Задания
Версия для печати и копирования в MS Word
Тип 9 № 510489
Из одной точки кольцевой дороги, длина которой равна 12 км, одновременно в одном направлении выехали два автомобиля. Скорость первого автомобиля равна 101 км/ч, и через 20 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.
Спрятать решение
Решение.
Пусть скорость второго автомобиля равна км/ч. За 1/3 часа первый автомобиль прошел на 12 км больше, чем второй, отсюда имеем
Ответ: 65.
Аналоги к заданию № 99598: 113655 114117 114145 114147 114153 509462 509624 510489 510510 520187 … Все
Кодификатор ФИПИ/Решу ЕГЭ: Задачи на движение по окружности
Спрятать решение
·
Прототип задания
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
Каталог заданий
Назад в каталог
Вернуться к списку прототипов этой категории
Версия для печати и копирования в MS Word
1
Тип 9 № 510489
Из одной точки кольцевой дороги, длина которой равна 12 км, одновременно в одном направлении выехали два автомобиля. Скорость первого автомобиля равна 101 км/ч, и через 20 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.
Аналоги к заданию № 99598: 113655 114117 114145 114147 114153 509462 509624 510489 510510 520187 … Все
Кодификатор ФИПИ/Решу ЕГЭ: Задачи на движение по окружности
Решение
·
Прототип задания
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
ЕГЭ 2023. Экзаменационная работа состоит из двух частей, включающих в себя 29 заданий. Часть 1 содержит 22 задания с кратким ответом. Часть 2 содержит 7 заданий с развёрнутым ответом. На выполнение экзаменационной работы по биологии отводится 3 часа 55 минут (235 минут).
В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки. Ответами к заданиям 1–22 являются последовательность цифр, число или слово (словосочетание). Ответы запишите в поля ответов в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номеров соответствующих заданий, начиная с первой клеточки, без пробелов, запятых и других дополнительных символов. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами.
Скачать тренировочный вариант ЕГЭ: Скачать
Скачать ответы на тренировочный вариант ЕГЭ: Скачать
Задания:
1. Рассмотрите таблицу «Методы биологических исследований» и заполните ячейку, вписав соответствующий термин. Применяется для выявления геномных мутаций.
2. Исследователь добавлял в стакан коровьего молока желудочный сок собаки. Как спустя час в стакане изменится содержание дисахарида лактозы и животных жиров? Для каждой величины определите соответствующий характер её изменения:
1) увеличилась
2) уменьшилась
3) не изменилась
3. Площадь земель, покрытых лесом, в России составляет примерно 1200 млн га. Известно, что 12 га леса связывают 18 тонн диоксида углерода в год. Сколько млн тонн углекислого газа может быть связано за год за счет российских лесов?
4. Определите вероятность (в %) гибели от анемии ребенка, родившегося в браке гомозиготных по рецессивному аллелю родителей, если эта форма анемии наследуется как аутосомный доминантный признак. В ответ запишите только соответствующее число.
5. Каким номером на рисунке обозначена структура, образующая спираль в сперматозоидах млекопитающих?
6. Установите соответствие между характеристиками и структурами, обозначенными на рисунке цифрами 1, 2, 3, 4: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
7. Выберите три признака, которые соответствуют описаниям селекции. Запишите в таблицу цифры, под которыми они указаны.
1) выведение новых штаммов микроорганизмов
2) получение новых семейств растений
3) получение генномодифицированных растений
4) выведение тритикале при скрещивании пшеницы и ржи
5) получение рекомбинантной плазмиды
6) выведение пород животных и сортов растений
8. Установите последовательность этапов ферментативного катализа. Запишите в таблицу соответствующую последовательность цифр.
1) образование нестабильного комплекса фермент-продукт
2) сближение фермента и субстрата
3) начало распада комплекса фермент-продукт
4) формирование фермент-субстратного комплекса
5) высвобождение продукта и фермента
9. Какой цифрой на рисунке обозначена вторичная полость тела?
10. Установите соответствие между характеристиками и структурами тела дождевого червя, обозначенными на рисунке выше цифрами 1, 2, 3: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
11. Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. Для растения, изображенного на рисунке, характерно:
1) гаметофит обоеполый — содержит архегонии и антеридии
2) дихотомическое ветвление
3) заросток сердцевидной формы
4) споры созревают в сорусах
5) споры образуются в спороносных колосках
6) гаметофит формирует вайи
12. Установите последовательность систематических групп, начиная с самого низкого ранга. Запишите в таблицу соответствующую последовательность цифр.
1) Эукариоты
2) Членистоногие
3) Ежемухи
4) Ежемуха свирепая
5) Двукрылые
6) Животные
13. Какой цифрой на рисунке указан тип научения, который изучал К. Лоренц?
14. Установите соответствие между характеристиками и типами научения, обозначенными на рисунке выше цифрами 1, 2, 3: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
15. Выберите три верно обозначенные подписи к рисунку «Строение уха». Запишите цифры, под которыми они указаны.
1) серная (церуминозная) железа
2) наружный слуховой проход
3) слуховая косточка
4) овальное окно
5) преддверно-улитковый нерв
6) улитка
16. Установите последовательность событий, происходящих при свертывании крови. Запишите в таблицу соответствующую последовательность цифр.
1) разрушение тромбоцитов у места повреждения
2) превращение протромбина в тромбин
3) уплотнение рыхлой пробки тромбоцитов фибриновыми нитями
4) превращение фибриногена в фибрин
5) выделение тромбопластина
6) образование тромба
17. Прочитайте текст. Выберите три предложения, в которых даны описания географического видообразования. Запишите цифры, под которыми они указаны. (1)Видообразование происходит в результате расширения ареала исходного вида или при попадании популяции в новые условия. (2)Такое видообразование называют аллопатрическим. (3)Примером видообразования служит формирование двух подвидов погремка большого на одном лугу. (4)Естественный отбор способствовал формированию двух рас севанской форели, нерестящихся в разное время. (5)Репродуктивная изоляция особей не является обязательным условием видообразования. (6)Результатом изоляции является формирование эндемичных островных видов животных.
18. Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. Примеры антропогенных факторов воздействия:
1) разрушение озонового слоя под действием фреонов
2) гибель сусликов из-за пандемии
3) нарушение режима рек под влиянием деятельности бобров
4) разрыхление почв дождевыми червями
5) эвтрофикация водоемов из-за смыва удобрений
6) металлизация атмосферы
19. Установите соответствие между типами взаимоотношений и организмами, между которыми они устанавливаются: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
20. Установите последовательность этапов эволюции животных, начиная с самых древних представителей. Запишите соответствующую последовательность цифр.
1) стегоцефал
2) зверозубый ящер
3) тушканчик
4) сеймурия
5) кистеперая рыба
21. Проанализируйте таблицу «Роль прокариотов в экосистемах». Заполните пустые ячейки таблицы, используя элементы, приведённые в списке. Для каждой ячейки, обозначенной буквой, выберите соответствующий элемент из предложенного списка. Список элементов:
1) Редуценты
2) Бактерии-хемосинтетики
3) Продуценты
4) Гетеротрофы
5) Бактерии-фотосинтетики
6) Денитрифицирующие
7) Автотрофы
Консументы
22. Проанализируйте диаграмму, отражающую содержание холестерола ЛПНП (липопротеинов низкой плотности) в плазме крови обследованных в лаборатории людей. Выберите все утверждения, которые можно сформулировать на основании анализа представленных данных. Запишите в ответе цифры, под которыми указаны выбранные утверждения.
1) Пятеро из обследованных людей имеют значение содержания холестерола-ЛПНП в интервале от 200 до 249 мг/дл.
2) Более 60% пациентов имеют чрезвычайно высокий риск развития атеросклероза.
3) Значение содержания холестерола-ЛПНП более 300 мг/дл смертельно.
4) Более 50% обследованных людей имеют от 75 до 149 мг/дл холестеролЛПНП в плазме крови.
5) В плазме крови 4% людей содержание холестерола-ЛПНП находится в пределах от 50 до 74 мг/дл.
23. Какая переменная в этом эксперименте будет зависимой (изменяющейся), а какая — независимой (задаваемой)? Объясните, как в данном эксперименте можно поставить отрицательный контроль. С какой целью необходимо такой контроль ставить? * Отрицательный контроль – это экспериментальный контроль, при котором изучаемый объект не подвергается экспериментальному воздействию при сохранении всех остальных условий.
24. Предположите, почему для обработки кукурузных полей используют 2,4- Д. Каким веществом по результату действия на двудольные растения является 2,4-дихлорфеноксиуксусная кислота?
25. Рассмотрите рисунок. Какие пары комплементарных азотистых оснований ДНК отмечены буквами А и Б? При содержании большего количества каких пар азотистых оснований молекула ДНК будет медленнее подвергаться денатурации при воздействии повышенной температуры? Ответ поясните.
26. Некоторые виды лишайников являются трехкомпонентными, то есть включают клетки трех видов организмов: гриба, зеленой водоросли и цианобактерии. Какие функции могут выполнять цианобактерии в составе такого лишайника? Назовите не менее двух. Какие преимущества имеет гриб в составе трехкомпонентного лишайника по сравнению с двухкомпонентным?
27. У животных существует несколько типов брачных отношений, например, моногамия – образование стойких супружеских пар, полигамия – спаривание особи одного пола со множеством партнеров противоположного пола. Большинство видов гнездовых птиц практикуют моногамные отношения, а большинство видов млекопитающих — полигамные. Объясните, почему для гнездовых птиц стратегия моногамного поведения наиболее выгодна. По каким причинам птицы, как правило, не могут практиковать полигамию, как это делают млекопитающие? Ответ поясните.
28. Какой хромосомный набор (n) характерен для клеток мегаспорангия и мегаспоры цветкового растения? Объясните, из каких исходных клеток и в результате какого деления образуются клетки мегаспорангия и мегаспора.
29. Существует два вида наследственной слепоты, каждый из которых определяется рецессивными аллелями генов (а или b). Оба аллеля находятся в различных парах гомологичных хромосом. Какова вероятность рождения слепой внучки в семье, в которой бабушки по материнской и отцовской линиям хорошо видят (не имеют рецессивных генов), а оба дедушки дигомозиготны и страдают различными видами слепоты? Составьте схему решения задачи. Определите генотипы и фенотипы бабушек и дедушек, их детей и возможных внуков.
Вам будет интересно:
ЕГЭ по биологии 11 класс 2023. Новый тренировочный вариант №6 — №221121 (задания и ответы)
* Олимпиады и конкурсы
* Готовые контрольные работы
* Работы СтатГрад
* Официальные ВПР
Поделиться:
Тренировочный вариант и ответы с решением пробник ЕГЭ 2023 по информатике 11 класс ФИПИ состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера. На выполнение экзаменационной работы по информатике и ИКТ отводится 3 часа 55 минут (235 минут).
Скачать тренировочный вариант с ответами
Скачать файлы для варианта
Другие тренировочные варианты
ege_2023_informatika_23_02
Разбор варианта. ЕГЭ по Информатике 2023
1. На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. В таблице в левом столбце указаны номера пунктов, откуда совершается движение, в первой строке – куда. Определите минимально возможную длину пути BDE. Передвигаться можно только по указанным дорогам.
2. Логическая функция F задаётся выражением w ∨ (y → z) ∧ x. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какой столбец в таблице каждой переменной в выражении. В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
3. В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады августа 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок внесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
4. Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известно, что слово СПОРТЛОТО кодируется как 10010100110011110000100. Какой код соответствует букве Л, если известно, что коды подбирались под минимальную длину заданного слова.
5. На вход алгоритма подаётся натуральное число N большее 4. Алгоритм строит по нему новое число R следующим образом. 1. Строится двоичная запись числа N. 2. Далее эта запись обрабатывается по следующему правилу: а) если количество цифр в двоичной записи числа нечётное, то центральный бит двоичного представления инвертируется; б) если количество цифр в двоичной записи числа чётное, то два центральных бита двоичного представления инвертируется; Например, для исходного числа 610 = 1102 результатом является число 1002 = 410, а для исходного числа 910 = 10012 результатом является число 11112 = 1510. Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 100 и меньшее N. В ответе запишите это число в десятичной системе счисления.
6. Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 5 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n – целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n – целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m – целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз.
7. Спутник каждую секунду делает снимок 20 на 7.6 километра. Размер пикселя на местности 0.65х0.65 метра. Цвет пикселя выбирается из палитры в 256 цветов. Оцените объем памяти (в МБ) для хранения одного изображения. Сжатие не производится. Ответ округлите до большего целого числа.
8. Определите количество десятизначных чисел, записанных в восьмеричной системе счисления, в записи которых ровно пять цифры 7 и при этом никакая нечетная цифра не стоит рядом с цифрой 7.
9. Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнено строго одно из условий: – в строке есть повторяющиеся числа; – в строке есть ровно три нечетных числа. В ответе запишите только число.
10. Текст произведения Ника Горькавого «Теория Катастроф» представлен в виде текстового файла. Откройте файл и определите, сколько бифуркационных технологий содержал итоговый список. В ответе запишите только число.
11. Вася решил закодировать персональные данные всех 1347 учеников всей школы. Для каждого ученика был сформирован ID из нескольких полей: номер класса, буква (а,б,в,г,д), пол, день и месяц рождения, номер имени по таблице имен (всего 103), номер фамилии по таблице фамилий (всего 733). Сперва Вася для каждого поля выделил минимальное количество байт. Затем попробовал закодировать все поля непрерывной битовой строкой и для каждого ID выделил минимальное количество байт. Сколько байт сэкономил Вася во втором случае для кодирования всех учеников школы?
12. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр) А) заменить(v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить(111, 27) преобразует строку 05111150 в строку 0512750. Если в строке нет вхождений цепочки v, то выполнение команды заменить(v, w) не меняет эту строку. Б) нашлось(v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется. Цикл выполняется, пока условие истинно.
13. На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Определите количество различных путей ненулевой длины, которые начинаются и заканчиваются в городе Е, не содержат этот город в качестве промежуточного пункта и проходят через промежуточные города не более одного раза.
14. Дано выражение 12×4536 + 1×12345 В записи чисел переменной x обозначена неизвестная цифра из допустимого алфавита для указанных систем счисления. Определите наибольшее значение x, при котором значение данного арифметического выражения кратно 13. Для найденного значения x вычислите частное от деления значения арифметического выражения на 13 и укажите его в ответе в десятичной системе счисления.
15. На числовой прямой даны два отрезка: B = [23;37] и C = [41;73]. Укажите наименьшую длину такого отрезка А, для которого логическое выражение ¬((¬(x ∈ B) → (x ∈ C)) → (x ∈ A)) ложно (т.е. принимает значение 0) при любом значении переменной x.
16. Обозначим частное от деления натурального числа a на натуральное число b как a//b, а остаток как a%b. Например, 17//3 = 5, 17%3 = 2. Алгоритм вычисления значения функции F(n), где n – целое неотрицательное число, задан следующими соотношениями: F(n) = n при n < 10; F(n) = F(n//10) + F(n%10) , если 10 ⩽ n < 1000; F(n) = F(n//1000) — F(n%1000) , если n ⩾ 1000. Определите количество значений n, не превышающих 106 , для которых F(n) = 0?
17. В файле содержится последовательность целых чисел по модулю менее 10000. а) рассматриваются только пары в которых строго одно число оканчивается на 7. б) квадрат разности элементов пары меньше модуля разности квадратов хотя бы одной пары (отвечающей условию а). В ответе запишите два числа: сначала количество найденных пар, затем минимальный квадрат разности. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
18. Квадрат разлинован на N×N клеток (1 < N < 30). Роботу нужно перейти через поле с севера (верхняя строка) на юг (нижняя строка). Он может начать переход с любой клетки первой строки и закончить на любой клетке нижней строки. С каждым шагом Робот переходит в следующую строку и может за одно перемещение попасть в одну из трех клеток следующей строки (на клетку прямо вниз или на одну из клеток слева/справа от неё). Ходы только влево или вправо (без смены строки), назад (в предыдущую строку) и за границы поля запрещены. В каждой клетке поля лежит монета достоинством от 1 до 100. Робот собирает все монеты по пройденному маршруту. Определите максимальную возможную денежную сумму и количество монет с чётным значением, которую может собрать Робот, пройдя с северной границы поля (сверху) до южной границы поля (снизу). В ответе укажите два числа: сначала максимальную сумму, затем количество монет с четным значением по маршруту с максимальной суммой.
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в меньшую кучу один или три камня. Изменять количество камней в большей куче не разрешается. Игра завершается, когда количество камней в кучах становится равным. Победителем считается игрок, сделавший последний ход, то есть первым сравнявшим количество камней в двух кучах. Игроки играют рационально, т.е. без ошибок. В начальный момент в первой куче было 13 камней, а во второй – S камней, 1 ≤ S ≤ 23? Укажите такое минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.
20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия: – Петя не может выиграть за один ход; – Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответ в порядке возрастания
21. Для игры, описанной в задании 19, найдите два значения S, при котором одновременно выполняются три условия: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом; – Петя может выбирать, каким ходом выиграет Ваня;
22. В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0. Определите максимальное количество процессов, которые завершатся за 73 мс, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
23. У исполнителя Кузнечик есть 4 команды: 1. Прибавить 1 2. Прибавить 3 3. Вычесть 1 4. Вычесть 3 Сколько существует программ, для которых при исходном числе 42 результатом будет являться число 42, при этом траектория вычисления содержит только числа от 40 до 49, притом не более 1 раза, т.е. без повторов.
24. Текстовый файл содержит строку из десятичных цифр и букв латинского алфавита. Найдите минимальную длину подстроки включающей все шестнадцатеричные цифры. Строка может включать повторяющиеся цифры и другие символы. В ответе укажите найденную длину..
25. Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы: символ «?» означает ровно одну произвольную цифру; символ «*» означает любую последовательность цифр произвольной длины; в том числе «*» может задавать и пустую последовательность. Например, маске 123*4?5 соответствуют числа 123405 и 12300405. Найдите все натуральные числа, не превышающие 1010, которые соответствуют маске 1?1?1?1*1 и при этом без остатка делятся на 2023, а сумма цифр числа равна 22. В ответе запишите все найденные числа в порядке возрастания. Количество строк в таблице для ответа избыточно.
26. В сетевом приложении реализован кэш размером V МБ для файлов размером от 1 до 999 МБ. Пользователи запрашивают файлы в порядке, заданном в исходном файле. Алгоритм кэширования сперва заполняет весь кэш. Для размещение следующего файла кэш нужно освободить. Для этого из кэша удаляется один подходящий файл, так чтобы свободное место было минимальным и достаточным для размещения нового файла. Если удаление даже самого большого файла не освобождает необходимого места, то удаляется самый большой файл и алгоритм рекурсивно повторяется, пока не будет достаточного места для нового файла.
27. Дана последовательность натуральных чисел. Расстояние между элементами последовательности – это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними равно 1, если два элемента стоят через один – расстояние равно 2 и т. д. Назовём тройкой любые три числа из последовательности, расстояние между которыми не меньше 17. Необходимо определить количество троек, в которых сумма чисел в тройке делится без остатка на 7717.
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Тренировочная работа №3 статград пробник ЕГЭ 2023 по математике 11 класс 12 тренировочных вариантов МА2210301-МА2210312 с ответами и решением базовый и профильный уровень (БАЗА И ПРОФИЛЬ). Официальная дата проведения работы: 28 февраля 2023 года.
Скачать ответы и решения для вариантов
Пробник ЕГЭ 2023 математика 11 класс статград база
Варианты профильного уровня ЕГЭ 2023 математика статград
Вариант МА2210301 и ответы
1. Каждый день во время конференции расходуется 60 пакетиков чая. Конференция длится 9 дней. В пачке чая 50 пакетиков. Какого наименьшего количества пачек чая хватит на все дни конференции?
2. Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.
3. В таблице показано расписание пригородных электропоездов по направлению Москва Курская – Крутое – Петушки. Владислав пришёл на станцию Москва Курская в 18:20 и хочет уехать в Петушки на электропоезде без пересадок. Найдите номер ближайшего электропоезда, который ему подходит.
5. В коробке вперемешку лежат чайные пакетики с чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с чёрным чаем в 4 раза больше, чем пакетиков с зелёным. Найдите вероятность того, что случайно выбранный из этой коробки пакетик окажется пакетиком с чёрным чаем.
8. Некоторые учащиеся 10-х классов школы ходили в апреле на спектакль «Гроза». В мае некоторые десятиклассники пойдут на постановку по пьесе «Бесприданница», причём среди них не будет тех, кто ходил в апреле на спектакль «Гроза». Выберите утверждения, которые будут верны при указанных условиях независимо от того, кто из десятиклассников пойдёт на постановку по пьесе «Бесприданница».
- 1) Каждый учащийся 10-х классов, который не ходил на спектакль «Гроза», пойдёт на постановку по пьесе «Бесприданница».
- 2) Нет ни одного десятиклассника, который ходил на спектакль «Гроза» и пойдёт на постановку по пьесе «Бесприданница».
- 3) Среди учащихся 10-х классов этой школы, которые не пойдут на постановку по пьесе «Бесприданница», есть хотя бы один, который ходил на спектакль «Гроза».
- 4) Найдётся десятиклассник, который не ходил на спектакль «Гроза» и не пойдёт на постановку по пьесе «Бесприданница».
9. На фрагменте географической карты схематично изображены границы деревни Покровское и очертания озёр (площадь одной клетки равна одному гектару). Оцените приближённо площадь озера Малого. Ответ дайте в гектарах с округлением до целого значения.
10. Диагональ прямоугольного экрана ноутбука равна 40 см, а ширина экрана ― 32 см. Найдите высоту экрана. Ответ дайте в сантиметрах.
11. Пирамида Снофру имеет форму правильной четырёхугольной пирамиды, сторона основания которой равна 220 м, а высота — 104 м. Сторона основания точной музейной копии этой пирамиды равна 55 см. Найдите высоту музейной копии. Ответ дайте в сантиметрах.
12. В треугольнике ABC проведена биссектриса AL, угол ALC равен 112° , угол ABC равен 106° . Найдите угол ACB . Ответ дайте в градусах.
13. Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6, а второго — 6 и 4. Во сколько раз объём второго цилиндра больше объёма первого?
15. В школе мальчики составляют 55 % от числа всех учащихся. Сколько в этой школе мальчиков, если их на 50 человек больше, чем девочек?
19. Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из исходного числа вычли второе и получили 3366. В ответе укажите какое-нибудь одно такое исходное число.
20. Имеется два сплава. Первый содержит 45 % никеля, второй — 5 % никеля. Из этих двух сплавов получили третий сплав, содержащий 15 % никеля. Масса первого сплава равна 40 кг. На сколько килограммов масса первого сплава была меньше массы второго?
21. Прямоугольник разбит на четыре меньших прямоугольника двумя прямолинейными разрезами. Периметры трёх из них, начиная с левого верхнего и далее по часовой стрелке, равны 2, 3 и 18. Найдите периметр четвёртого прямоугольника.
Вариант МА2210305 и ответы
1. Для покраски 1 кв. м потолка требуется 230 г краски. Краска продаётся в банках по 2 кг. Какое наименьшее количество банок краски нужно для покраски потолка площадью 44 кв. м?
3. В таблице представлены налоговые ставки на автомобили в Москве с 1 января 2013 года. Какова налоговая ставка (в рублях за 1 л. с. в год) на автомобиль мощностью 115 л. с.?
5. Помещение освещается двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года обе лампы перегорят.
6. В таблице даны результаты олимпиад по русскому языку и биологии в 9 «А» классе. Похвальные грамоты дают тем школьникам, у кого суммарный балл по двум олимпиадам больше 110 или хотя бы по одному предмету набрано не меньше 60 баллов. Укажите номера учащихся 9 «А» класса, набравших меньше 60 баллов по русскому языку и получивших похвальные грамоты, без пробелов, запятых и других дополнительных символов.
7. На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D. В правом столбце указаны значения производной функции в точках A, B, C и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.
8. Некоторые учащиеся 10-х классов школы ходили в ноябре на оперу «Евгений Онегин». В марте некоторые десятиклассники пойдут на оперу «Руслан и Людмила», причём среди них не будет тех, кто ходил в ноябре на оперу «Евгений Онегин». Выберите утверждения, которые будут верны при указанных условиях независимо от того, кто из десятиклассников пойдёт на оперу «Руслан и Людмила».
- 1) Каждый учащийся 10-х классов, который не ходил на оперу «Евгений Онегин», пойдёт на оперу «Руслан и Людмила».
- 2) Нет ни одного десятиклассника, который ходил на оперу «Евгений Онегин» и пойдёт на оперу «Руслан и Людмила».
- 3) Найдётся десятиклассник, который не ходил на оперу «Евгений Онегин» и не пойдёт на оперу «Руслан и Людмила».
- 4) Среди учащихся 10-х классов этой школы, которые не пойдут на оперу «Руслан и Людмила», есть хотя бы один, который ходил на оперу «Евгений Онегин».
9. План местности разбит на клетки. Каждая клетка обозначает квадрат 1м×1м . Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.
10. Пожарную лестницу длиной 10 м приставили к окну дома. Нижний конец лестницы отстоит от стены на 6 м. На какой высоте находится верхний конец лестницы? Ответ дайте в метрах.
11. Прямолинейный участок трубы длиной 4 м, имеющей в сечении окружность, необходимо покрасить снаружи (торцы трубы открыты, их красить не нужно). Найдите площадь поверхности, которую необходимо покрасить, если внешний обхват трубы равен 19 см. Ответ дайте в квадратных сантиметрах.
12. В треугольнике ABC стороны AC и BC равны. Внешний угол при вершине B равен 146° . Найдите угол C. Ответ дайте в градусах.
13. Даны два шара радиусами 4 и 2. Во сколько раз объём большего шара больше объёма меньшего?
15. Число больных гриппом в школе уменьшилось за месяц в пять раз. На сколько процентов уменьшилось число больных гриппом?
19. Найдите пятизначное число, кратное 15, любые две соседние цифры которого отличаются на 3. В ответе укажите какое-нибудь одно такое число.
20. Теплоход, скорость которого в неподвижной воде равна 19 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 5 часов, а в исходный пункт теплоход возвращается через 43 часа после отправления из него. Сколько километров проходит теплоход за весь рейс?
21. На кольцевой дороге расположены четыре бензоколонки: А, Б, В и Г. Расстояние между А и Б — 55 км, между А и В — 40 км, между В и Г — 40 км, между Г и А — 30 км (все расстояния измеряются вдоль кольцевой дороги по кратчайшей дуге). Найдите расстояние (в километрах) между Б и В.
Вариант МА2210309 и ответы
2. Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.
3. В группе 16 человек, среди них — Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.
4. Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
9. Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.
13. Основанием правильной пирамиды PABCD является квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если AB = 30.
15. По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n , при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
16. В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M . Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22 .
18. У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький — 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять. а) Может ли Аня купить 24 конверта? б) Может ли Аня купить 29 конвертов? в) Какое наибольшее число конвертов может купить Аня?
Вариант МА2210311 и ответы
1. Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
2. Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 78. Найдите площадь поверхности шара.
3. В магазине в среднем из 120 сумок 15 имеют скрытые дефекты. Найдите вероятность того, что выбранная в магазине сумка окажется со скрытыми дефектами.
4. Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.
9. Игорь и Паша, работая вместе, могут покрасить забор за 40 часов. Паша и Володя, работая вместе, могут покрасить этот же забор за 48 часов, а Володя и Игорь, работая вместе, — за 60 часов. За сколько часов мальчики покрасят забор, работая втроём?
13. Основанием правильной пирамиды PABCD является квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если AB = 24 .
15. По вкладу «А» банк в конце каждого года планирует увеличивать на 11 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n , при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
16. В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M . Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 18.
18. У Ани есть 400 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 22 рубля, а маленький — 17 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять. а) Может ли Аня купить 19 конвертов? б) Может ли Аня купить 23 конверта? в) Какое наибольшее число конвертов может купить Аня?
Работы статград по математике для 9 и 11 класса
Share the post «Математика 11 класс ЕГЭ 2023 статград база и профиль варианты и ответы с решением»
- VKontakte
Метки: ЕГЭ 2023заданияматематика 11 классответыстатградтренировочная работа
Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.
Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.
Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.
Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.
Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.
Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.
Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.
Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.
Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .
Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.
Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?
Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.
Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.
Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).
Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.
Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.
Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]
Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.
Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.
Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.
Задание 17.
Найдите все значения a, при каждом из которых система уравнений
begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}
не имеет решений.
Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?
Источник варианта: СтатГрад/statgrad.org.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 2
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.
Задание 1
Основания равнобедренной трапеции равны 45 и 24. Тангенс острого угла равен $$frac{2}{7}$$. Найдите высоту трапеции.
Ответ: 9
Скрыть
Задание 2
Куб описан около сферы радиуса 12,5. Найдите объём куба.
Ответ: 15625
Скрыть
Задание 3
Какова вероятность того, что последние три цифры номера случайно выбранного паспорта одинаковы?
Ответ: 0,01
Скрыть
Задание 4
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 9 очков в двух играх. Если команда выигрывает, она получает 7 очков, в случае ничьей — 2 очка, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,2.
Ответ: 0,28
Скрыть
Задание 5
Найдите корень уравнения $$sqrt{frac{160}{6-7x}}=1frac{1}{3}$$
Ответ: -12
Скрыть
Задание 6
Найдите значение выражения $$2^{4log_{4}12}$$.
Ответ: 144
Скрыть
Задание 7
На рисунке изображён график функции $$y=f(x)$$, определённой на интервале $$(-7; 7)$$. Найдите сумму точек экстремума функции $$f(x)$$.
Ответ: -1
Скрыть
Задание 8
Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 744 МГц. Скорость погружения батискафа $$v$$ вычисляется по формуле $$v=ccdot frac{f-f_{0}}{ f+f_{0}}$$ где $$c=1500$$ м/с — скорость звука в воде, $$f_{0}$$ — частота испускаемых импульсов, $$f$$ — частота отражённого от дна сигнала, регистрируемая приёмником (в МГц). Определите частоту отражённого сигнала в МГц, если скорость погружения батискафа равна 12 м/с.
Ответ: 756
Скрыть
Задание 9
Первый насос наполняет бак за 35 минут, второй — за 1 час 24 минуты, а третий — за 1 час 45 минут. За сколько минут наполнят бак три насоса, работая одновременно?
Ответ: 20
Скрыть
Задание 10
На рисунке изображён график функции $$f(x)=log_{a}(x-2)$$. Найдите $$f(10)$$.
Ответ: -3
Скрыть
Задание 11
Найдите точку максимума функции $$y=(4x^{2}-36x+36)e^{33-x}$$.
Ответ: 9
Скрыть
Задание 12
а) Решите уравнение $$2cos xcdot sin 2x=2sin x+cos 2x$$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $$[3pi;frac{9pi}{2}]$$.
Ответ: а)$$frac{pi}{4}+frac{pi n}{2};$$$$frac{pi}{6}+2pi m;$$$$frac{5pi}{6}+2pi k$$,n,m,kin Z$$ б)$$frac{13pi}{4};frac{15pi}{4};frac{25pi}{6};frac{17pi}{4}$$
Скрыть
Задание 13
Грань $$ABCD$$ куба $$ABCDA_{1}B_{1}C_{l}D_{1}$$ является вписанной в основание конуса, а сечением конуса плоскостью $$A_{1}B_{1}C_{1}$$ является круг, вписанный в четырёхугольник $$A_{1}B_{1}C_{l}D_{1}$$.
а) Высота конуса равна $$h$$, ребро куба равно $$a$$. Докажите, что $$3a<h<3,5a$$.
б) Найдите угол между плоскостями $$ABC$$ и $$SA_{1}D$$, где $$S$$ — вершина конуса.
Ответ: $$arctg (sqrt{6}+2sqrt{3})$$
Скрыть
Задание 14
Решите неравенство $$4log_{0,25}(1-4x)-log_{sqrt{2}}(-1-x)+4log_{4}(x^{2}-1)leq log_{2}x^{2}$$.
Ответ: $$(-infty;-1)$$
Скрыть
Задание 15
В июле Егор планирует взять кредит на 3 года на целое число миллионов рублей. Два банка предложили Егору оформить кредит на следующих условиях:
— в январе каждого года действия кредита долг увеличивается на некоторое число процентов (ставка плавающая — может быть разным для разных годов);
— в период с февраля по июнь каждого года действия кредита выплачиваются равные суммы, причём последний платёж должен погасить долг по кредиту полностью.
В первом банке процентная ставка по годам составляет 15, 20 и 10 процентов соответственно, а во втором — 20, 10 и 15 процентов. Егор выбрал наиболее выгодное предложение. Найдите сумму кредита, если эта выгода по общим выплатам по кредиту составила от 13 до 14 тысяч рублей.
Ответ: 7 млн. руб.
Скрыть
Задание 16
На сторонах $$AB$$ и $$CD$$ четырёхугольника $$ABCD$$, около которого можно описать окружность, отмечены точки $$K$$ и $$N$$ соответственно. Около четырёхугольников $$AKND$$ и $$BCNK$$ также можно описать окружность. Косинус одного из углов четырёхугольника $$ABCD$$ равен 0,25.
а) Докажите, что четырёхугольник $$ABCD$$ является равнобедренной трапецией.
б) Найдите радиус окружности, описанной около четырёхугольника $$AKND$$, если радиус окружности, описанной около четырёхугольника $$ABCD$$, равен 8, $$AK:KB=2:5$$, a $$BC<AD$$ и $$ВС=4$$.
Ответ: $$frac{2sqrt{69}}{3}$$
Скрыть
Задание 17
Найдите все такие значения $$a$$, при каждом из которых уравнение $$sqrt{10x^{2}+x-24}cdotlog_{2}((x-3)cdot(a+5)+14)=0$$ имеет ровно два различных корня.
Ответ: $$-5;[-frac{50}{23};-frac{45}{23});(frac{11}{3};frac{13}{3})$$
Скрыть
Задание 18
Есть три коробки: в первой — 97 камней; во второй — 80, а в третьей коробке камней нет. Берут по одному камню из двух коробок и кладут их в оставшуюся. Сделали некоторое количество таких ходов.
а) Могло ли в первой коробке оказаться 58 камней, во второй — 59, а в третьей — 60?
б) Может ли в первой и второй коробках камней оказаться поровну?
в) Какое наибольшее количество камней может оказаться во второй коробке?
Ответ: а)да б)нет в)176
Скрыть