525110 решу егэ математика



СДАМ ГИА:

РЕШУ ЕГЭ

Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

≡ Математика

Базовый уровень

Профильный уровень

Информатика

Русский язык

Английский язык

Немецкий язык

Французский язык

Испанский язык

Физика

Химия

Биология

География

Обществознание

Литература

История

Сайты, меню, вход, новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Об экзамене

Каталог заданий

Варианты

Ученику

Учителю

Школа

Эксперту

Справочник

Карточки

Теория

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

Играть в ЕГЭ-игрушку

Новости

10 марта

Как подготовиться к ЕГЭ и ОГЭ за 45 дней

6 марта

Изменения ВПР 2023

3 марта

Разместили утвержденное расписание ЕГЭ

27 января

Вариант экзамена блокадного Ленинграда

23 января

ДДОС-атака на Решу ЕГЭ. Шантаж.

6 января

Открываем новый сервис: «папки в избранном»

22 декабря

От­кры­ли но­вый пор­тал Ре­шу Олимп. Для под­го­тов­ки к пе­реч­не­вым олим­пи­а­дам!

4 ноября

Материалы для подготовки к итоговому сочинению 2022–2023

31 октября

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

21 марта

Новый сервис: рисование

31 января

Внедрили тёмную тему!

НАШИ БОТЫ

Все новости

ЧУЖОЕ НЕ БРАТЬ!

Экзамер из Таганрога

10 апреля

Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

Наша группа

Задания

Версия для печати и копирования в MS Word

Тип 1 № 525110

Четырёхугольник ABCD вписан в окружность. Угол ABD равен 61°, угол CAD равен 37° Найдите угол ABC. Ответ дайте в градусах.

Спрятать решение

Решение.

Вписанные углы, опирающиеся на одну дугу равны, поэтому angle CBD = angle CAD = 37 градусов. Следовательно, angle ABC = angle ABD плюс angle CBD = 61 градусов плюс 37 градусов = 98 градусов.

Ответ: 98

Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 1

Кодификатор ФИПИ/Решу ЕГЭ: 5.1.4 Окружность и круг

Спрятать решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023



СДАМ ГИА:

РЕШУ ЕГЭ

Образовательный портал для подготовки к экзаменам

Математика базового уровня

Математика базового уровня

≡ Математика

Базовый уровень

Профильный уровень

Информатика

Русский язык

Английский язык

Немецкий язык

Французский язык

Испанский язык

Физика

Химия

Биология

География

Обществознание

Литература

История

Сайты, меню, вход, новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Об экзамене

Каталог заданий

Варианты

Ученику

Учителю

Школа

Справочник

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

Играть в ЕГЭ-игрушку

Новости

10 марта

Как подготовиться к ЕГЭ и ОГЭ за 45 дней

6 марта

Изменения ВПР 2023

3 марта

Разместили утвержденное расписание ЕГЭ

27 января

Вариант экзамена блокадного Ленинграда

23 января

ДДОС-атака на Решу ЕГЭ. Шантаж.

6 января

Открываем новый сервис: «папки в избранном»

22 декабря

От­кры­ли но­вый пор­тал Ре­шу Олимп. Для под­го­тов­ки к пе­реч­не­вым олим­пи­а­дам!

4 ноября

Материалы для подготовки к итоговому сочинению 2022–2023

31 октября

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

21 марта

Новый сервис: рисование

31 января

Внедрили тёмную тему!

НАШИ БОТЫ

Все новости

ЧУЖОЕ НЕ БРАТЬ!

Экзамер из Таганрога

10 апреля

Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

Наша группа

Задания

Версия для печати и копирования в MS Word

Тип 1 № 525110

В пачке 500 листов бумаги формата А4. За неделю в офисе расходуется 900 листов. Какого наименьшего количества пачек бумаги хватит на 7 недель?

Спрятать решение

Решение.

За 8 недель в офисе расходуется 900 · 7  =  6300 листов бумаги. Разделим 6300 на 500:

 дробь: числитель: 6300, знаменатель: 500 конец дроби = дробь: числитель: 63, знаменатель: 5 конец дроби = дробь: числитель: 60 плюс 3, знаменатель: 5 конец дроби = дробь: числитель: 60, знаменатель: 5 конец дроби плюс дробь: числитель: 3, знаменатель: 5 конец дроби = целая часть: 12, дробная часть: числитель: 3, знаменатель: 5 .

Значит, нужно купить не меньше 13 пачек бумаги.

Ответ: 13.

Аналоги к заданию № 26622: 25251 25255 506349 506841 508957 508986 509213 510722 510742 525087 … Все

Спрятать решение

·

Прототип задания

·

·

Сообщить об ошибке · Помощь

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

адача №3 профильного ЕГЭ по математике. Сборник задач по теории вероятностей.ЕГЭ 2023. Задание №3 в ЕГЭ-2023 по математике. Теория и практика по математике для подготовки к экзамену. Вы можете скачать или решать задания онлайн на сайте.

Сборник задач по теории вероятностей: Скачать в PDF

Интересные задания:

Задача 1 На клавиатуре телефона 10 цифр, из них 5 четных (включая 0): 0, 2, 4, 6, 8. Поэтому вероятность того, что случайно будет нажата четная цифра, равна 5 10 = 0,5.

Задача 2 Всего дежурных 4 человека, из них 2 девочки: Ольга и Татьяна. Чтобы найти искомую вероятность, надо разделить кол-во девочек на общее число дежурных: 24 = 0,5.

Задача 3 Всего существует 6 возможных вариантов очереди: АБВ АВБ БАВ БВА ВАБ ВБА. Борис подойдет позже Андрея в трех случаях: АБВ ВАБ АВБ, значит искомая вероятность 36 =12 = 0,5. На самом деле существуют всего два случая, у которых равная вероятность: Борис
может подойти перед Андреем или после него. Из этих двух случаев благоприятным
является только один, и его вероятность: 12 = 0,5.

Задача 4 Натуральных чисел от 10 до 19 десять (19 − 10 + 1 = 10 или можно просто выписать все эти числа и убедиться в этом), из них на 3 делятся три числа: 12, 15, 18. Искомая вероятность равна: 3 10 = 0,3.

Задача 5 Будем считать, что жребий выглядит так: каждый турист достанет из шапки бумажку, на которой будет написано идёт ли он в магазин или нет. Всего бумажек 5. Вытянув две из них, турист пойдёт в магазин. Турист А с равной вероятностью может вытянуть любую из 5 бумажек. Для туриста A существует два благоприятных исхода из 5 возможных. Значит вероятность того, что турист А пойдёт в магазин 2 5 = 0,4. Всего в викторине участвуют 4 игрока. Из них двое получат приз. Тогда вероятность получения приза составляет 2 4 = 0,5.

Вам будет интересно:

ЕГЭ по математике (профиль) 11 класс 2023. Новый тренировочный вариант №11 — №221121 (задания и ответы)


* Олимпиады и конкурсы
* Готовые контрольные работы
* Работы СтатГрад
* Официальные ВПР

Поделиться:

Шкалирование

Первичный Тестовый Оценка
5-6 27-34 3
7-8 40-46 4
9-10 52-58
11-12-13 64-66-68 5
14-15-16 70-72-74
17-18-19 76-78-80
20-21-22 82-84-86
23-24-25 88-90-92
26-27-28 94-96-98
29-30-31 100
Первичный балл
/
Тестовый балл
5/27 6/34 7/40 8/46 9/52 10/58 11/64 12/66 13/68 14/70
15/72 16/74 17/76 18/78 19/80 20/82 X / 2X+42 29+ / 100

Вчера, 22:23

В закладки

Обсудить

Жалоба

Теория и практика.

Содержание

1) Прямые
2) Параболы
3) Как искать пересечение параболы и прямой, двух парабол
4) Гипербола. Асимптотические точки гиперболы
5) Пересечение гиперболы и прямой
6) Иррациональные функции
7) Пересечение корня и прямой
8) Тригонометрические функции
9) Показательные функции
10) Логарифмические функции

10_zadacha.pdf

Источник: vk.com/profimatika

Новые тренировочные варианты ЕГЭ 2023 по математике базовый и профильный уровень с ответами и решением для 10 и 11 класса, больше 100 вариантов в формате реального экзамена ФИПИ вы можете решать онлайн или скачать.

Тренировочные варианты ЕГЭ 2023 по математике база и профиль

13.09.2022 Тренировочный вариант №1 ЕГЭ 2023 по математике профиль с ответами

20.09.2022 Тренировочный вариант №2 ЕГЭ 2023 по математике профиль с ответами

20.09.2022 Тренировочный вариант №2 ЕГЭ 2023 база по математике с ответами

27.09.2022 Математика 11 класс профиль входная мониторинговая работа 3 варианта с ответами

28.09.2022 Тренировочный вариант №3 ЕГЭ 2023 база по математике с ответами

28 сентября 2022 Статград математика 11 класс ЕГЭ 2023 база и профиль варианты и ответы

29 сентября 2022 Тренировочный вариант №3 ЕГЭ 2023 по математике профиль с ответами

1 октября 2022 Ларин вариант 399 ЕГЭ 2023 по математике профиль решение с ответами

6 октября Тренировочный вариант №4 ЕГЭ 2023 база по математике с ответами

6 октября Тренировочный вариант №4 ЕГЭ 2023 по математике профиль с ответами

8 октября Ларин вариант 400 ЕГЭ 2023 по математике профиль решение с ответами

12 октября Тренировочный вариант №5 ЕГЭ 2023 база по математике с ответами

12 октября Тренировочный вариант №5 ЕГЭ 2023 по математике профиль с ответами

14 октября Вариант 1 Ященко ЕГЭ 2023 математика профиль с ответами и решением

14 октября Вариант 2 Ященко ЕГЭ 2023 математика профиль с ответами и решением

15 октября Ларин вариант 401 ЕГЭ 2023 по математике профиль решение с ответами

15 октября Ларин вариант 402 ЕГЭ 2023 по математике профиль решение с ответами

16 октября Вариант 3 Ященко ЕГЭ 2023 математика профиль с ответами и решением

16 октября Вариант 4 Ященко ЕГЭ 2023 математика профиль с ответами и решением

23 октября Тренировочный вариант №6 ЕГЭ 2023 база по математике с ответами

24 октября Тренировочный вариант №6 ЕГЭ 2023 по математике профиль с ответами

25 октября Тренировочный вариант №7 ЕГЭ 2023 база по математике с ответами

26 октября Тренировочный вариант №7 ЕГЭ 2023 по математике профиль с ответами

28 октября Ларин вариант 403 ЕГЭ 2023 по математике профиль решение с ответами

29 октября Ларин вариант 404 ЕГЭ 2023 по математике профиль решение с ответами

1 ноября 2022 Тренировочный вариант №8 решу ЕГЭ 2023 база по математике с ответами

1 ноября 2022 Тренировочный вариант №8 решу ЕГЭ 2023 по математике профиль с ответами

5 ноября 2022 Вариант 1-2 распечатай и реши ЕГЭ 2023 база по математике 11 класс с ответами

6 ноября 2022 Ларин вариант 405 ЕГЭ 2023 профиль по математике решение с ответами

9 ноября 2022 Тренировочный вариант №9 решу ЕГЭ 2023 база по математике с ответами

12 ноября 2022 Тренировочный вариант №9 решу ЕГЭ 2023 по математике профиль с ответами

13 ноября 2022 Ларин вариант 406 ЕГЭ 2023 профиль по математике решение с ответами

15 ноября 2022 Тренировочный вариант №10 решу ЕГЭ 2023 база по математике 11 класс с ответами

15 ноября 2022 Тренировочный вариант №10 решу ЕГЭ 2023 по математике профиль с ответами

21 ноября 2022 Ларин вариант 407 ЕГЭ 2023 профиль по математике решение с ответами

23 ноября 2022 Тренировочный вариант №11 решу ЕГЭ 2023 база по математике 11 класс с ответами

23 ноября 2022 Тренировочный вариант №11 решу ЕГЭ 2023 по математике профиль с ответами

27 ноября 2022 Ларин вариант 408 ЕГЭ 2023 профиль по математике решение с ответами

28 ноября 2022 Вариант 3-4 распечатай и реши ЕГЭ 2023 база по математике 11 класс с ответами

30 ноября 2022 Мониторинговая работа по математике 11 класс ЕГЭ 2023 профиль 1 полугодие

3 декабря 2022 Тренировочный вариант №12 решу ЕГЭ 2023 база по математике 11 класс с ответами

3 декабря 2022 Тренировочный вариант №12 решу ЕГЭ 2023 по математике профиль с ответами

3 декабря 2022 Пробник ЕГЭ 2023 Москва по математике профиль задания и ответы

5 декабря 2022 Ларин вариант 409 ЕГЭ 2023 профиль по математике решение с ответами

9 декабря 2022 Тренировочный вариант №13 решу ЕГЭ 2023 база по математике 11 класс с ответами

10 декабря 2022 Тренировочный вариант №13 решу ЕГЭ 2023 профиль по математике 11 класс с ответами

12 декабря 2022 Ларин вариант 410 ЕГЭ 2023 профиль по математике решение с ответами

13 декабря 2022 Статград математика 11 класс профиль ЕГЭ 2023 варианты МА2210209-МА2210212 и ответы

13 декабря 2022 Математика 11 класс база ЕГЭ 2023 статград варианты и ответы

15 декабря 2022 Тренировочный вариант №14 решу ЕГЭ 2023 профиль по математике 11 класс с ответами

15 декабря 2022 Тренировочный вариант №14 решу ЕГЭ 2023 база по математике 11 класс с ответами

20 декабря 2022 Вариант 5-6 распечатай и реши ЕГЭ 2023 база по математике 11 класс с ответами

20 декабря 2022 Ларин вариант 411 ЕГЭ 2023 профиль по математике решение с ответами

3 января 2023 Ларин вариант 412 ЕГЭ 2023 профиль по математике решение с ответами

6 января 2023 Тренировочный вариант 1-2 ЕГЭ 2023 профиль математика задания и ответы

8 января 2023 Вариант 3-4 ЕГЭ 2023 профиль математика задания и ответы

9 января 2023 Вариант 7-8 распечатай и реши ЕГЭ 2023 база по математике 11 класс с ответами

10 января 2023 Тренировочный вариант №15 и №16 решу ЕГЭ 2023 профиль по математике 11 класс с ответами

11 января 2023 ЕГЭ 2023 математика тренировочные задания и ответы Ященко, Семенов

11 января 2023 Тренировочный вариант №15 и №16 база ЕГЭ 2023 по математике 11 класс с ответами

19 января 2023 Тренировочные варианты №17 и №18 решу ЕГЭ 2023 профиль по математике 11 класс с ответами

22 января 2023 Ларин вариант 413 и 414 ЕГЭ 2023 профиль по математике решение и ответы

22 января 2023 Тренировочный 19 вариант решу ЕГЭ 2023 профиль по математике 11 класс с ответами

22 января 2023 База ЕГЭ 2023 математика 11 класс тренировочный вариант 19 с ответами

25 января 2023 База ЕГЭ 2023 математика 11 класс тренировочный вариант 20 с ответами

27 января 2023 Тренировочный вариант №20 решу ЕГЭ 2023 профиль по математике 11 класс с ответами

28 января 2023 Вариант 415 Ларина ЕГЭ 2023 по математике 11 класс задания и ответы

2 февраля 2023 Вариант 21 база ЕГЭ 2023 математика 11 класс тренировочный вариант с ответами

2 февраля 2023 Тренировочный вариант №21 решу ЕГЭ 2023 профиль по математике 11 класс с ответами

8 февраля 2023 Математика 10-11 класс ЕГЭ 2023 статград варианты база и профиль МА2200101-МА2200110 и ответы

11 февраля 2023 Тренировочный вариант №22 решу ЕГЭ 2023 профиль по математике 11 класс с ответами

11 февраля 2023 Тренировочный вариант №22 решу ЕГЭ 2023 база по математике 11 класс с ответами

12 февраля 2023 Вариант 416 Ларина ЕГЭ 2023 по математике 11 класс задания и ответы

12 февраля 2023 Вариант 417 Ларина ЕГЭ 2023 по математике 11 класс задания и ответы

13 февраля 2023 Вариант 9 и вариант 10 ЕГЭ 2023 база математика распечатай и реши задания

13 февраля 2023 Вариант 11 и вариант 12 ЕГЭ 2023 база математика распечатай и реши

16 февраля 2023 Тренировочный вариант №23 решу ЕГЭ 2023 база по математике 11 класс с ответами

16 февраля 2023 Тренировочный вариант №23 решу ЕГЭ 2023 профиль по математике 11 класс с ответами

18 февраля 2023 Вариант 418 Ларина ЕГЭ 2023 по математике 11 класс задания и ответы

22 февраля 2023 Пробный ЕГЭ 2023 вариант 24 база по математике 11 класс с ответами

22 февраля 2023 Пробный ЕГЭ 2023 вариант 24 профиль по математике 11 класс с ответами

25 февраля 2023 Вариант 419 Ларина ЕГЭ 2023 по математике 11 класс задания и ответы

28 февраля 2023 Статград математика 11 класс ЕГЭ 2023 база и профиль и ответы

4 марта 2023 Пробник ЕГЭ 2023 вариант 25 база по математике 11 класс с ответами

4 марта 2023 Вариант 420 Ларин ЕГЭ 2023 по математике 11 класс задания и ответы

5 марта 2023 Пробник ЕГЭ 2023 вариант 25 профиль по математике 11 класс с ответами

8 марта 2023 Пробник ЕГЭ 2023 вариант 26 профиль по математике 11 класс с ответами

8 марта 2023 Пробник ЕГЭ 2023 вариант 26 база по математике 11 класс 100 баллов с ответами

Смотрите также на нашем сайте:

Сборник Ященко ЕГЭ 2023 математика профильный уровень 36 вариантов

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ

Стереометрия на Профильном ЕГЭ по математике, 1 часть, основные типы

Стереометрия на ЕГЭ. Вычисление объемов и площадей поверхности

Стереометрия на ЕГЭ по математике присутствует и в 1 части, и во второй. Чтобы решать задачи, для начала надо выучить формулы. Все они есть в наших таблицах:

  • Куб, параллелепипед, призма, пирамида. Объем и площадь поверхности
  • Цилиндр, конус, шар. Объем и площадь поверхности

Часто в задачах ЕГЭ, посвященных стереометрии, требуется посчитать объем тела или площадь его поверхности. Или как-то использовать эти данные. Поэтому заглянем в толковый словарь русского языка и уточним понятия.

Объем — величина чего-нибудь в длину, ширину и высоту, измеряемая в кубических единицах.
Другими словами, чем больше объем, тем больше места тело занимает в трехмерном пространстве.

Площадь — величина чего-нибудь в длину и ширину, измеряемая в квадратных единицах.
Представьте себе, что вам нужно оклеить всю поверхность объемного тела. Сколько квадратных сантиметров (или метров) вы бы обклеили? Это и есть его площадь поверхности.
Многогранник
Объемные тела — это многогранники (куб, параллелепипед, призма, пирамида) и тела вращения (цилиндр, конус, шар).
Если в задаче по стереометрии речь идет о многограннике, вам встретятся термины «вершины», «грани» и «ребра». Вот они, на картинке.

Чтобы найти площадь поверхности многогранника, сложите площади всех его граней.

Вам могут также встретиться понятия «прямая призма», правильная призма», «правильная пирамида».

Прямой называется призма, боковые ребра которой перпендикулярны основанию.
Если призма — прямая и в ее основании лежит правильный многоугольник, призма будет называться правильной.
А правильная пирамида — такая, в основании которой лежит правильный многоугольник, а вершина проецируется в центр основания.


Перейдем к практике.

Рисунок к задаче 1

1. Одна из распространенных задач в части 1 — такая, где надо посчитать объем или площадь поверхности многогранника, из которого какая-нибудь часть вырезана. Например, такого:

Что тут нарисовано? Очевидно, это большой параллелепипед, из которого вырезан «кирпичик», так что получилась «полочка». Если вы увидели на рисунке что-то другое — обратите внимание на сплошные и штриховые линии. Сплошные линии — видимы. Штриховыми линиями показываются те ребра, которые мы не видим, потому что они находятся сзади.

Объем найти просто. Из объема большого «кирпича» вычитаем объем маленького. Получаем: 75-4=71.

А как быть с площадью поверхности? Почему-то многие школьники пытаются посчитать ее по аналогии с объемом, как разность площадей большого и малого «кирпичей». В ответ на такое «решение» я обычно предлагаю детскую задачу — если у четырехугольного стола отпилить один угол, сколько углов у него останется? :-)

На самом деле нам нужно посчитать сумму площадей всех граней — верхней, нижней, передней, задней, правой, левой, а также сумму площадей трех маленьких прямоугольников, которые образуют «полочку». Можно сделать это «в лоб», напрямую. Но есть и способ попроще.

Прежде всего, если бы из большого параллелепипеда ничего не вырезали, его площадь поверхности была бы равна 110. А как повлияет на него вырезанная «полочка»?

Давайте посчитаем сначала площадь всех горизонтальных участков, то есть «дна», «крыши» и нижней поверхности «полочки». С дном — все понятно, оно прямоугольное, его площадь равна 5 cdot 5=25.


А вот сумма площадей «крыши» и горизонтальной грани «полочки» тоже равна 25! Посмотрите на них сверху.
…В этот момент и наступает понимание. Кому-то проще нарисовать вид сверху. Кому-то — представить, что мы передвигаем дно и стенки полочки и получаем целый большой параллелепипед, площадь поверхности которого равна 110. Каким бы способом вы ни решали, результат один — площадь поверхности будет такой же, как и у целого параллелепипеда, из которого ничего не вырезали.

Ответ: 110.


2. Следующую задачу, попроще, вы теперь решите без труда. Здесь тоже надо найти площадь поверхности многогранника:

Рисунок к задаче 2S=2 cdot 12+ 2 cdot 15 + 2 cdot 20 - 2=92. Из площади поверхности «целого кирпича» вычитаем площади двух квадратиков со стороной 1 — на верхней и нижней гранях.

Ответ: 92.


Рисунок к задаче 33. А здесь нарисована прямоугольная плитка с «окошком». Задание то же самое — надо найти площадь поверхности.

Сначала посчитайте сумму площадей всех граней. Представьте, что вы дизайнер, а эта штучка — украшение. И вам надо оклеить эту штуку чем-то ценным, например, бриллиантами Сваровски. И вы их покупаете на свои деньги. (Я не знаю почему, но эта фраза мгновенно повышает вероятность правильного ответа!) Оклеивайте все грани плитки. Но только из площадей передней и задней граней вычтите площадь «окошка». А затем — само «окошко». Оклеивайте всю его «раму».
Ответ: 96.


Следующий тип задач — когда одно объемное тело вписано в другое.

Рисунок к задаче 3
4.  Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Прежде всего, заметим, что высота цилиндра равна высоте параллелепипеда. Нарисуйте вид сверху, то есть круг, вписанный в прямоугольник. Тут сразу и увидите, что этот прямоугольник — на самом деле квадрат, а сторона его в два раза больше, чем радиус вписанной в него окружности. Итак, площадь основания параллелепипеда равна 4, высота равна 1, объем равен 4.

Ответ: 4.


Рисунок к задаче 45. В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны 4. Найдите объем цилиндра, описанного около этой призмы. В ответ запишите V.

Очевидно, высота цилиндра равна боковому ребру призмы, то есть 4. Осталось найти радиус его основания.
Рисуем вид сверху. Прямоугольный треугольник вписан в окружность. Где будет находиться радиус этой окружности? Правильно, посередине гипотенузы. Гипотенузу находим по теореме Пифагора, она равна 10. Тогда радиус основания цилиндра равен пяти. Находим объем цилиндра по формуле и записываем ответ: 100.

Ответ: 100.


Рисунок к задаче 5
6. В прямоугольный параллелепипед вписан шар радиуса 1. Найдите объем параллелепипеда.

Эта задача тоже проста. Нарисуйте вид сверху. Или сбоку. Или спереди. В любом случае вы увидите одно и то же — круг, вписанный в прямоугольник. Очевидно, этот прямоугольник будет квадратом. Можно даже ничего не рисовать, а просто представить себе шарик, который положили в коробочку так, что он касается всех стенок, дна и крышки. Ясно, что такая коробочка будет кубической формы. Длина, ширина и высота этого куба в два раза больше, чем радиус шара.

Ответ: 8.


Следующий тип задач — такие, в которых увеличили или уменьшили какой-либо линейный размер (или размеры) объемного тела. А узнать нужно, как изменится объем или площадь поверхности.

Рисунок к задаче 67. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 12 см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 2 раза больше, чем у первого? Ответ выразите в сантиметрах.

Слова «другой такой же сосуд» означают, что другой сосуд тоже имеет форму правильной треугольной призмы. То есть в его основании — правильный треугольник, у которого все стороны в два раза больше, чем у первого. Мы уже говорили о том, что площадь этого треугольника будет больше в 4 раза. Объем воды остался неизменным. Следовательно, в 4 раза уменьшится высота.
Ответ: 3.


8. Одна цилиндрическая кружка вдвое выше второй, зато вторая в два раза шире. Найдите отношение объема второй кружки к объему первой.

Давайте вспомним, как мы решали стандартные задачи, на движение и работу. Мы рисовали таблицу, верно? И здесь тоже нарисуем таблицу. Мы помним, что объем цилиндра равен pi R^2h.

Высота Радиус Объем
Первая кружка h R pi R^2h
Вторая кружка genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2}h 2R picdot left( 2R right)^2cdot genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2}h

Считаем объем второй кружки. Он равен picdot left( 2R right)^2cdot genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2}h=2 pi R^2h. Получается, что он в два раза больше, чем объем первой.


Рисунок к задаче 8Следующая задача тоже решается сразу и без формул.

9. Через среднюю линию основания треугольной призмы, объем которой равен 32, проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы.

Высота меньшей призмы такая же, как и у большой. А какой же будет ее площадь основания? Очевидно, в 4 раза меньше. Вспомните свойство средней линии треугольника — она равна половине основания. Значит, объем отсеченной призмы равен 8.


И еще одна классическая задача. Никаких формул!

10. Во сколько раз увеличится площадь поверхности октаэдра, если все его ребра увеличить в 3 раза?

Только не надо обмирать от ужаса при слове «октаэдр». Тем более — он здесь нарисован и представляет собой две сложенные вместе четырехугольные пирамиды. А мы уже говорили — если все ребра многогранника увеличить в три раза, площадь поверхности увеличится в 9 раз, поскольку 3^2=9.
Ответ: 9.


Рисунок к задаче 10Следующий тип задач — такие, в которых надо найти объем части конуса, или части пирамиды. Они тоже решаются элементарно.

11. Найдите объем V части цилиндра, изображенной на рисунке. Радиус цилиндра равен 15, высота равна 5. В ответе укажите V.

Изображен не целый цилиндр, а его часть. Из него, как из круглого сыра, вырезали кусок. Надо найти объем оставшегося «сыра».
Какая же часть цилиндра изображена? Вырезан кусок с углом 60 градусов, а 60^{circ} — это одна шестая часть полного круга. Значит, от всего объема цилиндра осталось пять шестых. Находим объем всего цилиндра, умножаем на пять шестых, делим на pi, записываем ответ: 937,5.

Продолжение:   другие типы задач по стереометрии. Удачи вам в подготовке к ЕГЭ!


Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Стереометрия на Профильном ЕГЭ по математике, 1 часть, основные типы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.03.2023

Понравилась статья? Поделить с друзьями:
  • 522968 решу егэ математика
  • 522916 решу егэ
  • 522674 решу егэ
  • 522673 решу егэ
  • 522611 решу егэ