Меню
-
HomeГлавная страница -
ОбразованиеПроблемы и решения-
Домашнее обучение -
Как учиться -
Будущее образования -
Математическое образование -
Школьное образование -
Разное
-
-
ЕГЭПодготовка к экзамену
Аналогичные задания
Ответ
Здесь ответ
Элементарные задания
Меню
-
Элементарные заданияВ1, В2, В3, В4 -
Практико-ориентированные задачи -
Графики -
Выбор варианта
Алгебра +
Меню
-
Алгебра +В7, В11 -
Уравнения -
Преобразования
Производная
Меню
-
ПроизводнаяВ9, В15 -
Анализ графиков, касательная, скорость, первообразная -
Вычисление производной
Задачи
Меню
-
ЗадачиB6, B12, B14 -
Работа, движение, растворы, прогрессии -
Построение мат. моделей в физике и технике -
Теория вероятности, комбинаторика и статистика
Геометрия
Меню
-
Углы и треугольники -
4х-угольники. Многоугольники и окружности -
Площади. Вектора. Координаты -
Многогранники -
Тела вращения
Вход/Регистрация
Логин
Пароль
Запомнить меня
- Забыли пароль?
- Забыли логин?
- Регистрация
Проверить аттестат
Наверх
Старый каталог
Каталог заданий по типам по темам
?
Т3. Начала теории вероятностей
52
4. Вероятности сложных событий
69
Т5. Простейшие уравнения
66
Т6. Вычисления и преобразования
213
Т7. Производная и первообразная
76
Т8. Задачи с прикладным содержанием
75
Т11. Наибольшее и наименьшее значение функций
166
13. Стереометрическая задача
279
15. Финансовая математика
234
16. Планиметрическая задача
290
17. Задача с параметром
412
18. Числа и их свойства
333
Дополнительные задания для подготовки
ТЗадания Д1. Чтение графиков и диаграмм
58
ТЗадания Д2. Простейшие текстовые задачи
88
Задания Д3. Выбор оптимального варианта
37
ТЗадания Д4. Квадратная решётка, координатная плоскость
124
Задания Д5. Планиметрия: вычисление длин и площадей
91
Задания Д6. Планиметрия
254
Задания Д7. Задачи с прикладным содержанием
2
Задания Д8 C1. Уравнения, системы уравнений
332
Задания Д9 C2. Стереометрическая задача
157
Задания Д10 C2. Сложная стереометрия
310
Задания Д11 C3. Простые системы неравенств
105
Задания Д12 C3. Сложные неравенства
189
Задания Д13 C3. Системы сложных неравенств
82
Задания Д14 C4. Планиметрическая задача
123
Задания Д15 C4. Сложная планиметрия
300
Задания Д16 C5. Сложные практические задачи
201
Задания Д17 C6. Сложные задачи с параметром
281
Задания Д18 C7. Числа и их свойства
98
Задания Д19 C7. Сложные задания на числа и их свойства
242
В этом разделе представлен тематический классификатор задачной базы. Вы можете прорешать все задания по интересующим вас темам. Зарегистрированные пользователи получат информацию о количестве заданий, которые они решали, и о том, сколько из них было решено верно. Цветовая маркировка: если правильно решено меньше 40% заданий, то цвет результата красный, от 40% до 80% — желтый, больше 80% заданий — зеленый. Если в оба столбца таблицы выделены зеленым, уровень вашей готовности можно считать достаточно высоким. В столбцах первое число — количество различных уникальных заданий (прототипов), второе число — общее количество заданий, включая задания (клоны), отличающиеся от прототипов только числовыми данными.
Тема | Кол-во заданий в базе |
Кол-во решенных заданий |
Из них решено правильно |
Проверить себя |
---|
Дополнительные задания для подготовки
Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2022 из различных источников.
Тренировочные варианты ЕГЭ 2022 по математике (профиль)
egemath.ru | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
variant 8 | скачать |
variant 9 | скачать |
variant 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 19 | скачать |
variant 20 | скачать |
yagubov.ru | |
вариант 21 | ege2022-yagubov-prof-var21 |
вариант 22 | ege2022-yagubov-prof-var22 |
вариант 23 | ege2022-yagubov-prof-var23 |
вариант 24 | ege2022-yagubov-prof-var24 |
вариант 25 | ege2022-yagubov-prof-var25 |
вариант 26 | ege2022-yagubov-prof-var26 |
вариант 27 | ege2022-yagubov-prof-var27 |
вариант 28 | ege2022-yagubov-prof-var28 |
Досрочный Москва 28.03.2022 | скачать |
egemathschool.ru | |
вариант 1 | ответ |
вариант 2 | ответ |
вариант 3 | ответ |
вариант 4 | ответ |
ЕГЭ 100 баллов (с решениями) | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
Вариант 8 | скачать |
Вариант 9 | скачать |
Вариант 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 20 | скачать |
variant 21 | скачать |
variant 23 | скачать |
variant 24 | скачать |
variant 25 | скачать |
variant 26 | скачать |
variant 29 | скачать |
variant 30 | скачать |
math100.ru (с ответами) | |
Вариант 140 | скачать |
Вариант 141 | скачать |
Вариант 142 | скачать |
Вариант 143 | math100-ege22-v143 |
Вариант 144 | math100-ege22-v144 |
Вариант 145 | math100-ege22-v145 |
Вариант 146 | math100-ege22-v146 |
variant 147 | math100-ege22-v147 |
variant 148 | math100-ege22-v148 |
variant 149 | math100-ege22-v149 |
variant 150 | math100-ege22-v150 |
variant 151 | math100-ege22-v151 |
variant 152 | math100-ege22-v152 |
variant 153 | math100-ege22-v153 |
variant 154 | math100-ege22-v154 |
variant 155 | math100-ege22-v155 |
variant 156 | math100-ege22-v156 |
variant 157 | math100-ege22-v157 |
variant 158 | math100-ege22-v158 |
variant 159 | math100-ege22-v159 |
variant 160 | math100-ege22-v160 |
variant 161 | math100-ege22-v161 |
variant 162 | math100-ege22-v162 |
variant 163 | math100-ege22-v163 |
variant 164 | math100-ege22-v164 |
variant 165 | math100-ege22-v165 |
variant 166 | math100-ege22-v166 |
variant 167 | math100-ege22-v167 |
variant 168 | math100-ege22-v168 |
variant 169 | math100-ege22-v169 |
variant 170 | math100-ege22-v170 |
variant 171 | math100-ege22-v171 |
variant 172 | math100-ege22-v172 |
variant 173 | math100-ege22-v173 |
variant 174 | math100-ege22-v174 |
alexlarin.net | |
Вариант 358 |
скачать |
Вариант 359 | скачать |
Вариант 360 | скачать |
Вариант 361 | скачать |
Вариант 362 | проверить ответы |
Вариант 363 | проверить ответы |
Вариант 364 | проверить ответы |
Вариант 365 | проверить ответы |
Вариант 366 | проверить ответы |
Вариант 367 | проверить ответы |
Вариант 368 | проверить ответы |
Вариант 369 | проверить ответы |
Вариант 370 | проверить ответы |
Вариант 371 | проверить ответы |
Вариант 372 | проверить ответы |
Вариант 373 | проверить ответы |
Вариант 374 | проверить ответы |
Вариант 375 | проверить ответы |
Вариант 376 | проверить ответы |
Вариант 377 | проверить ответы |
Вариант 378 | проверить ответы |
Вариант 379 | проверить ответы |
Вариант 380 | проверить ответы |
Вариант 381 | проверить ответы |
Вариант 382 | проверить ответы |
Вариант 383 | проверить ответы |
Вариант 384 | проверить ответы |
Вариант 385 | проверить ответы |
Вариант 386 | проверить ответы |
Вариант 387 | проверить ответы |
Вариант 388 | проверить ответы |
vk.com/ekaterina_chekmareva (задания 1-12) | |
Вариант 1 | ответы |
Вариант 2 | |
Вариант 3 | |
Вариант 4 | |
Вариант 5 | |
Вариант 6 | |
Вариант 7 | ответы |
Вариант 8 | |
Вариант 9 | |
Вариант 10 | |
vk.com/matematicalate | |
Вариант 1 | matematikaLite-prof-ege22-var1 |
Вариант 2 | matematikaLite-prof-ege22-var2 |
Вариант 3 | matematikaLite-prof-ege22-var3 |
Вариант 4 | matematikaLite-prof-ege22-var4 |
Вариант 5 | matematikaLite-prof-ege22-var5 |
Вариант 6 | matematikaLite-prof-ege22-var6 |
Вариант 7 | matematikaLite-prof-ege22-var7 |
Вариант 8 | matematikaLite-prof-ege22-var8 |
vk.com/pro_matem | |
variant 1 | pro_matem-prof-ege22-var1 |
variant 2 | pro_matem-prof-ege22-var2 |
variant 3 | pro_matem-prof-ege22-var3 |
variant 4 | разбор |
variant 5 | разбор |
vk.com/murmurmash | |
variant 1 | otvet |
variant 2 | otvet |
→ Купить сборники тренировочных вариантов ЕГЭ 2022 по математике |
Структура варианта КИМ ЕГЭ
Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:
– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;
– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).
Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.
Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.
Связанные страницы:
Средний балл ЕГЭ 2021 по математике
Решение задач с параметром при подготовке к ЕГЭ
Изменения в КИМ ЕГЭ 2022 года по математике
Купить сборники типовых вариантов ЕГЭ по математике
Как решать экономические задачи ЕГЭ по математике профильного уровня?
Skip to content
ЕГЭ математика — Профиль 2016-2021. Открытый банк заданий с ответами.
ЕГЭ математика — Профиль 2016-2021. Открытый банк заданий с ответами.admin2021-08-31T09:44:53+03:00
Стереометрия на Профильном ЕГЭ по математике, 1 часть, основные типы
Стереометрия на ЕГЭ. Вычисление объемов и площадей поверхности
Стереометрия на ЕГЭ по математике присутствует и в 1 части, и во второй. Чтобы решать задачи, для начала надо выучить формулы. Все они есть в наших таблицах:
- Куб, параллелепипед, призма, пирамида. Объем и площадь поверхности
- Цилиндр, конус, шар. Объем и площадь поверхности
Часто в задачах ЕГЭ, посвященных стереометрии, требуется посчитать объем тела или площадь его поверхности. Или как-то использовать эти данные. Поэтому заглянем в толковый словарь русского языка и уточним понятия.
Объем — величина чего-нибудь в длину, ширину и высоту, измеряемая в кубических единицах.
Другими словами, чем больше объем, тем больше места тело занимает в трехмерном пространстве.
Площадь — величина чего-нибудь в длину и ширину, измеряемая в квадратных единицах.
Представьте себе, что вам нужно оклеить всю поверхность объемного тела. Сколько квадратных сантиметров (или метров) вы бы обклеили? Это и есть его площадь поверхности.
Объемные тела — это многогранники (куб, параллелепипед, призма, пирамида) и тела вращения (цилиндр, конус, шар).
Если в задаче по стереометрии речь идет о многограннике, вам встретятся термины «вершины», «грани» и «ребра». Вот они, на картинке.
Чтобы найти площадь поверхности многогранника, сложите площади всех его граней.
Вам могут также встретиться понятия «прямая призма», правильная призма», «правильная пирамида».
Прямой называется призма, боковые ребра которой перпендикулярны основанию.
Если призма — прямая и в ее основании лежит правильный многоугольник, призма будет называться правильной.
А правильная пирамида — такая, в основании которой лежит правильный многоугольник, а вершина проецируется в центр основания.
Перейдем к практике.
1. Одна из распространенных задач в части 1 — такая, где надо посчитать объем или площадь поверхности многогранника, из которого какая-нибудь часть вырезана. Например, такого:
Что тут нарисовано? Очевидно, это большой параллелепипед, из которого вырезан «кирпичик», так что получилась «полочка». Если вы увидели на рисунке что-то другое — обратите внимание на сплошные и штриховые линии. Сплошные линии — видимы. Штриховыми линиями показываются те ребра, которые мы не видим, потому что они находятся сзади.
Объем найти просто. Из объема большого «кирпича» вычитаем объем маленького. Получаем:
А как быть с площадью поверхности? Почему-то многие школьники пытаются посчитать ее по аналогии с объемом, как разность площадей большого и малого «кирпичей». В ответ на такое «решение» я обычно предлагаю детскую задачу — если у четырехугольного стола отпилить один угол, сколько углов у него останется?
На самом деле нам нужно посчитать сумму площадей всех граней — верхней, нижней, передней, задней, правой, левой, а также сумму площадей трех маленьких прямоугольников, которые образуют «полочку». Можно сделать это «в лоб», напрямую. Но есть и способ попроще.
Прежде всего, если бы из большого параллелепипеда ничего не вырезали, его площадь поверхности была бы равна . А как повлияет на него вырезанная «полочка»?
Давайте посчитаем сначала площадь всех горизонтальных участков, то есть «дна», «крыши» и нижней поверхности «полочки». С дном — все понятно, оно прямоугольное, его площадь равна .
А вот сумма площадей «крыши» и горизонтальной грани «полочки» тоже равна ! Посмотрите на них сверху.
…В этот момент и наступает понимание. Кому-то проще нарисовать вид сверху. Кому-то — представить, что мы передвигаем дно и стенки полочки и получаем целый большой параллелепипед, площадь поверхности которого равна . Каким бы способом вы ни решали, результат один — площадь поверхности будет такой же, как и у целого параллелепипеда, из которого ничего не вырезали.
Ответ: .
2. Следующую задачу, попроще, вы теперь решите без труда. Здесь тоже надо найти площадь поверхности многогранника:
. Из площади поверхности «целого кирпича» вычитаем площади двух квадратиков со стороной — на верхней и нижней гранях.
Ответ: 92.
3. А здесь нарисована прямоугольная плитка с «окошком». Задание то же самое — надо найти площадь поверхности.
Сначала посчитайте сумму площадей всех граней. Представьте, что вы дизайнер, а эта штучка — украшение. И вам надо оклеить эту штуку чем-то ценным, например, бриллиантами Сваровски. И вы их покупаете на свои деньги. (Я не знаю почему, но эта фраза мгновенно повышает вероятность правильного ответа!) Оклеивайте все грани плитки. Но только из площадей передней и задней граней вычтите площадь «окошка». А затем — само «окошко». Оклеивайте всю его «раму».
Ответ: .
Следующий тип задач — когда одно объемное тело вписано в другое.
4. Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны . Найдите объем параллелепипеда.
Прежде всего, заметим, что высота цилиндра равна высоте параллелепипеда. Нарисуйте вид сверху, то есть круг, вписанный в прямоугольник. Тут сразу и увидите, что этот прямоугольник — на самом деле квадрат, а сторона его в два раза больше, чем радиус вписанной в него окружности. Итак, площадь основания параллелепипеда равна , высота равна , объем равен .
Ответ: 4.
5. В основании прямой призмы лежит прямоугольный треугольник с катетами и . Боковые ребра равны . Найдите объем цилиндра, описанного около этой призмы. В ответ запишите .
Очевидно, высота цилиндра равна боковому ребру призмы, то есть . Осталось найти радиус его основания.
Рисуем вид сверху. Прямоугольный треугольник вписан в окружность. Где будет находиться радиус этой окружности? Правильно, посередине гипотенузы. Гипотенузу находим по теореме Пифагора, она равна . Тогда радиус основания цилиндра равен пяти. Находим объем цилиндра по формуле и записываем ответ: .
Ответ: 100.
6. В прямоугольный параллелепипед вписан шар радиуса . Найдите объем параллелепипеда.
Эта задача тоже проста. Нарисуйте вид сверху. Или сбоку. Или спереди. В любом случае вы увидите одно и то же — круг, вписанный в прямоугольник. Очевидно, этот прямоугольник будет квадратом. Можно даже ничего не рисовать, а просто представить себе шарик, который положили в коробочку так, что он касается всех стенок, дна и крышки. Ясно, что такая коробочка будет кубической формы. Длина, ширина и высота этого куба в два раза больше, чем радиус шара.
Ответ: .
Следующий тип задач — такие, в которых увеличили или уменьшили какой-либо линейный размер (или размеры) объемного тела. А узнать нужно, как изменится объем или площадь поверхности.
7. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в раза больше, чем у первого? Ответ выразите в сантиметрах.
Слова «другой такой же сосуд» означают, что другой сосуд тоже имеет форму правильной треугольной призмы. То есть в его основании — правильный треугольник, у которого все стороны в два раза больше, чем у первого. Мы уже говорили о том, что площадь этого треугольника будет больше в раза. Объем воды остался неизменным. Следовательно, в раза уменьшится высота.
Ответ: .
8. Одна цилиндрическая кружка вдвое выше второй, зато вторая в два раза шире. Найдите отношение объема второй кружки к объему первой.
Давайте вспомним, как мы решали стандартные задачи, на движение и работу. Мы рисовали таблицу, верно? И здесь тоже нарисуем таблицу. Мы помним, что объем цилиндра равен .
Высота | Радиус | Объем | |
Первая кружка | |||
Вторая кружка |
Считаем объем второй кружки. Он равен . Получается, что он в два раза больше, чем объем первой.
Следующая задача тоже решается сразу и без формул.
9. Через среднюю линию основания треугольной призмы, объем которой равен , проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы.
Высота меньшей призмы такая же, как и у большой. А какой же будет ее площадь основания? Очевидно, в раза меньше. Вспомните свойство средней линии треугольника — она равна половине основания. Значит, объем отсеченной призмы равен .
И еще одна классическая задача. Никаких формул!
10. Во сколько раз увеличится площадь поверхности октаэдра, если все его ребра увеличить в раза?
Только не надо обмирать от ужаса при слове «октаэдр». Тем более — он здесь нарисован и представляет собой две сложенные вместе четырехугольные пирамиды. А мы уже говорили — если все ребра многогранника увеличить в три раза, площадь поверхности увеличится в раз, поскольку .
Ответ: .
Следующий тип задач — такие, в которых надо найти объем части конуса, или части пирамиды. Они тоже решаются элементарно.
11. Найдите объем части цилиндра, изображенной на рисунке. Радиус цилиндра равен 15, высота равна 5. В ответе укажите .
Изображен не целый цилиндр, а его часть. Из него, как из круглого сыра, вырезали кусок. Надо найти объем оставшегося «сыра».
Какая же часть цилиндра изображена? Вырезан кусок с углом градусов, а — это одна шестая часть полного круга. Значит, от всего объема цилиндра осталось пять шестых. Находим объем всего цилиндра, умножаем на пять шестых, делим на , записываем ответ: .
Продолжение: другие типы задач по стереометрии. Удачи вам в подготовке к ЕГЭ!
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Стереометрия на Профильном ЕГЭ по математике, 1 часть, основные типы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.03.2023