Задания
Версия для печати и копирования в MS Word
Тип 10 № 564553
На рисунке изображён график функции вида где числа a, b, c и d — целые. Найдите
Спрятать решение
Решение.
По графику тогда и
По графику тогда, если то
— не имеет целочисленных решений,
если то
Значит, и
Найдём наименьший положительный период функции
Наименьший положительный период функции равен а по графику наименьший положительный период равен 2, тогда
Таким образом, Найдём
Ответ: 3.
Аналоги к заданию № 564531: 564543 564555 564542 564551 564552 564553 564554 564556 564578 564579 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.2.3 Периодичность функции, 3.3.5 Тригонометрические функции, их графики
Спрятать решение
·
Прототип задания
·
·
Сообщить об ошибке · Помощь
ЕГЭ по математике — Профиль 2023. Открытый банк заданий с ответами.
Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2023 из различных источников.
Варианты составлены в соответствии с демоверсией 2023 года
Тренировочные варианты ЕГЭ 2023 по математике (профиль)
vk.com/pezhirovschool | |
Вариант 1 | решения |
Вариант 2 | решения |
Вариант 3 | решения |
Вариант 4 | решения |
Вариант 5 (с ответами) | |
Вариант 6 (с ответами) | |
Вариант 7 (с ответами) | |
Вариант 8 (с ответами) | |
egemath.ru | |
вариант 1 | скачать |
вариант 2 | скачать |
вариант 3 | скачать |
вариант 4 | скачать |
вариант 5 | скачать |
вариант 6 | скачать |
вариант 7 | скачать |
вариант 8 | скачать |
вариант 9 | скачать |
вариант 10 | скачать |
вариант 11 | скачать |
вариант 12 | скачать |
вариант 13 | скачать |
вариант 14 | скачать |
вариант 15 | скачать |
вариант 16 | скачать |
вариант 17 | скачать |
вариант 18 | скачать |
вариант 19 | скачать |
вариант 20 | скачать |
time4math.ru | |
вариант 1-2 | ответы |
вариант 3-4 | ответы |
вариант 5-6 | ответы |
вариант 7-8 | |
yagubov.ru | |
вариант 33 (сентябрь) | ege2023-yagubov-prof-var33 |
вариант 34 (октябрь) | ege2023-yagubov-prof-var34 |
вариант 35 (ноябрь) | ege2023-yagubov-prof-var35 |
вариант 36 (декабрь) | ege2023-yagubov-prof-var36 |
вариант 37 (январь) | ege2023-yagubov-prof-var37 |
вариант 38 (февраль) | ege2023-yagubov-prof-var38 |
math100.ru (с ответами) | |
variant 179 | скачать |
variant 180 | скачать |
variant 181 | скачать |
variant 182 | скачать |
variant 183 | скачать |
variant 184 | скачать |
variant 185 | скачать |
variant 186 | скачать |
variant 187 | скачать |
variant 188 | скачать |
variant 189 | скачать |
variant 190 | скачать |
variant 191 | скачать |
variant 192 | скачать |
variant 193 | скачать |
variant 194 | скачать |
variant 195 | скачать |
variant 196 | скачать |
variant 197 | скачать |
variant 198 | скачать |
variant 199 | скачать |
variant 200 | скачать |
variant 201 | скачать |
variant 202 | скачать |
variant 203 | скачать |
variant 204 | скачать |
variant 205 | скачать |
alexlarin.net | |
Вариант 397 | проверить ответы |
Вариант 398 | проверить ответы |
Вариант 399 | проверить ответы |
Вариант 400 | проверить ответы |
Вариант 401 | проверить ответы |
Вариант 402 | проверить ответы |
Вариант 403 | проверить ответы |
Вариант 404 | проверить ответы |
Вариант 405 | проверить ответы |
Вариант 406 | проверить ответы |
Вариант 407 | проверить ответы |
Вариант 408 | проверить ответы |
Вариант 409 | проверить ответы |
Вариант 410 | проверить ответы |
Вариант 411 | проверить ответы |
Вариант 412 | проверить ответы |
Вариант 413 | проверить ответы |
vk.com/ege100ballov | |
вариант 1 | скачать |
вариант 2 | скачать |
вариант 3 | скачать |
вариант 4 | скачать |
вариант 5 | скачать |
вариант 6 | скачать |
вариант 7 | скачать |
вариант 8 | скачать |
вариант 9 | скачать |
вариант 10 | скачать |
вариант 11 | скачать |
vk.com/math.studying | |
Вариант 1 | ответы |
vk.com/marsel_tutor | |
Вариант 1 | разбор |
Вариант 2 | конспект / разбор |
Вариант 3 | конспект / разбор |
Вариант 4 | конспект / разбор |
Вариант 5 | конспект / разбор |
Вариант 6 | разбор |
vk.com/shkolkovo_easy_math | |
Вариант 1 | решение |
Вариант 2 | решение |
Вариант 3 | решение |
Вариант 5 | решение |
Вариант 6 | решение |
vk.com/mathlearn_ru | |
вариант 1 | разбор |
vk.com/ekaterina_chekmareva | |
Вариант 1 | ответы |
Вариант 2 | ответы |
Вариант 3 | ответы |
Вариант 4 | ответы |
Вариант 5 | ответы |
Вариант 6 | ответы |
Вариант 7 | ответы |
Вариант 8 | ответы |
Структура варианта КИМ ЕГЭ 2023 по математике профильного уровня
Экзаменационная работа состоит из двух частей и включает в себя 18 заданий, которые различаются по содержанию, сложности и количеству заданий:
– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;
– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).
Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях. Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.
Задания части 1 предназначены для определения математических компетентностей выпускников образовательных организаций, реализующих программы среднего (полного) общего образования на базовом уровне. Задание с кратким ответом (1–11) считается выполненным, если в бланке ответов № 1 зафиксирован верный ответ в виде целого числа или конечной десятичной дроби.
Задания 12–18 с развёрнутым ответом, в числе которых 5 заданий повышенного уровня и 2 задания высокого уровня сложности, предназначены для более точной дифференциации абитуриентов вузов.
Примеры заданий:
1. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 76 бадминтонистов, среди которых 22 спортсмена из России, в том числе Игорь Чаев. Найдите вероятность того, что в первом туре Игорь Чаев будет играть с каким-либо бадминтонистом из России.
2. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу
3. На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 363. Затем в каждом числе поменяли местами первую и вторую цифры (например, число 17 заменили на число 71).
а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 4 раза больше, чем сумма исходных чисел.
б) Могла ли сумма получившихся чисел быть ровно в 2 раза больше, чем сумма исходных чисел?
в) Найдите наибольшее возможное значение суммы получившихся чисел.
Смотрите также:
В ЕГЭ 2022 года добавили новую задачу на графики функций. Для решения этой задачи нужно сначала определить формулу функции, а затем вычислить ответ на вопрос задачи. И если вычисление ответа по известной формуле обычно не составляет труда, то вот определение самой формулы часто ставит школьников в тупик. Поэтому мы разберем три разных подхода к этому вопросу.
Замечание. Про то как определяется формула у прямой и параболы я написала в этой и этой статьях. Поэтому здесь в примерах я буду использовать другие функции – дробные, иррациональные, показательные и логарифмические, но все три описанных здесь способа работают и для линейных, и для квадратичных функций в том числе.
1 способ – находим формулу по точкам
Этот способ подходит вообще для любой девятой задачи, но занимает достаточно много времени и требует хорошего навыка решения систем уравнений.
Давайте разберем алгоритм на примере конкретной 9-ой задачи ЕГЭ:
Алгоритм:
1. Находим 2 точки с целыми координатами. Обычно они выделены жирно, но если это не так, то не проблема найти их самому.
Пример:
2. Подставляем эти координаты в «полуфабрикат» функции. Вместо (f(x))– координату игрек, вместо (x) – икс. Получается система.
3. Решаем эту систему и получаем готовую формулу.
4. Готово, функция найдена, можно переходить ко второму этапу – вычислению (f(-8)). Если вы вдруг не знаете, что это значит – в конце статьи я рассматриваю этот момент более подробно.
Давайте посмотрим метод еще раз на примере с логарифмической функцией.
Пример:
2 способ – преобразование графиков функций
Этот способ сильно быстрее первого, но требует больше знаний. Для использования преобразований функций нужно знать, как выглядят функции без изменения и как преобразования их меняют. Наиболее удобно использовать этот способ для иррациональной функции ((y=sqrt{x}) ) и функции обратной пропорциональности ((y=frac{1}{x})).
Вот как выглядит применение этого способа:
Для использования этого способа надо знать, как выглядят изначальные функции:
И понимать, как меняются функции от преобразований:
Часто даже по «полуфабрикату» функции понятно, какие преобразования сделали с функцией:
Пример:
3 способ – гибридный
Идеально подходит для логарифмических и показательных функций, так как обычно у таких функций неизвестно основание и с помощью преобразований его не найти. С другой стороны, независимо от оснований любая показательная функция должна проходить через точку ((0;1)), а любая логарифмическая — через точку ((1;0)).
По смещению этих точек легко понять, как именно двигали функцию, но только если ее не растягивали, а лишь перемещали вверх-вниз, влево-вправо (как обычно и бывает в задачах на ЕГЭ).
Основание же лучше находить уже следующим действием, используя подстановку координат точки в «полуфабрикат» функции.
Как отвечать на вопросы в задаче, когда уже определили функцию
— Если просят найти (f)(любое число), то нужно это число подставить в готовую функцию вместо икса.
Пример:
— Если просят найти «при каком значении x значение функции равно *любому числу*», то надо решить уравнение, в одной части которого будет функция, а в другой — то самое число. Аналогично надо поступить, если просят «найти корень уравнения (f(x)=) *любое число*».
Пример:
— Если просят найти абсциссу точки пересечения – надо приравнять 2 функции и решить получившееся уравнение. Корень уравнения и будет искомой абсциссой. Аналогично надо делать в задачах, где даны две точки пересечения (A)(*любое число*;*другое число*) и (B(x_0;y_0)) и просят найти (x_0).
Пример:
— Если просят найти ординату точки пересечения – надо приравнять 2 функции, найти иксы и подставить подходящий икс в любую функцию. Точно также решаем если просят найти (y_0) точки пересечения двух функций.
Пример:
— Иногда просят найти просто какой-либо из коэффициентов функции. Тогда надо просто восстановить функцию и записать в ответ то, о чем спросили:
Пример:
Чтобы купить курс,
пожалуйста, войдите
или зарегистрируйтесь
Математика (баз. ур.) (Вариант 1)
Приобретите наш курс
Для продолжения просмотра купите полный курс
наших видеоуроков
- 1
- 2
- 3
- 4
Футболка стоила 800 рублей. После снижения цены она стала стоить 680 рублей. На сколько процентов была снижена цена на футболку?
Заметили ошибку в тексте?
Выделите её и нажмите Ctrl + Enter