальны и варианты прошлого года.
Тренировочные варианты ОГЭ 2023 по математике
alexlarin.net | уровень 1 | уровень 2 |
вариант 327 | larin22-oge-327-1 | larin22-oge-327 |
вариант 328 | larin22-oge-328-1 | larin22-oge-328 |
вариант 329 | larin23-oge-329-1 | larin23-oge-329 |
вариант 330 | larin23-oge-330-1 | larin23-oge-330 |
вариант 331 | larin23-oge-331-1 | larin23-oge-331 |
вариант 332 | larin23-oge-332-1 | larin23-oge-332 |
вариант 333 | larin23-oge-333-1 | larin23-oge-333 |
вариант 334 | larin23-oge-334-1 | larin23-oge-334 |
вариант 335 | larin23-oge-335-1 | larin23-oge-335 |
вариант 336 | larin23-oge-336-1 | larin23-oge-336 |
вариант 337 | larin23-oge-337-1 | larin23-oge-337 |
вариант 338 | larin23-oge-338-1 | larin23-oge-338 |
вариант 339 | larin23-oge-339-1 | larin23-oge-339 |
вариант 340 | larin23-oge-340-1 | larin23-oge-340 |
вариант 341 | larin23-oge-341-1 | larin23-oge-341 |
вариант 342 | larin23-oge-342-1 | larin23-oge-342 |
вариант 343 | larin23-oge-343-1 | larin23-oge-343 |
вариант 344 | larin23-oge-344-1 | larin23-oge-344 |
вариант 345 | larin23-oge-345-1 | larin23-oge-345 |
вариант 346 | larin23-oge-346-1 | larin23-oge-346 |
вариант 347 | larin23-oge-347-1 | larin23-oge-347 |
вариант 348 | larin23-oge-348-1 | larin23-oge-348 |
вариант 349 | larin23-oge-349-1 | larin23-oge-349 |
вариант 350 | larin23-oge-350-1 | larin23-oge-350 |
вариант 351 | larin23-oge-351-1 | larin23-oge-351 |
вариант 352 | larin23-oge-352-1 | larin23-oge-352 |
math100.ru | |
Вариант 54 | math100-oge-54 |
Вариант 55 | math100-oge-55 |
Вариант 56 | math100-oge-56 |
Вариант 57 | math100-oge-57 |
Вариант 58 | math100-oge-58 |
Вариант 59 | math100-oge-59 |
Вариант 60 | math100-oge-60 |
Вариант 61 | math100-oge-61 |
Вариант 62 | math100-oge-62 |
Вариант 63 | math100-oge-63 |
Вариант 64 | math100-oge-64 |
Вариант 65 | math100-oge-65 |
Вариант 66 | math100-oge-66 |
Вариант 67 | math100-oge-67 |
Вариант 68 | math100-oge-68 |
Вариант 69 | math100-oge-69 |
Вариант 70 | math100-oge-70 |
Вариант 71 | math100-oge-71 |
Вариант 72 | math100-oge-72 |
Вариант 73 | math100-oge-73 |
Вариант 74 | math100-oge-74 |
Вариант 75 | math100-oge-75 |
Вариант 76 | math100-oge-76 |
Вариант 77 | math100-oge-77 |
Вариант 78 | math100-oge-78 |
Вариант 79 | math100-oge-79 |
Вариант 80 | math100-oge-80 |
time4math.ru | |
Варианты 1-2 | ответы |
Варианты 3-4 | ответы |
Варианты 5-6 | ответы |
Варианты 7-8 | ответы |
Варианты 9-10 | ответы |
Варианты 11-12 | ответы |
Варианты 13-14 | ответы |
Варианты 15-16 | ответы |
vk.com/pezhirovschool | |
Вариант 1 (с решением) | скачать |
Вариант 2 (с решением) | скачать |
Вариант 3 (с решением) | скачать |
Вариант 4 (с решением) | скачать |
Вариант 5 (с ответами) | скачать |
Вариант 6 | скачать |
vk.com/oge100ballov | |
variant 1 | скачать |
variant 2 | скачать |
variant 3 | скачать |
variant 4 | скачать |
yagubov.ru | |
вариант 33 (сентябрь) | скачать |
вариант 34 (октябрь) | скачать |
вариант 35 (ноябрь) | скачать |
вариант 36 (декабрь) | скачать |
вариант 37 (январь) | скачать |
вариант 38 (февраль) | скачать |
вариант 39 (март) | скачать |
vk.com/math.studying | |
вариант 1 | ответы |
вариант 2 | ответы |
vk.com/matematicalate | |
variant 1 | скачать |
variant 2 | скачать |
variant 3 | скачать |
Характеристика структуры и содержания КИМ ОГЭ 2023 по математике
Работа содержит 25 заданий и состоит из двух частей.
Часть 1 содержит 19 заданий с кратким ответом; часть 2 – 6 заданий с развёрнутым ответом. При проверке базовой математической компетентности экзаменуемые должны продемонстрировать владение основными алгоритмами, знание и понимание ключевых элементов содержания (математических понятий, их свойств, приёмов решения задач и проч.), умение пользоваться математической записью, применять знания к решению математических задач, не сводящихся к прямому применению алгоритма, а также применять математические знания в простейших практических ситуациях.
Задания части 2 направлены на проверку владения материалом на повышенном и высоком уровнях. Их назначение – дифференцировать хорошо успевающих школьников по уровням подготовки, выявить наиболее подготовленных обучающихся, составляющих потенциальный контингент профильных классов.
Эта часть содержит задания повышенного и высокого уровней сложности из различных разделов математики.
Все задания требуют записи решений и ответа. Задания расположены по нарастанию трудности: от относительно простых до сложных, предполагающих свободное владение материалом и высокий уровень математической культуры.
Связанные страницы: