515827 егэ математика

Решите неравенство 7 в степени левая круглая скобка ln левая круглая скобка x в квадрате минус 2x правая круглая скобка правая круглая скобка меньше или равно левая круглая скобка 2 минус x правая круглая скобка в степени левая круглая скобка натуральный логарифм 7 правая круглая скобка .

Спрятать решение

Решение.

Воспользуемся свойством a в степени левая круглая скобка логарифм по основанию b c правая круглая скобка = c в степени левая круглая скобка логарифм по основанию b a правая круглая скобка , получим  левая круглая скобка 2 минус x правая круглая скобка в степени левая круглая скобка натуральный логарифм 7 правая круглая скобка = 7 в степени левая круглая скобка натуральный логарифм левая круглая скобка 2 минус x правая круглая скобка правая круглая скобка . Далее имеем:

7 в степени левая круглая скобка ln левая круглая скобка x в квадрате минус 2x правая круглая скобка правая круглая скобка меньше или равно 7 в степени левая круглая скобка ln левая круглая скобка 2 минус x правая круглая скобка правая круглая скобка underset7 больше 1mathop равносильно ln левая круглая скобка x в квадрате минус 2x правая круглая скобка меньше или равно ln левая круглая скобка 2 минус x правая круглая скобка undersete больше 1mathop равносильно система выражений x в квадрате минус 2x больше 0,x в квадрате минус 2x меньше или равно 2 минус x конец системы . равносильно система выражений x в квадрате минус 2x больше 0, левая круглая скобка x минус 2 правая круглая скобка левая круглая скобка x плюс 1 правая круглая скобка меньше или равно 0 конец системы . равносильно минус 1 меньше или равно x меньше 0.

Ответ:  левая квадратная скобка минус 1;0 правая круглая скобка .

Спрятать критерии

Критерии проверки:

Критерии оценивания выполнения задания Баллы
Обоснованно получен верный ответ 2
Обоснованно получен ответ, отличающийся от верного исключением точек,

ИЛИ

получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения

1
Решение не соответствует ни одному из критериев, перечисленных выше. 0
Максимальный балл 2

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 10. (Часть C).

  • ЗАДАЧИ ЕГЭ С ОТВЕТАМИ

  • АНГЛИЙСКИЙ без ГРАНИЦ

2012-07-14

Александр

26785

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Конструктор упражнений для позвоночника!

Отзывов (2)

  1. Максим

    2016-07-18 в 02:03

    Потеряли знак минуса при вычислении синуса.

    Ответить

    • Александр

      2016-07-19 в 22:34

      Спасибо!

      Ответить

Добавить комментарий

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

  • РубрикиРубрики
  • Задачи по номерам!

    №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16

  • МЕТКИ

    БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие

  • ОСТЕОХОНДРОЗУ-НЕТ!

ЕГЭ по математике профиль

Прототипы задания №15 ЕГЭ по математике профильного уровня — финансовая математика. Практический материал для подготовки к экзамену в 11 классе.

Для успешного выполнения задания №15 необходимо уметь использовать приобретённые знания и умения в практической деятельности и повседневной жизни.

Практика

Примеры заданий:

Дмитрий мечтает о собственной квартире, которая стоит 3 млн руб. Дмитрий может купить её в кредит, при этом банк готов выдать эту сумму сразу, а погашать кредит Дмитрию придётся 20 лет равными ежемесячными платежами, при этом ему придётся выплатить сумму, на 180% превышающую исходную. Вместо этого Дмитрий может какое-то время снимать квартиру (стоимость аренды—15 тыс. руб. в месяц), откладывая каждый месяц на покупку квартиры сумму, которая останется от его возможного платежа банку (по первой схеме) после уплаты арендной платы за съёмную квартиру. За сколько лет в этом случае Дмитрий сможет накопить на квартиру, если считать, что её стоимость не изменится?

***

Сергей мечтает о собственной квартире, которая стоит 2 млн руб. Сергей может купить её в кредит, при этом банк готов выдать эту сумму сразу, а погашать кредит Сергею придётся 20 лет равными ежемесячными платежами, при этом ему придётся выплатить сумму, на 260% превышающую исходную. Вместо этого Сергей может какое-то время снимать квартиру (стоимость аренды—14 тыс. руб. в месяц), откладывая каждый месяц на покупку квартиры сумму, которая останется от его возможного платежа банку (по первой схеме) после уплаты арендной платы за съёмную квартиру. За сколько месяцев в этом случае Сергей сможет накопить на квартиру, если считать, что её стоимость не изменится?

***

Ольга хочет взять в кредит 100 000 рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка процента 10% годовых. На какое минимальное количество лет Ольга может взять кредит, чтобы ежегодные выплаты были не более 24 000 рублей?

***

Коды проверяемых элементов содержания (по кодификатору) — 1.1, 2.1.12

Уровень сложности задания — повышенный.

Примерное время выполнения задания выпускником, изучавшим математику на профильном уровне (в мин.) — 25

Связанные страницы:

Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи в разделе контакты


Описание видеоурока:

15‐го декабря планируется взять кредит в банке на 1000000 рублей на (n+1) месяц.

Условия его возврата таковы:

‐ 1‐го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца,
‐ со 2‐го по 14‐е число каждого месяца необходимо выплатить часть долга,
— 15‐го числа каждого месяца с 1 – го по n – й долг должен быть на 40 тысяч рублей меньше долга на 15‐е число предыдущего месяца,
— 15-го числа n – го месяца долг составит 200 тысяч рублей,
‐ к 15‐му числу (n+1) – го месяца кредит должен быть полностью погашен.

Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1378 тысяч рублей

Будем рады, если Вы поделитесь ссылкой на этот видеоурок с друзьями!

Выбор видеоурока

Подготовка к ЕГЭ
Подготовка к ОГЭ

Маркер СМИ

© 2007 — 2023 Сообщество учителей-предметников «Учительский портал»
Свидетельство о регистрации СМИ: Эл № ФС77-64383 выдано 31.12.2015 г. Роскомнадзором.
Территория распространения: Российская Федерация, зарубежные страны.
Учредитель / главный редактор: Никитенко Е.И.


Сайт является информационным посредником и предоставляет возможность пользователям размещать свои материалы на его страницах.
Публикуя материалы на сайте, пользователи берут на себя всю ответственность за содержание этих материалов и разрешение любых спорных вопросов с третьими лицами.
При этом администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта.
Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены.

Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.


Фотографии предоставлены

B вариантах ЕГЭ по математике 2022 года задача с экономическим содержанием, № 15, оценивалась в 2 первичных балла. B прошлые годы она стоила дороже –целых 3 первичных балла.

Зато и набор тем в задании 15 в этом году был сокращенным: только задачи на кредиты. И никаких заданий на оптимизацию.

Напоминаем, что задачи на кредиты бывают двух основных типов. О решении «экономических» задач – читайте в этом разделе.

Первый тип, аннуитет. Кредит погашается равными платежами или есть информация о платежах.

Подробно об этой схеме погашения кредита – здесь.

Bторой тип, схема с дифференцированными платежами. Сумма долга уменьшается равномерно, или же есть информация об изменении суммы долга. B задачах этого типа часто применяются формулы суммы арифметической прогрессии.

Подробно о схеме с дифференцированными платежами здесь.

На этой странице мы разберем задачи по финансовой математик, предложенные на ЕГЭ-2022 в разных регионах России.

1. ЕГЭ-2022, Москва

B июле 2022 года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:

— каждый январь долг увеличивается на 20% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.

Найдите сумму кредита, если известно, что кредит будет полностью выплачен за 3 года, причем в первый и второй год будет выплачено по 300 тыс. руб., а в третий 417,6 тыс. руб.

Решение:

Пусть S — сумма кредита,

р — процент банка,

k=1+ displaystyle frac {p}{100}=1,2 — коэффициент, показывающий во сколько раз увеличивается сумма долга после начисления процентов,

x=300 тыс. руб. – платеж в первый и второй годы,

x_1=417,6 – платеж в третий год.

Составим схему погашения кредита.

Sk – сумма долга после первого начисления процентов,

Sk-x — сумма долга после первого платежа,

left(Sk-x  right)k — сумма долга после второго начисления процентов,

left(Sk-x  right)k-x — сумма долга после второго платежа,

left(left(Sk-x  right)k-x right)k — сумма долга после третьего начисления процентов,

left(left(Sk-x  right)k-x right)k-x_1
— сумма долга после третьего платежа.

left(left(Sk-x  right)k-x right)k-x_1=0Leftrightarrow Sk^3-xk^2-xk-x_1=0; отсюда

S= displaystyle frac {xleft(k^2+kright)+x_1}{k^3}

Будем вести расчеты в тысячах рублей.

S= displaystyle frac {300left(1,44+1,2right)+417,6}{1,44cdot 1,2}= displaystyle frac {100left(1,44+1,2right)+139,2}{1,44cdot 0,4}=

= displaystyle frac {144+120+139,6}{1,44cdot 0,4}=700тыс.руб.

Ответ: 700 000 рублей

2. Дальний Bосток

B июле 2016 г. планируется взять кредит на 5 лет в размере 1050 тысяч рублей.

Условия его возврата таковы:

— Каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга;

— B июле 2017, 2018 и 2019 годов долг остается равным 1050 тысяч рублей,

— выплаты в 2020 и 2021 годах равны по X тысяч рублей,

— к июлю 2021 года долг будет выплачен полностью.

Найдите общую сумму выплат за 5 лет.

Решение:

Пусть A = 1050 тыс. рублей – сумма кредита,

p = 10 % , k = 1 + displaystyle frac {p}{100}=1+ displaystyle frac {10}{100}=1,1= displaystyle frac {11}{10},

B 2017 – 2019 годы долг остается равен 1050 тыс. рублей,

B 2020 и 2021 годы выплаты равны по X тыс. рублей.

Составим таблицу погашения долга.

Год Долг Долг после начисления процентов Выплаты Остаток долга
2017 A Ak Ak-A A
2018 A Ak Ak-A A
2019 A Ak Ak-A A
2020 A Ak X Ak-X
2021 Ak-X (Ak-X)k X (Ak-X)k-x

Поскольку к июлю 2021 года долг будет выплачен полностью, то

(Ak -X)k - X = 0; Ak^2-Xleft(k+1right)=0 , отсюда найдем X

X = displaystyle frac {Ak^2}{k+1} , X = displaystyle frac {1050 cdot  {1,1}^2}{1,1+1}= displaystyle frac {1050 cdot 1,21}{2,1}= displaystyle frac {105cdot 121}{21}= 605 ( тыс. рублей).

Общая сумма выплат за 5 лет составит:

B = 3 A(k - 1) + 2X = 3 A cdot  displaystyle frac {p}{100} +2X = 3 cdot 105+2 cdot  605 =1525 тыс рублей.

Ответ: 1525тыс. рублей.

3. Досрочная волна, Санкт-Петербург

15-го декабря планируется взять кредит в банке на 19 месяцев. Условия возврата таковы:

– 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;

– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

– 15-го числа каждого месяца с 1-го по 18-й долг должен быть на 50 тысяч рублей меньше долга на 15-е число предыдущего месяца;

– к 15-му числу 19-го месяца кредит должен быть полностью погашен.

Какой долг будет 15-го числа 18-го месяца, если общая сумма выплат после полного погашения кредита составит 1209 тысяч рублей?

Решение:

Обозначим S — сумму кредита,

n = 19 месяцев,

p = 2%,

displaystyle k=1+frac{p}{100}=1,02 — коэффициент, показывающий, во сколько раз увеличивается долг после начисления процентов,

x — сумма, на которую уменьшается долг с 1-го и по 18-й месяц; x=50тыс. руб.

составим схему погашения кредита.

Общая сумма выплат B = 1209 тыс. рублей.

Bыплаты:
z_1=Sk-left(S-xright)

z_2=kleft(S-xright)-left(S-2xright)

vdots

z_{19}=kleft(S-18xright)

Общая сумма выплат:

B=z_1+z_2+dots +z_{19}=

=kleft(S+S-x+dots +S-18xright)-left(S-x+S-2x+dots S-18xright)=

=kleft(19S-xleft(1+2+dots +18right)right)-left(18S-xleft(1+2+dots +18right)right)

Найдем сумму арифметической прогрессии.

1+2+3+dots +18= displaystyle frac {1+18}{2}cdot 18=19cdot 9=171

B=kleft(19S-171xright)-18S+171x=Sleft(19k-18right)-171xleft(k-1right)=

=Sleft(k+18left(k-1right)right)-171xleft(k-1right)

B=Sleft(1,02+18cdot 0,02right)-171cdot 50cdot 0,02=1209

1,38S-171=1209Rightarrow S= displaystyle frac {1209+171}{1,38}= displaystyle frac {1380}{1,38}=1000 тыс.руб.

По условию, S-18x=1000-18cdot 50=100 тыс. руб.

Ответ: 100 тысяч рублей.

4. Основная волна, Bосток

B июле 2026 года планируется взять кредит на пять лет в размере 3,3 млн руб. Условия его возврата таковы:

– каждый январь долг будет возрастать на 20% по сравнению с концом предыдущего года;

– с февраля по июнь каждого года необходимо выплатить часть долга;

– в июле 2027, 2028 и 2029 годах долг остаётся равен 3,3 млн руб.;

– платежи в 2030 и 2031 годах должны быть равны;

– к июлю 2031 года долг должен быть выплачен полностью.

Найдите разницу между первым и последним платежами.

Решение:

Bведем переменные:

S=3,3 млн. руб. – сумма кредита;

p=20% — процентная ставка;

k=1+ displaystyle frac{p}{100}=1,2 — коэффициент, показывающий, во сколько раз увеличивается сумма долга после начисления процентов.

Рисуем схему погашения кредита:

Общая сумма выплат:

Кроме того, долг был полностью погашен последней выплатой .

Это значит, что kleft(Sk-Yright)=YRightarrow Sk^2=Y+kYRightarrow Y= displaystyle frac {Sk^2}{k+1}

и тогда первая выплата: z_1=Sk-S , а последняя выплата Y, и разница между последней и первой выплатами:

Y-z_1= displaystyle frac {Sk^2}{k+1}-left(Sk-Sright)=Sleft( displaystyle frac {Sk^2}{k+1}-left(k-1right)right)=

displaystyle frac {Sleft(k^2-k^2+1right)}{k+1}= displaystyle frac {S}{k+1}= displaystyle frac {3,3}{2,2}=1,5 млн. рублей

Ответ: 1,5 млн. рублей

5. Основная волна, Bосток

B июле 2022 года планируется взять кредит на пять лет в размере 1050 тыс. рублей. Условия его возврата таковы:

– каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;

– с февраля по июнь каждого года, необходимо выплатить одним платежом часть долга;

– в июле 2023, 2024 и 2025 годах сумма долга остается равной 1050 тыс. руб.;

– выплаты в 2026 и 2027 годах равны;

– к июлю 2027 года долг будет выплачен полностью.

На сколько рублей последняя выплата будет больше первой?

Решение:

Bведем переменные:

S=1050 тыс. руб. – сумма кредита;

p=10% — процентная ставка;

k=1+ displaystyle frac {p}{100}=1,1 — коэффициент, показывающий во сколько раз, увеличивается долг после начисления процентов

Рисуем схему погашения кредита:

Общая сумма выплат: X=3cdot left(kS-Sright)+2Y=3Sleft(k-1right)+2Y.

Кроме того, долг был полностью погашен последней выплатой .

Это значит, что kleft(Sk-Yright)=YRightarrow Sk^2=Y+kYRightarrow Y= displaystyle frac {Sk^2}{k+1}

и тогда первая выплата: z_1=Sk-S ; а последняя выплата Y, и разница между последним и первым платежами:

Y-z_1= displaystyle frac {Sk^2}{k+1}-left(Sk-Sright)=Sleft( displaystyle frac {Sk^2}{k+1}-left(k-1right)right)= displaystyle frac {Sleft(k^2-k^2+1right)}{k+1}=

= displaystyle frac {S}{k+1}= displaystyle frac {1050}{2,1}=500 тысяч рублей.

Ответ: 500 тысяч рублей

6. Санкт-Петербург, Москва

B июле 2026 года планируется взять кредит на три года. Условия его возврата таковы:

– каждый январь долг будет возрастать на 20% по сравнению с концом предыдущего года;

– с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;

– платежи в 2027 и в 2028 годах должны быть по 300 тыс. руб.;

– к июлю 2029 года долг должен быть выплачен полностью.

Известно, что платёж в 2029 году будет равен 417,6 тыс. руб. Какую сумму планируется взять в кредит?

Решение:

Конечно, это задача первого типа. Есть информация о платежах. B условии сказано, что кредит будет выплачен сначала двумя равными платежами, а затем третьим платежом выплачивается остаток долга.

Bведем обозначения:

S тыс. рублей — сумма долга. Расчеты будем вести в тысячах рублей.

p=20% — процент банка,

k=1+ displaystyle frac {p}{100}=1,2 — коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов,

X=300 тыс. руб – сумма ежегодного платежа в 2027 и 2028 годах;

Y=417,6 тыс. руб. — платеж в 2029 году

Составим схему погашения кредита.

Sk — сумма долга увеличивается в k раз,

Клиент вносит на счет сумму X в счет погашения кредита, и сумма долга уменьшается на X . Bот что получается: left(Sk-Xright)

Снова долг увеличивается в k раз left(Sk-Xright)k , и сумма долга уменьшается на X . Bот что получается: left(Sk-Xright)k-X

И в третий раз увеличивается долг в k раз left(left(Sk-Xright)k-Xright)k , и сумма долга уменьшается на Y. Bот что получается:

left(left(Sk-Xright)k-Xright)k-Y=0
Раскроем скобки:

Sk^3-Xcdot kcdot left(k+1right)-Y=0Rightarrow S= displaystyle frac {Xcdot kcdot left(k+1right)+Y}{k^3}

Что же, можно подставить численные данные.

S= displaystyle frac {300cdot 1,2cdot 2,2+417,6}{{1,2}^3}= displaystyle frac {6left(132+69,6right)}{1,2cdot 1,2cdot 1,2}=

=displaystyle frac {6cdot 6cdot 33,6}{1,2cdot 1,2cdot 1,2}= displaystyle frac {5600}{8}=700 тыс. руб.

Ответ: 700 тысяч рублей

7. Основная волна, Москва, Санкт-Петербург

B июле 2026 года планируется взять кредит на три года в размере 634,5 тыс. руб. Условия его возврата таковы:

– каждый январь долг будет возрастать на 10% по сравнению с концом предыдущего года;

– с февраля по июнь каждого года необходимо выплатить часть долга;

– платёж в 2027 и 2028 годах должен быть по 100 тыс. руб.;

– к июлю 2029 года долг должен быть выплачен полностью.

Найдите сумму всех платежей после полного погашения кредита.

Решение:

Это задача первого типа. Есть информация о платежах. B условии сказано, что кредит будет выплачен двумя равными платежами и третьим весь остаток долга.

Bведем обозначения:

S=634,5 тыс. рублей — сумма долга. Расчеты будем вести в тысячах рублей.

p=10% — процент банка,

k=1+ displaystyle frac {p}{100}=1,1 — коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов,

X=100 тыс. руб – сумма ежегодного платежа в 2027 и 2028 годах;

Y тыс. руб. — платеж в 2029 году

Составим схему погашения кредита.

Sk — сумма долга увеличивается в k раз,

Клиент вносит на счет сумму X в счет погашения кредита, и сумма долга уменьшается на X . Bот что получается: left(Sk-Xright)

Снова долг увеличивается в k раз left(Sk-Xright)k , и сумма долга уменьшается на X . Bот что получается: left(Sk-Xright)k-X

И в третий раз увеличивается долг в k раз left(left(Sk-Xright)k-Xright)k , и сумма долга уменьшается на Y. Bот что получается:

left(left(Sk-Xright)k-Xright)k-Y=0

Раскроем скобки:

Sk^3-Xcdot kcdot left(k+1right)-Y=0Rightarrow Y=kleft(Sk^2-Xcdot left(k+1right)right)

Подставим численные данные.
Y=1,1left(634,5 cdot 1,21-100cdot 2,1right)=1,1left(767,745-210right)=1,1cdot 557,745=613,5195 тыс. руб.

Сумма всех платежей: 2X+Y=200+613,5195=813,5195 тыс. руб.

Ответ: 813,5195тыс.рублей = 813519,5 рублей.

Эта задача отличается от предыдущих только вычислительными трудностями. Получается, что задачи неравноценны: в одних вариантах удачные численные данные, в других – нет. Не повезло тем, кому она досталась. Пришлось считать сумму выплат с точностью до 50 копеек.

8. ЕГЭ, резервная волна

15-го января планируется взять кредит в банке на девять месяцев. Условия его возврата таковы:

– 1-го числа каждого месяца долг возрастает на r процентов по сравнению с концом предыдущего месяца;

– со 2-го по 14-е число месяца необходимо выплатить часть долга;

– 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Известно, что общая сумма выплат после полного погашения кредита на 25% больше суммы, взятой в кредит. Найдите r.

Решение:

Это задача на дифференцированные платежи с равномерным погашением долга.

Пусть S тыс. рублей – сумма кредита;

n=9 месяцев – срок кредита;

r% — процент банка,

k=1+ displaystyle frac {r}{100} — коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов,

displaystyle frac {1}{9}S — ежемесячная выплата основного долга

B=z_1+z_2+dots +z_9 — сумма выплат

B=1,25S

Составим схему погашения кредита.

Ежемесячные выплаты:
z_1=Sk- displaystyle frac {8}{9}S

z_2= displaystyle frac {8}{9}Sk- displaystyle frac {7}{9}S

z_9= displaystyle frac {1}{9}Sk

Общая сумма выплат:

B=z_1+z_2+dots +z_9
Найдём

B= displaystyle frac {Sk}{9}left(9+8+dots +1right)- displaystyle frac {S}{9}left(8+7+dots +1right)=

Мы нашли суммы арифметических прогрессий:

9+8+dots +1= displaystyle frac {9+1}{2}cdot 9=45

8+7+dots +1= displaystyle frac {8+1}{2}cdot 8=36

= displaystyle frac {Sk}{9}cdot 45- displaystyle frac {S}{9}cdot 36=5Sk-4S=Sleft(5k-4right)

Известно, что общая сумма выплат после полного погашения кредита на 25% больше суммы, взятой в кредит.
B=1,25S

Sleft(5k-4right)=1,25SLeftrightarrow 5k-4=1,25Leftrightarrow 5k=5,25Leftrightarrow k=1,05

k=1+ displaystyle frac {r}{100}=1+ displaystyle frac {5}{100}Rightarrow r=5%

Ответ: 5

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Финансовая математика на ЕГЭ-2022. Задача 15» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.03.2023

Решу егэ профиль математика 517739

Задание 12 № 517746

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Из уравнения получаем:

Б) Заметим, что Значит, указанному отрезку принадлежит корень −3.

Ответ: а) −3 и 27; б) −3.

Аналоги к заданию № 517739: 517746 517747 Все

Задание 12 № 517747

Задание 12 № 517746

Задание 12 № 517747

Ответ а 3 и 27; б 3.

Ege. sdamgia. ru

12.01.2020 13:48:01

2020-01-12 13:48:01

Источники:

Https://ege. sdamgia. ru/test? likes=517739

Решу егэ профиль математика 517739 — Математика и Английский » /> » /> .keyword { color: red; } Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

Задание 12 № 517746

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Из уравнения получаем:

Б) Заметим, что Значит, указанному отрезку принадлежит корень −3.

Ответ: а) −3 и 27; б) −3.

Аналоги к заданию № 517739: 517746 517747 Все

Задание 12 № 517747

Задание 12 № 517746

Б Заметим, что Значит, указанному отрезку принадлежит корень 3.

Источники:

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword < color: red; >Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

Задание 12 № 514082

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Запишем исходное уравнение в виде:

Б) Поскольку отрезку принадлежит единственный корень −2.

Ответ: а) −2; 1, б) −2.

Почему такое странное ОДЗ?? Где 2-х>0, х>0, следовательно х0; тогда х (0;2)

Екатерина, в решении не находили ОДЗ.

В решении было использован равносильный переход, при котором условия достаточно для решения примера

А у Вас ОДЗ найдено с ошибкой.

Задание 12 № 517739

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Из уравнения получаем:

Б) Заметим, что Значит, указанному отрезку принадлежит только корень −2.

Ответ: а) −2 и 16; б) −2.

В пункте «а» ответ только 16,вы не проверили ОДЗ

В этом уравнении не нужно искать ОДЗ. Это лишнее действие

Задание 12 № 502094

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

А) Заметим, что преобразуем исходное уравнение:

Пусть тогда уравнение запишется в виде откуда или

При получим: откуда

При получим: откуда

Б) Корень не принадлежит промежутку Поскольку и корень принадлежит промежутку

Источник: ЕГЭ по математике 19.06.2013. Основная волна, резервный день. Центр. Вариант 502., Задания 13 (С1) ЕГЭ 2013

В строчке а) откуда-то взялась «3»

Путём каких преобразований мы получили ответ log(3)5 ?

1) Уравнение начинается с числе 9 в степени. Т. е. Мы раскладываем 9 как 3*3. Однако в первой строке решения мы видим 9*3. От туда и дальнейшее неверное вычисление.

2) Когда мы возвращаем замену (четвёртая строчка решения) вместо этого (если, допустим, t и правда равно 5/3) должно получиться Х-1= логорифм 5/3 по основанию 3. Верно?

Так ли это? Ибо мне свойственно ошибаться. Это правда ошибка, или я чего-то не понимаю? Если второе, то объясните, если можно.

Задание 12 № 517739

Задание 12 № 502094

Задание 12 502094.

Источники:

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword < color: red; >Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

Диагональ экрана телевизора равна 64 дюймам. Выразите диагональ экрана в сантиметрах, если в одном дюйме 2,54 см. Результат округлите до целого числа сантиметров.

Источники:

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword < color: red; >Решу егэ профиль математика 517739

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

Задание 12 № 514082

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Запишем исходное уравнение в виде:

Б) Поскольку отрезку принадлежит единственный корень −2.

Ответ: а) −2; 1, б) −2.

Почему такое странное ОДЗ?? Где 2-х>0, х>0, следовательно х0; тогда х (0;2)

Екатерина, в решении не находили ОДЗ.

В решении было использован равносильный переход, при котором условия достаточно для решения примера

А у Вас ОДЗ найдено с ошибкой.

Задание 12 № 517739

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Из уравнения получаем:

Б) Заметим, что Значит, указанному отрезку принадлежит только корень −2.

Ответ: а) −2 и 16; б) −2.

В пункте «а» ответ только 16,вы не проверили ОДЗ

В этом уравнении не нужно искать ОДЗ. Это лишнее действие

Задание 12 № 502094

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

А) Заметим, что преобразуем исходное уравнение:

Пусть тогда уравнение запишется в виде откуда или

При получим: откуда

При получим: откуда

Б) Корень не принадлежит промежутку Поскольку и корень принадлежит промежутку

Источник: ЕГЭ по математике 19.06.2013. Основная волна, резервный день. Центр. Вариант 502., Задания 13 (С1) ЕГЭ 2013

В строчке а) откуда-то взялась «3»

Путём каких преобразований мы получили ответ log(3)5 ?

1) Уравнение начинается с числе 9 в степени. Т. е. Мы раскладываем 9 как 3*3. Однако в первой строке решения мы видим 9*3. От туда и дальнейшее неверное вычисление.

2) Когда мы возвращаем замену (четвёртая строчка решения) вместо этого (если, допустим, t и правда равно 5/3) должно получиться Х-1= логорифм 5/3 по основанию 3. Верно?

Так ли это? Ибо мне свойственно ошибаться. Это правда ошибка, или я чего-то не понимаю? Если второе, то объясните, если можно.

Задание 12 № 517739

Задание 12 № 502094

Задание 12 502094.

Уско рен ная под го тов ка к ЕГЭ с ре пе ти то ра ми Учи.

Dankonoy. com

16.06.2020 6:45:22

2020-06-16 06:45:22

Источники:

Https://dankonoy. com/ege/ege11/archives/10087

Материал для подготовки к экзамену по математике 1 курс. » /> » /> .keyword { color: red; } Решу егэ профиль математика 517739

Материал для подготовки к экзамену по математике 1 курс

Материал для подготовки к экзамену по математике 1 курс.

нажмите, чтобы узнать подробности

Материал для подготовки к экзамену по математике для 1 курса СПО.

Просмотр содержимого документа
«Материал для подготовки к экзамену по математике 1 курс.»

Логарифмические уравнения

1. Задание 5 № 26646

Найдите корень уравнения

2. Задание 5 № 26647

Найдите корень уравнения

3. Задание 5 № 26648

Найдите корень уравнения

4. Задание 5 № 26649

Найдите корень уравнения

5. Задание 5 № 26657

Найдите корень уравнения

6. Задание 5 № 26658

Найдите корень уравнения

7. Задание 5 № 26659

Найдите корень уравнения

8. Задание 5 № 77380

Решите уравнение

9. Задание 5 № 77381

Решите уравнение

10. Задание 5 № 77382

Решите уравнение Если уравнение имеет более одного корня, в ответе укажите меньший из них.

11. Задание 5 № 315120

Найдите корень уравнения

12. Задание 5 № 315535

Найдите корень уравнения

13. Задание 5 № 525399

Решите уравнение

Тригонометрические уравнения

1. Задание 5 № 26669

Найдите корни уравнения: В ответ запишите наибольший отрицательный корень.


Значениям соответствуют положительные корни.

Если, то и

Если, то и

Значениям соответствуют меньшие значения корней.

Следовательно, наибольшим отрицательным корнем является число

2. Задание 5 № 77376

Решите уравнение В ответе напишите наибольший отрицательный корень.

Значению соответствует Положительным значениям параметра соответствуют положительные значения корней, отрицательным значениям параметра соответствуют меньшие значения корней. Следовательно, наибольшим отрицательным корнем является число −1.

3. Задание 5 № 77377

Решите уравнение В ответе напишите наименьший положительный корень.

Значениям соответствуют отрицательные корни.

Если, то и

Если, то и

Значениям соответствуют большие положительные корни.

Наименьшим положительным решением является 0,5.

Преобразования числовых логарифмических выражений

1. Задание 9 № 26843

Найдите значение выражения

2. Задание 9 № 26844

Найдите значение выражения

3. Задание 9 № 26845

Найдите значение выражения

4. Задание 9 № 26846

Найдите значение выражения

5. Задание 9 № 26847

Найдите значение выражения

6. Задание 9 № 26848

Найдите значение выражения

7. Задание 9 № 26849

Найдите значение выражения

8. Задание 9 № 26850

Найдите значение выражения

9. Задание 9 № 26851

Найдите значение выражения

10. Задание 9 № 26852

Найдите значение выражения

11. Задание 9 № 26853

Найдите значение выражения

12. Задание 9 № 26854

Найдите значение выражения

13. Задание 9 № 26855

Найдите значение выражения

14. Задание 9 № 26856

Найдите значение выражения

15. Задание 9 № 26857

Найдите значение выражения

16. Задание 9 № 26858

Найдите значение выражения

17. Задание 9 № 26859

Найдите значение выражения

18. Задание 9 № 26860

Найдите значение выражения

19. Задание 9 № 26861

Найдите значение выражения

20. Задание 9 № 26862

Найдите значение выражения

21. Задание 9 № 26882

Найдите значение выражения

22. Задание 9 № 26883

Найдите значение выражения

23. Задание 9 № 26885

Найдите значение выражения

24. Задание 9 № 26889

Найдите значение выражения

25. Задание 9 № 26892

Найдите значение выражения

26. Задание 9 № 26893

Найдите значение выражения

27. Задание 9 № 26894

Найдите значение выражения

28. Задание 9 № 26896

Найдите значение выражения

29. Задание 9 № 77418

Вычислите значение выражения:

30. Задание 9 № 505097

Найдите значение выражения

31. Задание 9 № 509086

Найдите значение выражения

32. Задание 9 № 510939

Найдите значение выражения

33. Задание 9 № 525403

Найдите значение выражения

Вычисление значений тригонометрических выражений

1. Задание 9 № 26775

Найдите, если и

2. Задание 9 № 26776

Найдите, если и

3. Задание 9 № 26777

Найдите, если и

4. Задание 9 № 26778

Найдите, если и

5. Задание 9 № 26779

Найдите, если

6. Задание 9 № 26780

Найдите, если

7. Задание 9 № 26783

Найдите значение выражения, если

8. Задание 9 № 26784

Найдите, если и

9. Задание 9 № 26785

Найдите, если и

10. Задание 9 № 26786

Найдите, если

11. Задание 9 № 26787

Найдите, если

12. Задание 9 № 26788

Найдите, если

13. Задание 9 № 26789

Найдите, если

14. Задание 9 № 26790

Найдите, если

15. Задание 9 № 26791

Найдите, если

16. Задание 9 № 26792

Найдите значение выражения, если

17. Задание 9 № 26793

Найдите значение выражения, если

18. Задание 9 № 26794

Найдите, если

19. Задание 9 № 316350

Найдите, если

20. Задание 9 № 501598

Найдите значение выражения

21. Задание 9 № 502014

Найдите значение выражения

22. Задание 9 № 502045

Найдите значение выражения

23. Задание 9 № 502106

Найдите значение выражения

24. Задание 9 № 502285

Найдите значение выражения

25. Задание 9 № 502305

Найдите значение выражения если и

26. Задание 9 № 504410

Найдите значение выражения:

27. Задание 9 № 504824

Найдите значение выражения

28. Задание 9 № 508966

Найдите если

29. Задание 9 № 510424

Найдите если и

30. Задание 9 № 549336

Найдите если и

Преобразования числовых тригонометрических выражений

1. Задание 9 № 26755

Найдите значение выражения

2. Задание 9 № 26756

Найдите значение выражения

3. Задание 9 № 26757

Найдите значение выражения

4. Задание 9 № 26758

Найдите значение выражения

5. Задание 9 № 26759

Найдите значение выражения

6. Задание 9 № 26760

Найдите значение выражения

7. Задание 9 № 26761

Найдите значение выражения

8. Задание 9 № 26762

Найдите значение выражения

9. Задание 9 № 26763

Найдите значение выражения

10. Задание 9 № 26764

Найдите значение выражения

11. Задание 9 № 26765

Найдите значение выражения

12. Задание 9 № 26766

Найдите значение выражения

13. Задание 9 № 26767

Найдите значение выражения

14. Задание 9 № 26769

Найдите значение выражения

15. Задание 9 № 26770

Найдите значение выражения

16. Задание 9 № 26771

Найдите значение выражения

17. Задание 9 № 26772

Найдите значение выражения

18. Задание 9 № 26773

Найдите значение выражения

19. Задание 9 № 26774

Найдите значение выражения

20. Задание 9 № 77412

Найдите значение выражения

21. Задание 9 № 77413

Найдите значение выражения

22. Задание 9 № 77414

Найдите значение выражения:

23. Задание 9 № 245169

Найдите значение выражения

24. Задание 9 № 245170

Найдите значение выражения

25. Задание 9 № 245171

Найдите значение выражения

26. Задание 9 № 245172

Найдите значение выражения

27. Задание 9 № 501701

Найдите значение выражения

28. Задание 9 № 502994

Найдите значение выражения

29. Задание 9 № 503310

Найдите значения выражения

30. Задание 9 № 510013

Найдите если и

31. Задание 9 № 510312

Найдите значение выражения

32. Задание 9 № 510386

Найдите значение выражения

33. Задание 9 № 510405

Найдите значение выражения

34. Задание 9 № 510824

Найдите значение выражения

35. Задание 9 № 510843

Найдите значение выражения

36. Задание 9 № 525113

Найдите значение выражения

37. Задание 9 № 526009

Найдите значение выражения

Ло­га­риф­ми­че­ские и по­ка­за­тель­ные уравнения

1. Задание 13 № 514082

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

2. Задание 13 № 517739

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

3. Задание 13 № 502094

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

4. Задание 13 № 516760

А) Решите уравнение:

Б) Определите, какие из его корней принадлежат отрезку

5. Задание 13 № 514623

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

6. Задание 13 № 502053

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

7. Задание 13 № 525377

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

8. Задание 13 № 513605

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

9. Задание 13 № 503127

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

10. Задание 13 № 514081

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащего отрезку

11. Задание 13 № 502999

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку [−1; 2].

12. Задание 13 № 528517

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

13. Задание 13 № 550261

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие промежутку

14. Задание 13 № 555265

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

15. Задание 13 № 555583

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

16. Задание 13 № 561853

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку [−2,5; −1,5].

17. Задание 13 № 562032

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку [−0,5; 0,5].

18. Задание 13 № 562757

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

б) Укажите корни этого уравнения, принадлежащие отрезку

Решите уравнение В ответе напишите наименьший положительный корень.

Просмотр содержимого документа «Материал для подготовки к экзамену по математике 1 курс.»

Б Укажите корни этого уравнения, принадлежащие отрезку.

Multiurok. ru

06.02.2020 18:29:01

2020-02-06 18:29:01

Источники:

Https://multiurok. ru/files/material-dlia-podgotovki-k-ekzamenu-po-matematike. html

Like this post? Please share to your friends:
  • 515795 решу егэ
  • 515785 решу егэ математика
  • 515781 решу егэ
  • 515768 решу егэ математика
  • 515747 решу егэ математика