518610 егэ математика

Сумма двух углов ромба равна 120°, а его периметр равен 84. Найдите длину меньшей диагонали ромба.

Спрятать решение

Решение.

Все стороны ромба равны, тогда его сторона равна 84 : 4  =  21. Сумма двух углов ромба равна 120°, значит, каждый угол равен 120° : 2 = 60°. Сумма двух остальных углов ромба равна 360° − 120° = 240°, значит, каждый из них равен 240° : 2 = 120°. Меньшая диагональ ромба лежит напротив меньшего угла ромба 60°, поэтому получаем равносторонний треугольник, основанием которого является данная диагональ. Таким образом, меньшая диагональ ромба равен 21.

Ответ: 21.

Источник: Досрочная волна ЕГЭ−2020 по математике. Вариант 1

Егэ математика 513032

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

—>

Задание 15 № 518610

Сумма двух углов ромба равна 120°, а его периметр равен 84. Найдите длину меньшей диагонали ромба.

Все стороны ромба равны, тогда его сторона равна 84 : 4 = 21. Сумма двух углов ромба равна 120°, значит, каждый угол равен 120° : 2 = 60°. Сумма двух остальных углов ромба равна значит, каждый из них равен Меньшая диагональ ромба лежит напротив меньшего угла ромба 60°, поэтому получаем равносторонний треугольник, основанием которого является данная диагональ. Таким образом, меньшая диагональ ромба равен 21.

Задание 15 № 518610

—>

Сумма двух углов ромба равна 120 , значит, каждый угол равен 120 2 60.

Mathb-ege. sdamgia. ru

14.06.2020 4:12:48

2020-06-14 04:12:48

Источники:

Https://mathb-ege. sdamgia. ru/problem? id=518610

ЕГЭ–2022, математика базовый уровень: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } Егэ математика 513032

Егэ математика 513032

Егэ математика 513032

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

—>

Задание 10 № 513032

На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?

Введём обозначения, как показано на рисунке. Здесь AC — положение «журавля» до опускания, BD — положение после опускания, AH — высота, на которую поднялся конец короткого плеча, CK — высота, на которую опустился конец длинного.

В равнобедренных треугольниках AOB и COD углы AOB и COD, противолежащие основаниям, равны как вертикальные, поэтому равны и углы при их основаниях. Тем самым, эти треугольники подобны по двум углам, и

Накрест лежащие углы 1 и 2, образованные при пересечении секущей BD прямых AB и CD, равны, поэтому прямые AB и CD параллельны. Тогда стороны углов 3 и 4 попарно параллельны, а значит, эти углы равны.

Следовательно, прямоугольные треугольники AHB и CDK подобны, поскольку имеют равные острые углы. Имеем:

Примечание 1.

Можно привести несколько иное доказательство подобия треугольников AHB и На приведённой ниже картинке есть два маленьких треугольника обозначенные AHM и Они прямоугольные и одна пара углов равна друг другу как накрест лежащие при параллельных прямых. Поэтому они подобны.

Затем, можно заметить, что у треугольников AHM и AHB соответственные углы равны друг другу (потому, что их стороны параллельны), следовательно, треугольники подобны. Аналогично с треугольниками CDK и Из трёх пар подобий этих треугольников следует, что треугольники AHB и CDK подобны.

Примечание 2.

Однажды это задание было предложено на репетиционном экзамене в качестве задания 15. Видимо, составители варианта (и, наверное, авторы из ФИПИ) хотели создать задание, аналогичное простому заданию о шлагбауме (посмотреть). Но в задаче со шлагбаумом в условии дан рисунок, из которого можно понять, что авторы понимают под словами «конец плеча поднимется на высоту». В этой задаче с колодцем рисунка в условии нет, поэтому понимать ее иначе, чем написано в решении, некорректно.

—>

Задание 10 № 513032

В равнобедренных треугольниках AOB и COD углы AOB и COD, противолежащие основаниям, равны как вертикальные, поэтому равны и углы при их основаниях.

Mathb-ege. sdamgia. ru

10.09.2018 0:41:28

2018-09-10 00:41:28

Источники:

Https://mathb-ege. sdamgia. ru/problem? id=513032

РЕШУ ГВЭ, математика 11: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } Егэ математика 513032

Егэ математика 513032

Егэ математика 513032

Задание 8 № 513032

На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?

Введём обозначения, как показано на рисунке. Здесь AC — положение «журавля» до опускания, BD — положение после опускания, AH — высота, на которую поднялся конец короткого плеча, CK — высота, на которую опустился конец длинного.

В равнобедренных треугольниках AOB и COD углы AOB и COD, противолежащие основаниям, равны как вертикальные, поэтому равны и углы при их основаниях. Тем самым, эти треугольники подобны по двум углам, и

Накрест лежащие углы 1 и 2, образованные при пересечении секущей BD прямых AB и CD, равны, поэтому прямые AB и CD параллельны. Тогда стороны углов 3 и 4 попарно параллельны, а значит, эти углы равны.

Следовательно, прямоугольные треугольники AHB и CDK подобны, поскольку имеют равные острые углы. Имеем:

Примечание 1.

Можно привести несколько иное доказательство подобия треугольников AHB и На приведённой ниже картинке есть два маленьких треугольника обозначенные AHM и Они прямоугольные и одна пара углов равна друг другу как накрест лежащие при параллельных прямых. Поэтому они подобны.

Затем, можно заметить, что у треугольников AHM и AHB соответственные углы равны друг другу (потому, что их стороны параллельны), следовательно, треугольники подобны. Аналогично с треугольниками CDK и Из трёх пар подобий этих треугольников следует, что треугольники AHB и CDK подобны.

Примечание 2.

Однажды это задание было предложено на репетиционном экзамене в качестве задания 15. Видимо, составители варианта (и, наверное, авторы из ФИПИ) хотели создать задание, аналогичное простому заданию о шлагбауме (посмотреть). Но в задаче со шлагбаумом в условии дан рисунок, из которого можно понять, что авторы понимают под словами «конец плеча поднимется на высоту». В этой задаче с колодцем рисунка в условии нет, поэтому понимать ее иначе, чем написано в решении, некорректно.

Задание 8 № 513032

Примечание 2.

Math11-gve. sdamgia. ru

25.03.2020 22:35:53

2020-03-25 22:35:53

Источники:

Https://math11-gve. sdamgia. ru/problem? id=513032

  • ЗАДАЧИ ЕГЭ С ОТВЕТАМИ

  • АНГЛИЙСКИЙ без ГРАНИЦ

2012-07-14

Александр

26785

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Конструктор упражнений для позвоночника!

Отзывов (2)

  1. Максим

    2016-07-18 в 02:03

    Потеряли знак минуса при вычислении синуса.

    Ответить

    • Александр

      2016-07-19 в 22:34

      Спасибо!

      Ответить

Добавить комментарий

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

  • РубрикиРубрики
  • Задачи по номерам!

    №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16

  • МЕТКИ

    БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие

  • ОСТЕОХОНДРОЗУ-НЕТ!

Skip to content

Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.

Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.admin2023-03-05T21:56:54+03:00

Используйте LaTeX для набора формулы

Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.

❗Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.

❗Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.

Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.

В треугольнике ABC угол C равен 90°, CH – высота, BC = 5

Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 13.

Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2.

Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.

Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.

Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.

Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .

Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.

Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?

На рисунке изображён график y = f'(x) – производной функции f(x), определённой на интервале (−5; 5).

Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.

Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).

На рисунке изображён график функции f(x) = ax2 + bx + c.

Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.

Найдите абсциссу точки B.

Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.

Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]

Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.

Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.

Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.

Задание 17.
Найдите все значения a, при каждом из которых система уравнений 

begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}

не имеет решений.

Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?

Источник варианта: СтатГрад/statgrad.org.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 2

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Понравилась статья? Поделить с друзьями:
  • 530457 решу егэ математика
  • 530403 решу егэ
  • 530401 решу егэ математика
  • 530386 решу егэ
  • 530382 решу егэ математика профиль