Решу егэ профиль математика 517739
Задание 12 № 517746
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
А) Из уравнения получаем:
Б) Заметим, что Значит, указанному отрезку принадлежит корень −3.
Ответ: а) −3 и 27; б) −3.
Аналоги к заданию № 517739: 517746 517747 Все
Задание 12 № 517747
Задание 12 № 517746
Задание 12 № 517747
Ответ а 3 и 27; б 3.
Ege. sdamgia. ru
12.01.2020 13:48:01
2020-01-12 13:48:01
Источники:
Https://ege. sdamgia. ru/test? likes=517739
Решу егэ профиль математика 517739 — Математика и Английский » /> » /> .keyword { color: red; } Решу егэ профиль математика 517739
Решу егэ профиль математика 517739
Решу егэ профиль математика 517739
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
Задание 12 № 517746
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
А) Из уравнения получаем:
Б) Заметим, что Значит, указанному отрезку принадлежит корень −3.
Ответ: а) −3 и 27; б) −3.
Аналоги к заданию № 517739: 517746 517747 Все
Задание 12 № 517747
Задание 12 № 517746
Б Заметим, что Значит, указанному отрезку принадлежит корень 3.
Источники:
ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword < color: red; >Решу егэ профиль математика 517739
Решу егэ профиль математика 517739
Решу егэ профиль математика 517739
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
Задание 12 № 514082
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
А) Запишем исходное уравнение в виде:
Б) Поскольку отрезку принадлежит единственный корень −2.
Ответ: а) −2; 1, б) −2.
Почему такое странное ОДЗ?? Где 2-х>0, х>0, следовательно х0; тогда х (0;2)
Екатерина, в решении не находили ОДЗ.
В решении было использован равносильный переход, при котором условия достаточно для решения примера
А у Вас ОДЗ найдено с ошибкой.
Задание 12 № 517739
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
А) Из уравнения получаем:
Б) Заметим, что Значит, указанному отрезку принадлежит только корень −2.
Ответ: а) −2 и 16; б) −2.
В пункте «а» ответ только 16,вы не проверили ОДЗ
В этом уравнении не нужно искать ОДЗ. Это лишнее действие
Задание 12 № 502094
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие промежутку
А) Заметим, что преобразуем исходное уравнение:
Пусть тогда уравнение запишется в виде откуда или
При получим: откуда
При получим: откуда
Б) Корень не принадлежит промежутку Поскольку и корень принадлежит промежутку
Источник: ЕГЭ по математике 19.06.2013. Основная волна, резервный день. Центр. Вариант 502., Задания 13 (С1) ЕГЭ 2013
В строчке а) откуда-то взялась «3»
Путём каких преобразований мы получили ответ log(3)5 ?
1) Уравнение начинается с числе 9 в степени. Т. е. Мы раскладываем 9 как 3*3. Однако в первой строке решения мы видим 9*3. От туда и дальнейшее неверное вычисление.
2) Когда мы возвращаем замену (четвёртая строчка решения) вместо этого (если, допустим, t и правда равно 5/3) должно получиться Х-1= логорифм 5/3 по основанию 3. Верно?
Так ли это? Ибо мне свойственно ошибаться. Это правда ошибка, или я чего-то не понимаю? Если второе, то объясните, если можно.
Задание 12 № 517739
Задание 12 № 502094
Задание 12 502094.
Источники:
ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword < color: red; >Решу егэ профиль математика 517739
Решу егэ профиль математика 517739
Решу егэ профиль математика 517739
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Диагональ экрана телевизора равна 64 дюймам. Выразите диагональ экрана в сантиметрах, если в одном дюйме 2,54 см. Результат округлите до целого числа сантиметров.
Источники:
ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword < color: red; >Решу егэ профиль математика 517739
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
Задание 12 № 514082
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
А) Запишем исходное уравнение в виде:
Б) Поскольку отрезку принадлежит единственный корень −2.
Ответ: а) −2; 1, б) −2.
Почему такое странное ОДЗ?? Где 2-х>0, х>0, следовательно х0; тогда х (0;2)
Екатерина, в решении не находили ОДЗ.
В решении было использован равносильный переход, при котором условия достаточно для решения примера
А у Вас ОДЗ найдено с ошибкой.
Задание 12 № 517739
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
А) Из уравнения получаем:
Б) Заметим, что Значит, указанному отрезку принадлежит только корень −2.
Ответ: а) −2 и 16; б) −2.
В пункте «а» ответ только 16,вы не проверили ОДЗ
В этом уравнении не нужно искать ОДЗ. Это лишнее действие
Задание 12 № 502094
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие промежутку
А) Заметим, что преобразуем исходное уравнение:
Пусть тогда уравнение запишется в виде откуда или
При получим: откуда
При получим: откуда
Б) Корень не принадлежит промежутку Поскольку и корень принадлежит промежутку
Источник: ЕГЭ по математике 19.06.2013. Основная волна, резервный день. Центр. Вариант 502., Задания 13 (С1) ЕГЭ 2013
В строчке а) откуда-то взялась «3»
Путём каких преобразований мы получили ответ log(3)5 ?
1) Уравнение начинается с числе 9 в степени. Т. е. Мы раскладываем 9 как 3*3. Однако в первой строке решения мы видим 9*3. От туда и дальнейшее неверное вычисление.
2) Когда мы возвращаем замену (четвёртая строчка решения) вместо этого (если, допустим, t и правда равно 5/3) должно получиться Х-1= логорифм 5/3 по основанию 3. Верно?
Так ли это? Ибо мне свойственно ошибаться. Это правда ошибка, или я чего-то не понимаю? Если второе, то объясните, если можно.
Задание 12 № 517739
Задание 12 № 502094
Задание 12 502094.
Уско рен ная под го тов ка к ЕГЭ с ре пе ти то ра ми Учи.
Dankonoy. com
16.06.2020 6:45:22
2020-06-16 06:45:22
Источники:
Https://dankonoy. com/ege/ege11/archives/10087
Материал для подготовки к экзамену по математике 1 курс. » /> » /> .keyword { color: red; } Решу егэ профиль математика 517739
Материал для подготовки к экзамену по математике 1 курс
Материал для подготовки к экзамену по математике 1 курс.
Материал для подготовки к экзамену по математике для 1 курса СПО.
Просмотр содержимого документа
«Материал для подготовки к экзамену по математике 1 курс.»
Логарифмические уравнения
1. Задание 5 № 26646
Найдите корень уравнения
2. Задание 5 № 26647
Найдите корень уравнения
3. Задание 5 № 26648
Найдите корень уравнения
4. Задание 5 № 26649
Найдите корень уравнения
5. Задание 5 № 26657
Найдите корень уравнения
6. Задание 5 № 26658
Найдите корень уравнения
7. Задание 5 № 26659
Найдите корень уравнения
8. Задание 5 № 77380
Решите уравнение
9. Задание 5 № 77381
Решите уравнение
10. Задание 5 № 77382
Решите уравнение Если уравнение имеет более одного корня, в ответе укажите меньший из них.
11. Задание 5 № 315120
Найдите корень уравнения
12. Задание 5 № 315535
Найдите корень уравнения
13. Задание 5 № 525399
Решите уравнение
Тригонометрические уравнения
1. Задание 5 № 26669
Найдите корни уравнения: В ответ запишите наибольший отрицательный корень.
Значениям соответствуют положительные корни.
Если, то и
Если, то и
Значениям соответствуют меньшие значения корней.
Следовательно, наибольшим отрицательным корнем является число
2. Задание 5 № 77376
Решите уравнение В ответе напишите наибольший отрицательный корень.
Значению соответствует Положительным значениям параметра соответствуют положительные значения корней, отрицательным значениям параметра соответствуют меньшие значения корней. Следовательно, наибольшим отрицательным корнем является число −1.
3. Задание 5 № 77377
Решите уравнение В ответе напишите наименьший положительный корень.
Значениям соответствуют отрицательные корни.
Если, то и
Если, то и
Значениям соответствуют большие положительные корни.
Наименьшим положительным решением является 0,5.
Преобразования числовых логарифмических выражений
1. Задание 9 № 26843
Найдите значение выражения
2. Задание 9 № 26844
Найдите значение выражения
3. Задание 9 № 26845
Найдите значение выражения
4. Задание 9 № 26846
Найдите значение выражения
5. Задание 9 № 26847
Найдите значение выражения
6. Задание 9 № 26848
Найдите значение выражения
7. Задание 9 № 26849
Найдите значение выражения
8. Задание 9 № 26850
Найдите значение выражения
9. Задание 9 № 26851
Найдите значение выражения
10. Задание 9 № 26852
Найдите значение выражения
11. Задание 9 № 26853
Найдите значение выражения
12. Задание 9 № 26854
Найдите значение выражения
13. Задание 9 № 26855
Найдите значение выражения
14. Задание 9 № 26856
Найдите значение выражения
15. Задание 9 № 26857
Найдите значение выражения
16. Задание 9 № 26858
Найдите значение выражения
17. Задание 9 № 26859
Найдите значение выражения
18. Задание 9 № 26860
Найдите значение выражения
19. Задание 9 № 26861
Найдите значение выражения
20. Задание 9 № 26862
Найдите значение выражения
21. Задание 9 № 26882
Найдите значение выражения
22. Задание 9 № 26883
Найдите значение выражения
23. Задание 9 № 26885
Найдите значение выражения
24. Задание 9 № 26889
Найдите значение выражения
25. Задание 9 № 26892
Найдите значение выражения
26. Задание 9 № 26893
Найдите значение выражения
27. Задание 9 № 26894
Найдите значение выражения
28. Задание 9 № 26896
Найдите значение выражения
29. Задание 9 № 77418
Вычислите значение выражения:
30. Задание 9 № 505097
Найдите значение выражения
31. Задание 9 № 509086
Найдите значение выражения
32. Задание 9 № 510939
Найдите значение выражения
33. Задание 9 № 525403
Найдите значение выражения
Вычисление значений тригонометрических выражений
1. Задание 9 № 26775
Найдите, если и
2. Задание 9 № 26776
Найдите, если и
3. Задание 9 № 26777
Найдите, если и
4. Задание 9 № 26778
Найдите, если и
5. Задание 9 № 26779
Найдите, если
6. Задание 9 № 26780
Найдите, если
7. Задание 9 № 26783
Найдите значение выражения, если
8. Задание 9 № 26784
Найдите, если и
9. Задание 9 № 26785
Найдите, если и
10. Задание 9 № 26786
Найдите, если
11. Задание 9 № 26787
Найдите, если
12. Задание 9 № 26788
Найдите, если
13. Задание 9 № 26789
Найдите, если
14. Задание 9 № 26790
Найдите, если
15. Задание 9 № 26791
Найдите, если
16. Задание 9 № 26792
Найдите значение выражения, если
17. Задание 9 № 26793
Найдите значение выражения, если
18. Задание 9 № 26794
Найдите, если
19. Задание 9 № 316350
Найдите, если
20. Задание 9 № 501598
Найдите значение выражения
21. Задание 9 № 502014
Найдите значение выражения
22. Задание 9 № 502045
Найдите значение выражения
23. Задание 9 № 502106
Найдите значение выражения
24. Задание 9 № 502285
Найдите значение выражения
25. Задание 9 № 502305
Найдите значение выражения если и
26. Задание 9 № 504410
Найдите значение выражения:
27. Задание 9 № 504824
Найдите значение выражения
28. Задание 9 № 508966
Найдите если
29. Задание 9 № 510424
Найдите если и
30. Задание 9 № 549336
Найдите если и
Преобразования числовых тригонометрических выражений
1. Задание 9 № 26755
Найдите значение выражения
2. Задание 9 № 26756
Найдите значение выражения
3. Задание 9 № 26757
Найдите значение выражения
4. Задание 9 № 26758
Найдите значение выражения
5. Задание 9 № 26759
Найдите значение выражения
6. Задание 9 № 26760
Найдите значение выражения
7. Задание 9 № 26761
Найдите значение выражения
8. Задание 9 № 26762
Найдите значение выражения
9. Задание 9 № 26763
Найдите значение выражения
10. Задание 9 № 26764
Найдите значение выражения
11. Задание 9 № 26765
Найдите значение выражения
12. Задание 9 № 26766
Найдите значение выражения
13. Задание 9 № 26767
Найдите значение выражения
14. Задание 9 № 26769
Найдите значение выражения
15. Задание 9 № 26770
Найдите значение выражения
16. Задание 9 № 26771
Найдите значение выражения
17. Задание 9 № 26772
Найдите значение выражения
18. Задание 9 № 26773
Найдите значение выражения
19. Задание 9 № 26774
Найдите значение выражения
20. Задание 9 № 77412
Найдите значение выражения
21. Задание 9 № 77413
Найдите значение выражения
22. Задание 9 № 77414
Найдите значение выражения:
23. Задание 9 № 245169
Найдите значение выражения
24. Задание 9 № 245170
Найдите значение выражения
25. Задание 9 № 245171
Найдите значение выражения
26. Задание 9 № 245172
Найдите значение выражения
27. Задание 9 № 501701
Найдите значение выражения
28. Задание 9 № 502994
Найдите значение выражения
29. Задание 9 № 503310
Найдите значения выражения
30. Задание 9 № 510013
Найдите если и
31. Задание 9 № 510312
Найдите значение выражения
32. Задание 9 № 510386
Найдите значение выражения
33. Задание 9 № 510405
Найдите значение выражения
34. Задание 9 № 510824
Найдите значение выражения
35. Задание 9 № 510843
Найдите значение выражения
36. Задание 9 № 525113
Найдите значение выражения
37. Задание 9 № 526009
Найдите значение выражения
Логарифмические и показательные уравнения
1. Задание 13 № 514082
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
2. Задание 13 № 517739
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
3. Задание 13 № 502094
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие промежутку
4. Задание 13 № 516760
А) Решите уравнение:
Б) Определите, какие из его корней принадлежат отрезку
5. Задание 13 № 514623
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие отрезку
6. Задание 13 № 502053
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие отрезку
7. Задание 13 № 525377
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие отрезку
8. Задание 13 № 513605
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
9. Задание 13 № 503127
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие отрезку
10. Задание 13 № 514081
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащего отрезку
11. Задание 13 № 502999
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие отрезку [−1; 2].
12. Задание 13 № 528517
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
13. Задание 13 № 550261
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие промежутку
14. Задание 13 № 555265
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
15. Задание 13 № 555583
А) Решите уравнение
Б) Укажите корни этого уравнения, принадлежащие отрезку
16. Задание 13 № 561853
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие отрезку [−2,5; −1,5].
17. Задание 13 № 562032
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие отрезку [−0,5; 0,5].
18. Задание 13 № 562757
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие отрезку
б) Укажите корни этого уравнения, принадлежащие отрезку
Решите уравнение В ответе напишите наименьший положительный корень.
Просмотр содержимого документа «Материал для подготовки к экзамену по математике 1 курс.»
Б Укажите корни этого уравнения, принадлежащие отрезку.
Multiurok. ru
06.02.2020 18:29:01
2020-02-06 18:29:01
Источники:
Https://multiurok. ru/files/material-dlia-podgotovki-k-ekzamenu-po-matematike. html
Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.
Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.
Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.
Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.
Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.
Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.
Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.
Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.
Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .
Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.
Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?
Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.
Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.
Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).
Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.
Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.
Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]
Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.
Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.
Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.
Задание 17.
Найдите все значения a, при каждом из которых система уравнений
begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}
не имеет решений.
Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?
Источник варианта: СтатГрад/statgrad.org.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 2
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.
Шкалирование
Первичный | Тестовый | Оценка |
---|---|---|
5-6 | 27-34 | 3 |
7-8 | 40-46 | 4 |
9-10 | 52-58 | |
11-12-13 | 64-66-68 | 5 |
14-15-16 | 70-72-74 | |
17-18-19 | 76-78-80 | |
20-21-22 | 82-84-86 | |
23-24-25 | 88-90-92 | |
26-27-28 | 94-96-98 | |
29-30-31 | 100 |
Первичный балл / Тестовый балл |
5/27 | 6/34 | 7/40 | 8/46 | 9/52 | 10/58 | 11/64 | 12/66 | 13/68 | 14/70 |
---|---|---|---|---|---|---|---|---|---|---|
15/72 | 16/74 | 17/76 | 18/78 | 19/80 | 20/82 | X / 2X+42 | 29+ / 100 |
Вариант МА2210301 и ответы
Скачать ответы и
решения для вариантов
1.
Каждый день во время конференции расходуется 60 пакетиковчая.
Конференция длится 9 дней. В пачке чая 50 пакетиков. Какого наименьшего
количества пачек чая хватит на все дни конференции?
2.
Установите соответствие между величинами и их
возможнымизначениями: к каждому элементу первого столбца подберите
соответствующий элемент из второго столбца.
3.
В таблице показано расписание пригородных электропоездовпо
направлению Москва Курская – Крутое – Петушки. Владислав пришёл на станцию
Москва Курская в 18:20 и хочет уехать в Петушки на электропоезде без пересадок.
Найдите номер ближайшего электропоезда, который ему подходит.
5. В коробке вперемешку лежат чайные пакетики с
чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с чёрным чаем в 4
раза больше, чем пакетиков с зелёным. Найдите вероятность того, что случайно
выбранный из этой коробки пакетик окажется пакетиком с чёрным чаем.
8.
Некоторые учащиеся 10-х классов школы ходили в апреле наспектакль
«Гроза». В мае некоторые десятиклассники пойдут на постановку по пьесе
«Бесприданница», причём среди них не будет тех, кто ходил в апреле на спектакль
«Гроза». Выберите утверждения, которые будут верны при указанных условиях
независимо от того, кто из десятиклассников пойдёт на постановку по пьесе
«Бесприданница».
●
1) Каждый учащийся 10-х классов, который не ходил на спектакль
«Гроза», пойдёт на постановку по пьесе «Бесприданница».
●
2) Нет ни одного десятиклассника, который ходил на спектакль
«Гроза» и пойдёт на постановку по пьесе «Бесприданница».
●
3) Среди учащихся 10-х классов этой школы, которые не пойдут на
постановку по пьесе «Бесприданница», есть хотя бы один, который ходил на
спектакль «Гроза».
●
4) Найдётся десятиклассник, который не ходил на спектакль «Гроза»
и не пойдёт на постановку по пьесе «Бесприданница».
9.
На фрагменте географической карты схематично изображеныграницы
деревни Покровское и очертания озёр (площадь одной клетки равна одному
гектару). Оцените приближённо площадь озера Малого. Ответ дайте в гектарах с
округлением до целого значения.
10.
Диагональ прямоугольного экрана ноутбука равна 40 см, аширина
экрана ― 32 см. Найдите высоту экрана. Ответ дайте в сантиметрах.
11.
Пирамида Снофру имеет форму правильной четырёхугольнойпирамиды,
сторона основания которой равна 220 м, а высота — 104 м. Сторона основания
точной музейной копии этой пирамиды равна 55 см. Найдите высоту музейной копии.
Ответ дайте в сантиметрах.
12.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 112°
, угол ABC равен 106° . Найдите угол ACB . Ответ дайте в градусах.
13.
Даны два цилиндра. Радиус основания и высота первогоцилиндра
равны соответственно 2 и 6, а второго — 6 и 4. Во сколько раз объём второго
цилиндра больше объёма первого?
15. В школе мальчики составляют 55 % от числа всех
учащихся. Сколько в этой школе мальчиков, если их на 50 человек больше, чем
девочек?
19.
Цифры четырёхзначного числа, кратного 5, записали вобратном
порядке и получили второе четырёхзначное число. Затем из исходного числа вычли
второе и получили 3366. В ответе укажите какое-нибудь одно такое исходное
число.
20.
Имеется два сплава. Первый содержит 45 % никеля, второй —5 %
никеля. Из этих двух сплавов получили третий сплав, содержащий 15 % никеля.
Масса первого сплава равна 40 кг. На сколько килограммов масса первого сплава
была меньше массы второго?
21.
Прямоугольник разбит на четыре меньших прямоугольникадвумя
прямолинейными разрезами. Периметры трёх из них, начиная с левого верхнего и
далее по часовой стрелке, равны 2, 3 и 18. Найдите периметр четвёртого
прямоугольника.
Вариант МА2210305 и ответы
Скачать ответы и
решения для вариантов
1. Для покраски 1 кв. м потолка требуется 230 г
краски. Краска продаётся в банках по 2 кг. Какое наименьшее количество банок
краски нужно для покраски потолка площадью 44 кв. м?
3. В таблице представлены налоговые ставки на
автомобили в Москве с 1 января 2013 года. Какова налоговая ставка (в рублях за
1 л. с. в год) на автомобиль мощностью 115 л. с.?
5.
Помещение освещается двумя лампами. Вероятностьперегорания одной
лампы в течение года равна 0,3. Найдите вероятность того, что в течение года
обе лампы перегорят.
6.
В таблице даны результаты олимпиад по русскому языку ибиологии в
9 «А» классе. Похвальные грамоты дают тем школьникам, у кого суммарный балл по
двум олимпиадам больше 110 или хотя бы по одному предмету набрано не меньше 60
баллов. Укажите номера учащихся 9 «А» класса, набравших меньше 60 баллов по
русскому языку и получивших похвальные грамоты, без пробелов, запятых и других
дополнительных символов.
7.
На рисунке изображены график функции и касательные,проведённые к
нему в точках с абсциссами A, B, C и D. В правом столбце указаны значения
производной функции в точках A, B, C и D. Пользуясь графиком, поставьте в
соответствие каждой точке значение производной функции в ней.
8.
Некоторые учащиеся 10-х классов школы ходили в ноябре наоперу
«Евгений Онегин». В марте некоторые десятиклассники пойдут на оперу «Руслан и
Людмила», причём среди них не будет тех, кто ходил в ноябре на оперу «Евгений
Онегин». Выберите утверждения, которые будут верны при указанных условиях независимо
от того, кто из десятиклассников пойдёт на оперу «Руслан и Людмила».
●
1) Каждый учащийся 10-х классов, который не ходил на оперу
«Евгений Онегин», пойдёт на оперу «Руслан и Людмила».
●
2) Нет ни одного десятиклассника, который ходил на оперу «Евгений
Онегин» и пойдёт на оперу «Руслан и Людмила».
●
3) Найдётся десятиклассник, который не ходил на оперу
«Евгений Онегин» и не пойдёт на оперу «Руслан и
Людмила».
●
4) Среди учащихся 10-х классов этой школы, которые не пойдут на
оперу «Руслан и Людмила», есть хотя бы один, который ходил на оперу «Евгений
Онегин».
9.
План местности разбит на клетки. Каждая клетка обозначаетквадрат
1м×1м . Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных
метрах.
10.
Пожарную лестницу длиной 10 м приставили к окну дома.Нижний конец
лестницы отстоит от стены на 6 м. На какой высоте находится верхний конец
лестницы? Ответ дайте в метрах.
11.
Прямолинейный участок трубы длиной 4 м, имеющей всечении
окружность, необходимо покрасить снаружи (торцы трубы открыты, их красить не
нужно). Найдите площадь поверхности, которую необходимо покрасить, если внешний
обхват трубы равен 19 см. Ответ дайте в квадратных сантиметрах.
12.
В треугольнике ABC стороны AC и BC равны. Внешний угол при
вершине B равен 146° . Найдите угол C. Ответ дайте в градусах.
13.
Даны два шара радиусами 4 и 2. Во сколько раз объёмбольшего шара
больше объёма меньшего?
15. Число больных гриппом в школе уменьшилось за
месяц в пять раз. На сколько процентов уменьшилось число больных гриппом?
19.
Найдите пятизначное число, кратное 15, любые две соседниецифры
которого отличаются на 3. В ответе укажите какое-нибудь одно такое число.
20.
Теплоход, скорость которого в неподвижной воде равна 19 км/ч,
проходит по течению реки и после стоянки возвращается в исходный пункт.
Скорость течения равна 3 км/ч, стоянка длится 5 часов, а в исходный пункт
теплоход возвращается через 43 часа после отправления из него. Сколько
километров проходит теплоход за весь рейс?
21.
На кольцевой дороге расположены четыре бензоколонки: А, Б,В и Г.
Расстояние между А и Б — 55 км, между А и В — 40 км, между В и Г — 40 км, между
Г и А — 30 км (все расстояния измеряются вдоль кольцевой дороги по кратчайшей
дуге). Найдите расстояние (в километрах) между Б и В.
Вариант МА2210309 и ответы
Скачать ответы и
решения для вариантов
2.
Прямоугольный параллелепипед описан около цилиндра,радиус
основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту
цилиндра.
3.
В группе 16 человек, среди них — Анна и Татьяна. Группуслучайным
образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность
того, что Анна и Татьяна окажутся в одной подгруппе.
4.
Агрофирма закупает куриные яйца только в двух домашниххозяйствах.
Известно, что 40 % яиц из первого хозяйства — яйца высшей категории, а из
второго хозяйства — 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей
категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы,
окажется из первого хозяйства.
9. Пристани A и B расположены на озере, расстояние
между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На
следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч
больше прежней, сделав по пути остановку на 8 часов. В результате она затратила
на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость
баржи на пути из A в B. Ответ дайте в км/ч.
13. Основанием правильной пирамиды PABCD является
квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD
перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра
пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если AB
= 30.
15.
По вкладу «А» банк в конце каждого года планируетувеличивать на
13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать
эту сумму на 7 % в первый год и на целое число n процентов за второй год.
Найдите наименьшее значение n , при котором за два года хранения вклад «Б»
окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
16.
В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M
. Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б)
Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22 .
18. У Ани есть 800 рублей. Ей нужно купить конверты
(большие и маленькие). Большой конверт стоит 32 рубля, а маленький — 25 рублей.
При этом число маленьких конвертов не должно отличаться от числа больших
конвертов больше чем на пять. а) Может ли Аня купить 24 конверта? б) Может ли
Аня купить 29 конвертов? в) Какое наибольшее число конвертов может купить Аня?
Вариант МА2210311 и ответы
Скачать ответы и
решения для вариантов
1.
Найдите периметр прямоугольника, если его площадь равна 12,а
отношение соседних сторон равно 1:3.
2.
Шар вписан в цилиндр. Площадь полной поверхностицилиндра равна
78. Найдите площадь поверхности шара.
3.
В магазине в среднем из 120 сумок 15 имеют скрытые
дефекты.Найдите вероятность того, что выбранная в магазине сумка окажется со
скрытыми дефектами.
4.
Игральный кубик бросают дважды. Известно, что в суммевыпало 11
очков. Найдите вероятность того, что во второй раз выпало 5 очков.
9. Игорь и Паша, работая вместе, могут покрасить
забор за 40 часов. Паша и Володя, работая вместе, могут покрасить этот же забор
за 48 часов, а Володя и Игорь, работая вместе, — за 60 часов. За сколько часов
мальчики покрасят забор, работая втроём?
13. Основанием правильной пирамиды PABCD является
квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD
перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра
пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если
AB = 24 .
15.
По вкладу «А» банк в конце каждого года планируетувеличивать на
11 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать
эту сумму на 7 % в первый год и на целое число n процентов за второй год.
Найдите наименьшее значение n , при котором за два года хранения вклад «Б»
окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
16.
В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M
. Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б)
Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 18.
18. У Ани есть 400 рублей. Ей нужно купить конверты
(большие и маленькие). Большой конверт стоит 22 рубля, а маленький — 17 рублей.
При этом число маленьких конвертов не должно отличаться от числа больших
конвертов больше чем на пять. а) Может ли Аня купить 19 конвертов? б) Может ли
Аня купить 23 конверта? в) Какое наибольшее число конвертов может купить Аня?
Скачать ответы и
решения для вариантов