СДАМ ГИА:
РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
≡ Математика
Базовый уровень
Профильный уровень
Информатика
Русский язык
Английский язык
Немецкий язык
Французский язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
Сайты, меню, вход, новости
СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ
Об экзамене
Каталог заданий
Варианты
Ученику
Учителю
Школа
Эксперту
Справочник
Карточки
Теория
Сказать спасибо
Вопрос — ответ
Чужой компьютер
Зарегистрироваться
Восстановить пароль
Войти через ВКонтакте
Играть в ЕГЭ-игрушку
Новости
10 марта
Как подготовиться к ЕГЭ и ОГЭ за 45 дней
6 марта
Изменения ВПР 2023
3 марта
Разместили утвержденное расписание ЕГЭ
27 января
Вариант экзамена блокадного Ленинграда
23 января
ДДОС-атака на Решу ЕГЭ. Шантаж.
6 января
Открываем новый сервис: «папки в избранном»
22 декабря
Открыли новый портал Решу Олимп. Для подготовки к перечневым олимпиадам!
4 ноября
Материалы для подготовки к итоговому сочинению 2022–2023
31 октября
Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР
21 марта
Новый сервис: рисование
31 января
Внедрили тёмную тему!
НАШИ БОТЫ
Все новости
ЧУЖОЕ НЕ БРАТЬ!
Экзамер из Таганрога
10 апреля
Предприниматель Щеголихин скопировал сайт Решу ЕГЭ
Наша группа
Задания
Версия для печати и копирования в MS Word
Тип 10 № 562296
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите значение дискриминанта уравнения
Спрятать решение
Решение.
По рисунку определяем, что значит,
Тогда дискриминант уравнения равен
Ответ: 24.
Аналоги к заданию № 562283: 562290 562291 562292 562293 562294 562295 562296 628363 628481 Все
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.1 Квадратные уравнения, 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график
Спрятать решение
·
Прототип задания
·
·
Сообщить об ошибке · Помощь
О проекте · Редакция · Правовая информация · О рекламе
© Гущин Д. Д., 2011—2023
- ЗАДАЧИ ЕГЭ С ОТВЕТАМИ
- АНГЛИЙСКИЙ без ГРАНИЦ
2012-12-30
НЕ ОТКЛАДЫВАЙ! Заговори на английском!
ДОЛОЙ обидные ошибки на ЕГЭ!!
Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!
Конструктор упражнений для позвоночника!
Добавить комментарий
*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.
- РубрикиРубрики
- Задачи по номерам!
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16
- МЕТКИ
БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие
- ОСТЕОХОНДРОЗУ-НЕТ!
Главная страница » Работы статград март 2023 год варианты ответы и решения
Автор admin На чтение 2 мин Просмотров 2.4к. Опубликовано 2 марта, 2023
Вам также может понравиться
Урок биологии по теме : Макроэволюция. Направления
00
Урок по теме : Эмбриональное развитие животных.
00
Пищеварение в ротовой полости Решение и ответы на задачи
01
Разработка урока биологии в 7 классе на тему: «Высшие
00
Урок в 8 классе на тему: «Травмы опорно-двигательной
00
Рабочая программа по биологии для 5 класса ФГОС Решение
00
Рабочая программа по биологии для 6 класса ФГОС Решение
00
«Незримые угрозы – миф или реальность» Решение и ответы
00
Meet the Instructors
Course content
loading…
Price:
Free
Share this course
https://stepik.org/course/161885/promo
Price:
Free
Вчера, 22:23
В закладки
Обсудить
Жалоба
Теория и практика.
Содержание
1) Прямые
2) Параболы
3) Как искать пересечение параболы и прямой, двух парабол
4) Гипербола. Асимптотические точки гиперболы
5) Пересечение гиперболы и прямой
6) Иррациональные функции
7) Пересечение корня и прямой
Тригонометрические функции
9) Показательные функции
10) Логарифмические функции
10_zadacha.pdf
Источник: vk.com/profimatika
Выбрать цвет
#562296
rgb(86, 34, 150)
hsl(267, 63%, 36%)
Чего не хватает на сайте?
Напишите пару слов, и мы постараемся стать лучше.
Шестнадцатиричный цвет #562296 в цветовой модели RGB состоит из 33.7% красного (red), 13.3% зелёного (green) и 58.8% синего (blue).
В цветовой модели CMYK цвет #562296 соответствует 25.1% голубого (cyan), 45.5% пурпурного (magenta), 0% жёлтого (yellow) и 41.2% чёрного (black) цветов.
RGB и CMYK: точное и процентное содержание цветов в #562296
На линейной диаграмме RGB показано точное от 0 до 255 и процентное от 0 до 100% содержание цветов (красного, зелёного и синего) в #562296. На круговой диаграмме RGB показано относительное содержание цветов в #562296.
На линейной диаграмме CMYK показано только процентное от 0 до 100% содержание цветов (голубого, пурпурного, жёлтого и чёрного) в #562296. На круговой диаграмме CMYK показано относительное содержание цветов в #562296.
RGB #562296
Красный — Red 86 (33.7%)
Зелёный — Green 34 (13.3%)
Синий — Blue 150 (58.8%)
RGB
CMYK #562296
Голубой — Cyan 25.1 %
Пурпурный — Magenta 45.5 %
Жёлтый — Yellow 0 %
Чёрный — Black 41.2 %
CMYK
Чтобы наглядно увидеть изменение цвета от увеличения или уменьшения количества красного, зелёного или синего перейдите в RGB-HEX калькулятор.
Преобразование цвета #562296
HEX | #562296 |
RGB | rgb(86, 34, 150) |
RGB % | rgb(33.7%, 13.3%, 58.8%) |
CMYK % | 25%, 45%, 0%, 41% |
HSL | hsl(267, 63%, 36%) |
HSV | 266.9, 77.3%, 58.8% |
Градиенты с цветом #562296
Ещё больше градиентов на сайте gradient2.ru.
Сочетания цветов с #562296
Для подбора гармоничных сочетаний удобно использовать цветовой круг онлайн. За пару кликов, указывая основной цвет, вы сразу получаете различные цветовые схемы.
Toggle
убрать описание сочетаний цветов
Дополнительные цвета #562296 ?
Сочетание комплементарных цветов создаётся из основного цвета #562296 и противоположного #629622 , согласно цветового круга. Комплементарные цвета способны усиливать интенсивность друг друга.
Близкие цвета #562296 ?
Аналогичные цвета родственны выбранному цвету #562296 , на цветовом круге расположены в непосредственной близости. Очень часто гармония близких цветов встречается в архитектуре, гардеробе, интерьере.
Т-образное сочетание цвета #562296
Т-образное сочетание цветов достаточно популярно, но мало где о нём упоминается. Существуют три возможные формы Т-образного сочетания: по часовой стрелке — правое, против часовой — левое и прямое — когда от выбранного цвета гармоничные цвета находятся с двух сторон.
Т-образное сочетание цветов является частным случаем квадратного сочетания, но в квадратном глазу плохо поддаётся выделить Т-образные вариации. А также из-за популярности я выделил Т-образное сочетание в отдельную гармонию.
Т-образное сочетание цвета #562296 «правое»
Т-образное сочетание цвета #562296 «левое»
Т-образное сочетание цвета #562296 «прямое»
Треугольник цвета #562296 — Triadic ?
Треугольная цветовая схема (триадная гармония) состоит из трёх цветов равноудалённых друг от друга образуя треугольник на цветовом круге.
Из многоугольников выделяется треугольная схема своей динамичностью, насыщенностью и контрастом. Все три цвета очень гармоничны как между собой, так и в парах: #562296 + #965622 и #562296 + #229656 .
Квадратное сочетание цветов (крестовое сочетание цветов) #562296 ?
В квадратной гармонии четыре цвета равноудалены друг от друга. Использование всех четырех цветов в равных пропорциях рассредоточит внимание, поэтому не забывайте об основном цвете, его дополнении и акцентировании.
Раздельно-комплементарная цветовая гармония #562296 ?
Разделённая цветовая схема (расщеплённый дополнительный цвет, split complementary) состоит из трёх цветов: одного основного #562296 и двух дополнительных. За счёт двух почти противоположных цветов образуется гибкость и изящность гармонии, сохраняя высокую контрастность.
Монохромное сочетание #562296 ?
Однотонные сочетания цветов приятны для восприятия. Чаще всего монохромная гармония смотрится мягкой и приятной. При правильных акцентах однотонная композиция способна вызвать тревожные чувства.
Стереометрия на Профильном ЕГЭ по математике, 1 часть, основные типы
Стереометрия на ЕГЭ. Вычисление объемов и площадей поверхности
Стереометрия на ЕГЭ по математике присутствует и в 1 части, и во второй. Чтобы решать задачи, для начала надо выучить формулы. Все они есть в наших таблицах:
- Куб, параллелепипед, призма, пирамида. Объем и площадь поверхности
- Цилиндр, конус, шар. Объем и площадь поверхности
Часто в задачах ЕГЭ, посвященных стереометрии, требуется посчитать объем тела или площадь его поверхности. Или как-то использовать эти данные. Поэтому заглянем в толковый словарь русского языка и уточним понятия.
Объем — величина чего-нибудь в длину, ширину и высоту, измеряемая в кубических единицах.
Другими словами, чем больше объем, тем больше места тело занимает в трехмерном пространстве.
Площадь — величина чего-нибудь в длину и ширину, измеряемая в квадратных единицах.
Представьте себе, что вам нужно оклеить всю поверхность объемного тела. Сколько квадратных сантиметров (или метров) вы бы обклеили? Это и есть его площадь поверхности.
Объемные тела — это многогранники (куб, параллелепипед, призма, пирамида) и тела вращения (цилиндр, конус, шар).
Если в задаче по стереометрии речь идет о многограннике, вам встретятся термины «вершины», «грани» и «ребра». Вот они, на картинке.
Чтобы найти площадь поверхности многогранника, сложите площади всех его граней.
Вам могут также встретиться понятия «прямая призма», правильная призма», «правильная пирамида».
Прямой называется призма, боковые ребра которой перпендикулярны основанию.
Если призма — прямая и в ее основании лежит правильный многоугольник, призма будет называться правильной.
А правильная пирамида — такая, в основании которой лежит правильный многоугольник, а вершина проецируется в центр основания.
Перейдем к практике.
1. Одна из распространенных задач в части 1 — такая, где надо посчитать объем или площадь поверхности многогранника, из которого какая-нибудь часть вырезана. Например, такого:
Что тут нарисовано? Очевидно, это большой параллелепипед, из которого вырезан «кирпичик», так что получилась «полочка». Если вы увидели на рисунке что-то другое — обратите внимание на сплошные и штриховые линии. Сплошные линии — видимы. Штриховыми линиями показываются те ребра, которые мы не видим, потому что они находятся сзади.
Объем найти просто. Из объема большого «кирпича» вычитаем объем маленького. Получаем:
А как быть с площадью поверхности? Почему-то многие школьники пытаются посчитать ее по аналогии с объемом, как разность площадей большого и малого «кирпичей». В ответ на такое «решение» я обычно предлагаю детскую задачу — если у четырехугольного стола отпилить один угол, сколько углов у него останется?
На самом деле нам нужно посчитать сумму площадей всех граней — верхней, нижней, передней, задней, правой, левой, а также сумму площадей трех маленьких прямоугольников, которые образуют «полочку». Можно сделать это «в лоб», напрямую. Но есть и способ попроще.
Прежде всего, если бы из большого параллелепипеда ничего не вырезали, его площадь поверхности была бы равна . А как повлияет на него вырезанная «полочка»?
Давайте посчитаем сначала площадь всех горизонтальных участков, то есть «дна», «крыши» и нижней поверхности «полочки». С дном — все понятно, оно прямоугольное, его площадь равна .
А вот сумма площадей «крыши» и горизонтальной грани «полочки» тоже равна ! Посмотрите на них сверху.
…В этот момент и наступает понимание. Кому-то проще нарисовать вид сверху. Кому-то — представить, что мы передвигаем дно и стенки полочки и получаем целый большой параллелепипед, площадь поверхности которого равна . Каким бы способом вы ни решали, результат один — площадь поверхности будет такой же, как и у целого параллелепипеда, из которого ничего не вырезали.
Ответ: .
2. Следующую задачу, попроще, вы теперь решите без труда. Здесь тоже надо найти площадь поверхности многогранника:
. Из площади поверхности «целого кирпича» вычитаем площади двух квадратиков со стороной — на верхней и нижней гранях.
Ответ: 92.
3. А здесь нарисована прямоугольная плитка с «окошком». Задание то же самое — надо найти площадь поверхности.
Сначала посчитайте сумму площадей всех граней. Представьте, что вы дизайнер, а эта штучка — украшение. И вам надо оклеить эту штуку чем-то ценным, например, бриллиантами Сваровски. И вы их покупаете на свои деньги. (Я не знаю почему, но эта фраза мгновенно повышает вероятность правильного ответа!) Оклеивайте все грани плитки. Но только из площадей передней и задней граней вычтите площадь «окошка». А затем — само «окошко». Оклеивайте всю его «раму».
Ответ: .
Следующий тип задач — когда одно объемное тело вписано в другое.
4. Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны . Найдите объем параллелепипеда.
Прежде всего, заметим, что высота цилиндра равна высоте параллелепипеда. Нарисуйте вид сверху, то есть круг, вписанный в прямоугольник. Тут сразу и увидите, что этот прямоугольник — на самом деле квадрат, а сторона его в два раза больше, чем радиус вписанной в него окружности. Итак, площадь основания параллелепипеда равна , высота равна , объем равен .
Ответ: 4.
5. В основании прямой призмы лежит прямоугольный треугольник с катетами и . Боковые ребра равны . Найдите объем цилиндра, описанного около этой призмы. В ответ запишите .
Очевидно, высота цилиндра равна боковому ребру призмы, то есть . Осталось найти радиус его основания.
Рисуем вид сверху. Прямоугольный треугольник вписан в окружность. Где будет находиться радиус этой окружности? Правильно, посередине гипотенузы. Гипотенузу находим по теореме Пифагора, она равна . Тогда радиус основания цилиндра равен пяти. Находим объем цилиндра по формуле и записываем ответ: .
Ответ: 100.
6. В прямоугольный параллелепипед вписан шар радиуса . Найдите объем параллелепипеда.
Эта задача тоже проста. Нарисуйте вид сверху. Или сбоку. Или спереди. В любом случае вы увидите одно и то же — круг, вписанный в прямоугольник. Очевидно, этот прямоугольник будет квадратом. Можно даже ничего не рисовать, а просто представить себе шарик, который положили в коробочку так, что он касается всех стенок, дна и крышки. Ясно, что такая коробочка будет кубической формы. Длина, ширина и высота этого куба в два раза больше, чем радиус шара.
Ответ: .
Следующий тип задач — такие, в которых увеличили или уменьшили какой-либо линейный размер (или размеры) объемного тела. А узнать нужно, как изменится объем или площадь поверхности.
7. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в раза больше, чем у первого? Ответ выразите в сантиметрах.
Слова «другой такой же сосуд» означают, что другой сосуд тоже имеет форму правильной треугольной призмы. То есть в его основании — правильный треугольник, у которого все стороны в два раза больше, чем у первого. Мы уже говорили о том, что площадь этого треугольника будет больше в раза. Объем воды остался неизменным. Следовательно, в раза уменьшится высота.
Ответ: .
8. Одна цилиндрическая кружка вдвое выше второй, зато вторая в два раза шире. Найдите отношение объема второй кружки к объему первой.
Давайте вспомним, как мы решали стандартные задачи, на движение и работу. Мы рисовали таблицу, верно? И здесь тоже нарисуем таблицу. Мы помним, что объем цилиндра равен .
Высота | Радиус | Объем | |
Первая кружка | |||
Вторая кружка |
Считаем объем второй кружки. Он равен . Получается, что он в два раза больше, чем объем первой.
Следующая задача тоже решается сразу и без формул.
9. Через среднюю линию основания треугольной призмы, объем которой равен , проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы.
Высота меньшей призмы такая же, как и у большой. А какой же будет ее площадь основания? Очевидно, в раза меньше. Вспомните свойство средней линии треугольника — она равна половине основания. Значит, объем отсеченной призмы равен .
И еще одна классическая задача. Никаких формул!
10. Во сколько раз увеличится площадь поверхности октаэдра, если все его ребра увеличить в раза?
Только не надо обмирать от ужаса при слове «октаэдр». Тем более — он здесь нарисован и представляет собой две сложенные вместе четырехугольные пирамиды. А мы уже говорили — если все ребра многогранника увеличить в три раза, площадь поверхности увеличится в раз, поскольку .
Ответ: .
Следующий тип задач — такие, в которых надо найти объем части конуса, или части пирамиды. Они тоже решаются элементарно.
11. Найдите объем части цилиндра, изображенной на рисунке. Радиус цилиндра равен 15, высота равна 5. В ответе укажите .
Изображен не целый цилиндр, а его часть. Из него, как из круглого сыра, вырезали кусок. Надо найти объем оставшегося «сыра».
Какая же часть цилиндра изображена? Вырезан кусок с углом градусов, а — это одна шестая часть полного круга. Значит, от всего объема цилиндра осталось пять шестых. Находим объем всего цилиндра, умножаем на пять шестых, делим на , записываем ответ: .
Продолжение: другие типы задач по стереометрии. Удачи вам в подготовке к ЕГЭ!
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Стереометрия на Профильном ЕГЭ по математике, 1 часть, основные типы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.03.2023