Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.
Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.
Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.
Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.
Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.
Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.
Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.
Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.
Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .
Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.
Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?
Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.
Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.
Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).
Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.
Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.
Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]
Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.
Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.
Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.
Задание 17.
Найдите все значения a, при каждом из которых система уравнений
begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}
не имеет решений.
Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?
Источник варианта: СтатГрад/statgrad.org.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 3
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.
А знаете ли Вы, что…
… ВУЗы могут учитывать результаты итоговых сочинений.
Описание
Инструкция
Наш тест это:
- бесплатная тренировка
- уникальные задания по спецификации 2023 года
- различные наборы заданий при каждом новом тестировании
- приближенная к реальному ЕГЭ форма тестирования
- наиболее полная информация о результатах тестирования – подсчет первичного и тестового баллов
- скоро вы сможете получить индивидуальные рекомендации со справочным материалом по итогам тестирования
Тренажёр по заданиям ЕГЭ 2023 по русскому языку
Тесты предыдущих лет
Справочный материал
Вводные слова и предложения
Второстепенные члены предложения
Где поставить ударение? Орфоэпические нормы
Главные члены предложения: подлежащее, сказуемое
Деепричастие
Когда ставить двоеточие
Однородные члены предложения, соединенные повторяющимися союзами
Орфоэпический словарь (Орфоэпический минимум)
Паронимы, словарь паронимов
Правописание НН и Н в причастиях, отглагольных прилагательных и их производных
Приставки пре- и при-
Склонение числительных
Способы подчинительной связи в словосочетании
Спряжение глаголов
Суффиксы -чив, -лив
Типы односоставных предложений
Типы речи
- ОГЭ по математике
Подборка тренировочных вариантов по математике для 9 класса в формате ОГЭ 2023 с ответами и критериями оценивания.
Изменений относительно 2022 года нет, потому актуальны и варианты прошлого года.
Тренировочные варианты ОГЭ 2023 по математике
alexlarin.net | уровень 1 | уровень 2 |
вариант 327 | larin22-oge-327-1 | larin22-oge-327 |
вариант 328 | larin22-oge-328-1 | larin22-oge-328 |
вариант 329 | larin23-oge-329-1 | larin23-oge-329 |
вариант 330 | larin23-oge-330-1 | larin23-oge-330 |
вариант 331 | larin23-oge-331-1 | larin23-oge-331 |
вариант 332 | larin23-oge-332-1 | larin23-oge-332 |
вариант 333 | larin23-oge-333-1 | larin23-oge-333 |
вариант 334 | larin23-oge-334-1 | larin23-oge-334 |
вариант 335 | larin23-oge-335-1 | larin23-oge-335 |
вариант 336 | larin23-oge-336-1 | larin23-oge-336 |
вариант 337 | larin23-oge-337-1 | larin23-oge-337 |
вариант 338 | larin23-oge-338-1 | larin23-oge-338 |
вариант 339 | larin23-oge-339-1 | larin23-oge-339 |
вариант 340 | larin23-oge-340-1 | larin23-oge-340 |
вариант 341 | larin23-oge-341-1 | larin23-oge-341 |
вариант 342 | larin23-oge-342-1 | larin23-oge-342 |
вариант 343 | larin23-oge-343-1 | larin23-oge-343 |
вариант 344 | larin23-oge-344-1 | larin23-oge-344 |
вариант 345 | larin23-oge-345-1 | larin23-oge-345 |
вариант 346 | larin23-oge-346-1 | larin23-oge-346 |
вариант 347 | larin23-oge-347-1 | larin23-oge-347 |
вариант 348 | larin23-oge-348-1 | larin23-oge-348 |
вариант 349 | larin23-oge-349-1 | larin23-oge-349 |
вариант 350 | larin23-oge-350-1 | larin23-oge-350 |
вариант 351 | larin23-oge-351-1 | larin23-oge-351 |
вариант 352 | larin23-oge-352-1 | larin23-oge-352 |
math100.ru | |
Вариант 54 | math100-oge-54 |
Вариант 55 | math100-oge-55 |
Вариант 56 | math100-oge-56 |
Вариант 57 | math100-oge-57 |
Вариант 58 | math100-oge-58 |
Вариант 59 | math100-oge-59 |
Вариант 60 | math100-oge-60 |
Вариант 61 | math100-oge-61 |
Вариант 62 | math100-oge-62 |
Вариант 63 | math100-oge-63 |
Вариант 64 | math100-oge-64 |
Вариант 65 | math100-oge-65 |
Вариант 66 | math100-oge-66 |
Вариант 67 | math100-oge-67 |
Вариант 68 | math100-oge-68 |
Вариант 69 | math100-oge-69 |
Вариант 70 | math100-oge-70 |
Вариант 71 | math100-oge-71 |
Вариант 72 | math100-oge-72 |
Вариант 73 | math100-oge-73 |
Вариант 74 | math100-oge-74 |
Вариант 75 | math100-oge-75 |
Вариант 76 | math100-oge-76 |
Вариант 77 | math100-oge-77 |
Вариант 78 | math100-oge-78 |
Вариант 79 | math100-oge-79 |
Вариант 80 | math100-oge-80 |
time4math.ru | |
Варианты 1-2 | ответы |
Варианты 3-4 | ответы |
Варианты 5-6 | ответы |
Варианты 7-8 | ответы |
Варианты 9-10 | ответы |
Варианты 11-12 | ответы |
Варианты 13-14 | ответы |
Варианты 15-16 | ответы |
vk.com/pezhirovschool | |
Вариант 1 (с решением) | скачать |
Вариант 2 (с решением) | скачать |
Вариант 3 (с решением) | скачать |
Вариант 4 (с решением) | скачать |
Вариант 5 (с ответами) | скачать |
Вариант 6 | скачать |
vk.com/oge100ballov | |
variant 1 | скачать |
variant 2 | скачать |
variant 3 | скачать |
variant 4 | скачать |
yagubov.ru | |
вариант 33 (сентябрь) | скачать |
вариант 34 (октябрь) | скачать |
вариант 35 (ноябрь) | скачать |
вариант 36 (декабрь) | скачать |
вариант 37 (январь) | скачать |
вариант 38 (февраль) | скачать |
вариант 39 (март) | скачать |
vk.com/math.studying | |
вариант 1 | ответы |
вариант 2 | ответы |
vk.com/matematicalate | |
variant 1 | скачать |
variant 2 | скачать |
variant 3 | скачать |
Характеристика структуры и содержания КИМ ОГЭ 2023 по математике
Работа содержит 25 заданий и состоит из двух частей.
Часть 1 содержит 19 заданий с кратким ответом; часть 2 – 6 заданий с развёрнутым ответом. При проверке базовой математической компетентности экзаменуемые должны продемонстрировать владение основными алгоритмами, знание и понимание ключевых элементов содержания (математических понятий, их свойств, приёмов решения задач и проч.), умение пользоваться математической записью, применять знания к решению математических задач, не сводящихся к прямому применению алгоритма, а также применять математические знания в простейших практических ситуациях.
Задания части 2 направлены на проверку владения материалом на повышенном и высоком уровнях. Их назначение – дифференцировать хорошо успевающих школьников по уровням подготовки, выявить наиболее подготовленных обучающихся, составляющих потенциальный контингент профильных классов.
Эта часть содержит задания повышенного и высокого уровней сложности из различных разделов математики.
Все задания требуют записи решений и ответа. Задания расположены по нарастанию трудности: от относительно простых до сложных, предполагающих свободное владение материалом и высокий уровень математической культуры.
Связанные страницы: