Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
Пусть число $$M=10^{3}a+10^{2}b+10c+d$$, $$0<a,b,c,d<9 in N$$
A) $$frac{643}{160}=frac{643*k}{160*k}$$. $$M=643k$$ ; $$abcd=160k$$
Разложим 160: $$160=2^{5}*5$$. С учетом , что $$a,b,c,d in N$$ и $$a,b,c,d in [1;9]$$, то среди чисел точно есть 5. Рассмотрим умножение 643 на натуральное $$kgeq 2$$.
$$643*2=1286$$ — нет 5
$$643*3=1929$$ — нет 5
$$643*4=2572$$. При этом 2*5*7*2=140 не кратно 160.
$$643*5=3215Rightarrow$$ $$3*2*1*5=30$$ — не подходит.
$$643*6=3858Rightarrow$$ $$3*8*5*8=960=160*6$$ — подходит
Т.е. пример числа: 3858
B) Рассмотрим сначала наименьшее возможное f(n) . С учетом , что $$160=2^{5}*5$$ и $$a,b,c,d$$ – натуральные, меньшие 10, то возможные a,b,c и d : $$1,4,8,5$$; $$2,2,8,5$$; $$2,4,4,5$$ . При этом $$frac{M}{abcd}rightarrow min$$, при $$abcdrightarrow max$$. Пусть k-множитель, который бы сокращался . $$k_{max}=18=2*3^{2}$$ т.к. тогда бы $$1rightarrow 9$$; $$4rightarrow 8$$ и M состояло бы из цифр $$9,8,8,5$$ (очевидно, что наибольшее k именно для множителей $$1,4,8,5$$) . При k>18 получим, что одна из цифр станет больше 9. При этом k — число составное.
Рассмотрим их. $$k=18Rightarrow$$ $$a,b,c,d: 9,8,8,5$$. Но $$9+8+8+5=30$$, число 30 не делится нацело на 9, значит при сокращении на k мы не получим знаменатель 160.
$$k=16$$; $$a,b,c,dRightarrow$$ $$8,8,8,5$$. Комбинации с этими цифрами:
$$frac{5888}{160*16}=frac{368}{160}$$ — сократима дальше
$$frac{8588}{160*16}=frac{2147}{640}$$ — нет знаменателя 160
$$frac{8858}{160*16}=frac{4429}{1280}$$
$$frac{8885}{160*16}$$ — не делится на 16
$$k=14$$: $$a,b,c,d: 7,8,8,5$$. Аналогично предыдущему нет чисел.
$$k=12$$: $$a,b,c,d :6,8,8,5$$. При использовании данных чисел наименьшее $$f(n)=frac{5868}{160*12}=frac{489}{160}$$
Contents
- 1 Задание 1. Вариант 253 Ларина ЕГЭ 2019 по математике
- 1.1 Решение
- 2 Задание 2. Вариант 253 Ларина ЕГЭ 2019 по математике
- 2.1 Решение
- 3 Задание 3
- 3.1 Решение
- 4 Задание 4. Вариант 253 Ларина ЕГЭ 2019 по математике
- 4.1 Решение
- 5 Задание 5
- 5.1 Решение
- 6 Задание 6
- 6.1 Решение
- 7 Задание 7. Вариант 253 Ларина ЕГЭ 2019 по математике
- 7.1 Решение
- 8 Задание 8
- 8.1 Решение
- 9 Задание 9
- 9.1 Решение
- 10 Задание 10. Вариант 253 Ларина ЕГЭ 2019 по математике
- 10.1 Решение
- 11 Задание 11. Вариант 253 Ларина ЕГЭ 2019 по математике
- 11.1 Решение
- 12 Задание 12
- 12.1 Решение
- 13 Задание 13
- 13.1 Решение
- 14 Задание 14
- 14.1 Решение
- 15 Задание 15
- 15.1 Решение
- 16 Задание 16
- 16.1 Решение
- 17 Задание 17
- 17.1 Решение
- 18 Задание 18
- 18.1 Решение
- 19 Задание 19. Вариант 253 Ларина ЕГЭ 2019 по математике
- 19.1 Решение
- 20 Видео: Разбор Варианта ЕГЭ Ларина №253 (№1-15)
- 21 Видео: Разбор Варианта ЕГЭ Ларина №253 (№16-19)
Задание 1. Вариант 253 Ларина ЕГЭ 2019 по математике
Решение
Ответ: 20,2.
Задание 2. Вариант 253 Ларина ЕГЭ 2019 по математике
На рисунке жирными точками показано суточное количество осадков, выпадавших в Казани с 3 по 15 февраля 1909 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, сколько дней из данного периода не выпадало осадков.
Решение
Не было осадков из графика 5, 8, 9 и 12 числа — 4 дня.
Ответ: 4.
Задание 3
Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см × 1 см:
Ответ дайте в квадратных сантиметрах.
Решение
Площадь четырехугольника:
Найдем площадь четырехугольника:
S = 24-6-12 = 6.
Ответ: 6.
Задание 4. Вариант 253 Ларина ЕГЭ 2019 по математике
Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков
Решение
Первый попал, второй — нет:
Первый нет, второй да:
Вероятность, что попадет только один:
Ответ: 0,38.
Задание 5
Решение
Наименьший корень составляет -10.
Ответ: -10.
Задание 6
К окружности, вписанной в треугольник АВС, проведены три касательные. Периметры отсеченных треугольников равны 5, 7 и 13. Найдите периметр треугольника АВС.
Решение
Периметр большого треугольника равен:
P = 5+7+13=25.
Здесь нужно воспользоваться свойством касательных, проведенных к окружности из одной точки.
Ответ: 25.
Задание 7. Вариант 253 Ларина ЕГЭ 2019 по математике
Функция y=f(x) определена на всей числовой прямой и является периодической с периодом 5. На промежутке (-1;4] она задается формулой:
.
Найдите значение выражения: .
Решение
С учетом периода в 5:
, .
Получим:
f(3) = 3-(1-3) = 1; .
Ответ: 7.
Задание 8
Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов.
Решение
Площадь поверхности одного куба, входящего в крест:
S = 1*5 = 5 (учитываем, что одна грань лежит внутри креста , потому берем 5)
Площадь всего креста:
5*6 = 30.
Ответ: 30.
Задание 9
Найдите значение выражения:
при x = 1,2007.
Решение
Ответ: 2.
Задание 10. Вариант 253 Ларина ЕГЭ 2019 по математике
Опорные башмаки шагающего экскаватора, имеющего массу m=1260 тонн представляют собой две пустотелые балки длиной l = 18 метров и шириной метров каждая. Давление экскаватора на почву, выражаемое в кило Паскалях, определяется формулой P=mg/2sl , где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g = 10 м/с2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 140 кПа. Ответ выразите в метрах.
Решение
P = mg/2sl ⇒ Выразим ширину:
S =
S =
Ответ: 2,5.
Задание 11. Вариант 253 Ларина ЕГЭ 2019 по математике
Подарочный набор состоит трех сортов конфет. Массы конфет первого, второго и третьего сорта в этом наборе относятся как 1:2:8. Массу конфет первого сорта увеличили на 20% ,а второго – на 6%. На сколько процентов надо уменьшить массу конфет третьего сорта, чтобы масса набора не изменилась?
Решение
Пусть x — масса первого сорта, тогда 2x — второго, 8x — третьего. Общая: 11x.
После увеличения:
; .
Тогда масса третьих должна быть:
Получим , что новая масса составляет:
% ⇒ надо уменьшить на 4%.
Ответ: 4.
Задание 12
Найдите наибольшее значение функции:
на отрезке [1;3]
Решение
Ответ: 2,7.
Задание 13
- а) Решите уравнение: (sin2x−2cosx)log2(log1/3(x+5)) = 0.
- б) Укажите корни этого уравнения, принадлежащие промежутку (-3π/2; 0).
Решение
Ответ: А) -3π/2 Б)
Задание 14
В кубе ABCDA1B1C1D1, ребро которого равно 6, точки М и N – середины ребер АВ и В1С1 соответственно, а точка К расположена на ребре DC так, что DK=2KC. А) Найдите расстояние между прямыми MN и AK Б) Расстояние от точки А1 до плоскости треугольника MNK.
Решение
Ответ:
Задание 15
Решите неравенство:
Решение
Ответ:
Задание 16
Высоты остроугольного треугольника АВС пересекаются в точке О. Окружность с центром в точке О проходит через вершину А, касается стороны ВС в точке К и пересекает сторону АС в точке М такой, что АМ:МС=4:1. А) Найдите отношение СК:КВ Б) Найдите длину стороны АВ, если радиус окружности равен 2.
Решение
A) 1) (радиус в точку касания ), но и AO — высота A, O и K AK — высота , но тогда AK-диаметр окружности.
2) (опирается на диаметр) KM-высота прямоугольного треугольника AKC.
Ответ: А)1:2 Б) 4√2.
Задание 17
Кондитерский цех на одном и том же оборудовании производит печенье двух видов. Используя всё оборудование, за день можно произвести 60 центнеров печенья первого вида или 85 центнеров печенья второго вида. Себестоимость печенья первого вида равна 10000 рублей, отпускная цена – 15000 рублей, для печенья второго вида себестоимость равна 12000, а отпускная цена – 18000 рублей. Найдите, какую наибольшую прибыль в рублях может получить цех за день при условии, что будет использоваться все оборудование, будет продано все произведенное печенье и по договору с заказчиком должно производиться в день не менее 6 центнеров печенья каждого вида.
Решение
Пусть x-доля первого (из 60 ц ), y-доля второго(из 85) . Тогда : x+y=1. Учитывая это, и то, что минимум 6 центнеров каждого вида нужно выпустить:
Ответ: 489000.
Задание 18
Найдите все значения x, удовлетворяющие уравнению:
при любом значении параметра a .
Решение
Рассмотрим (2): , тогда нет смысла рассматривать , т.е. выполнение не при
Ответ: 5.
Задание 19. Вариант 253 Ларина ЕГЭ 2019 по математике
Дано натуральное четырехзначное число , в записи которого нет нулей. Для этого числа составим дробь f(n) , в числителе которой само число n , а в знаменателе – произведение всех цифр числа n.
- А) Приведите пример такого числа , для которого f(n) = 643/160.
- Б) Существует ли такое n , что f(n) = 343/160?
- В) Какое наименьшее значение может принимать дробь f(n), если она равна несократимой дроби со знаменателем 160?
Решение
Т.е. пример числа: 3858.
Ответ: А) 3858 Б) нет В)
Видео: Разбор Варианта ЕГЭ Ларина №253 (№1-15)
Видео: Разбор Варианта ЕГЭ Ларина №253 (№16-19)
А. Ларин: Тренировочный вариант № 253.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
1
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
2
В кубе ребро которого равно 6, точки M и N — середины ребер AB и соответственно, а точка K расположена на ребре DC так, что
а) Найдите расстояние между прямыми MN и AK.
б) Расстояние от точки до плоскости треугольника MNK.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
3
Решите неравенство:
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
4
Высоты остроугольного треугольника ABC пересекаются в точке O. Окружность с центром в точке O проходит через вершину A, касается стороны BC в точке K и пересекает сторону AC в точке M такой, что
а) Найдите отношение
б) Найдите длину стороны AB, если радиус окружности равен 2.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
5
Кондитерский цех на одном и том же оборудовании производит печенье двух видов. Используя всё оборудование, за день можно произвести 60 центнеров печенья первого вида или 85 центнеров печенья второго вида. Себестоимость печенья первого вида равна 10000 рублей, отпускная цена — 15000 рублей, для печенья второго вида себестоимость равна 12000, а отпускная цена — 18000 рублей. Найдите, какую наибольшую прибыль в рублях может получить цех за день при условии, что будет использоваться все оборудование, будет продано все произведенное печенье и по договору с заказчиком должно производиться в день не менее 6 центнеров печенья каждого вида.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
6
Найдите все значения x, удовлетворяющие уравнению
при любом значении параметра a.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
7
Дано натуральное четырехзначное число n, в записи которого нет нулей. Для этого числа составим дробь f(n), в числителе которой само число n, а в знаменателе — произведение всех цифр числа n.
а) Приведите пример такого числа n, для которого
б) Существует ли такое n, что
в) Какое наименьшее значение может принимать дробь f(n), если она равна несократимой дроби со знаменателем 160?
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.
9 декабря 2018
В закладки
Обсудить
Жалоба
Тренировочный вариант профильного уровня.
trvar253.pdf
Разбор Варианта Ларина №253 ЕГЭ математике профиль. Варианты ЕГЭ по математике профильный уровень 2019. Решение варианта Ларина. mrMathlesson Виктор Осипов
1-15 задания
16-19 задания
Смотрите также:
Разбор Варианта ЕГЭ по математике профиль Ларина #253. Полный разбор заданий ЕГЭ по математике 2019. Тренировочные варианты егэ по математике 2019. Математикс
№1-15
№16-19
Смотрите также: