sianondinola
Вопрос по алгебре:
(5*sin(74°))/(cos(37°)*cos(53°))
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!
Ответы и объяснения 1
qurendenesom200
Разлаживаем sin74° как синус двойного аргумента sin2L = 2sinLcosL. Затем скорачиваем cos37°. Потом представлеям cos53=sin(90-37)=sin37 (за формулами привидения). Скорачиваем sin37.
(5*sin(74°))/(cos(37°)*cos(53°) )= (5*2*sin37°cos37°))/(cos(37°)*cos(53°)) =10*sin37°/cos53° = 10**sin37°/sin37 = 10.
Ответ: 10.
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат — это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Алгебра.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи —
смело задавайте вопросы!
Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.
OBRAZOVALKA.COM
OBRAZOVALKA.COM — образовательный портал
Наш сайт это площадка для образовательных консультаций, вопросов и ответов для школьников и студентов .
На вопросы могут отвечать также любые пользователи, в том числе и педагоги.
Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.
ЕГЭ Профиль №6. Вычисление значений тригонометрических выражений
Скачать файл в формате pdf.
ЕГЭ Профиль №6. Вычисление значений тригонометрических выражений
Задача 1. Найдите значение выражения (frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{sin {{358}^ circ }}})
Ответ
ОТВЕТ: 25. Решение
Воспользуемся формулой синуса двойного угла: (sin 2alpha = 2sin alpha cos alpha ) (frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{sin {{358}^ circ }}} = frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{sin left( {2 cdot {{179}^ circ }} right)}} = frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{2sin {{179}^ circ } cdot cos {{179}^ circ }}} = 25.) Ответ: 25. |
Задача 2. Найдите значение выражения (8sin frac{{5{\pi }}}{{12}} cdot cos frac{{5{\pi }}}{{12}})
Ответ
ОТВЕТ: 2. Решение
Воспользуемся формулой синуса двойного угла: (sin 2alpha = 2sin alpha cos alpha ) (8sin frac{{5pi }}{{12}}cos frac{{5pi }}{{12}} = 4 cdot 2 cdot sin frac{{5pi }}{{12}}cos frac{{5pi }}{{12}} = 4 cdot sin left( {2 cdot frac{{5pi }}{{12}}} right) = 4 cdot sin frac{{5pi }}{6} = 4 cdot frac{1}{2} = 2.) Ответ: 2. |
Задача 3. Найдите значение выражения (frac{{24left( {{{sin }^2}{{17}^ circ } — {{cos }^2}{{17}^ circ }} right)}}{{cos {{34}^ circ }}})
Ответ
ОТВЕТ: — 24. Решение
Воспользуемся формулой косинус двойного угла: (cos 2alpha = {cos ^2}alpha — {sin ^2}alpha ) (frac{{24left( {{{sin }^2}{{17}^ circ } — {{cos }^2}{{17}^ circ }} right)}}{{cos {{34}^ circ }}} = frac{{ — 24left( {{{cos }^2}{{17}^ circ } — {{sin }^2}{{17}^ circ }} right)}}{{cos {{34}^ circ }}} = frac{{ — 24cos {{34}^ circ }}}{{cos {{34}^ circ }}} = — 24.) Ответ: — 24. |
Задача 4. Найдите значение выражения (sqrt 3 {cos ^2}frac{{5{pi }}}{{12}} — sqrt 3 {sin ^2}frac{{5pi }}{{12}})
Ответ
ОТВЕТ: — 1,5. Решение
Воспользуемся формулой косинус двойного угла: (cos 2alpha = {cos ^2}alpha — {sin ^2}alpha ) (sqrt 3 {cos ^2}frac{{5pi }}{{12}} — sqrt 3 {sin ^2}frac{{5pi }}{{12}} = sqrt 3 left( {{{cos }^2}frac{{5pi }}{{12}} — {{sin }^2}frac{{5pi }}{{12}}} right) = sqrt 3 cos left( {2 cdot frac{{5pi }}{{12}}} right) = ) ( = sqrt 3 cos frac{{5pi }}{6} = sqrt 3 cdot left( { — frac{{sqrt 3 }}{2}} right) = — 1,5.) Ответ: — 1,5. |
Задача 5. Найдите значение выражения (sqrt {12} {cos ^2}frac{{5{pi }}}{{12}} — sqrt 3 )
Ответ
ОТВЕТ: — 1,5. Решение
Воспользуемся формулой косинус двойного угла: (cos 2alpha = 2{cos ^2}alpha — 1) (sqrt {12} {cos ^2}frac{{5pi }}{{12}} — sqrt 3 = sqrt 3 left( {2{{cos }^2}frac{{5pi }}{{12}} — 1} right) = sqrt 3 cdot cos left( {2 cdot frac{{5pi }}{{12}}} right) = ) ( = sqrt 3 cos frac{{5pi }}{6} = sqrt 3 cdot left( { — frac{{sqrt 3 }}{2}} right) = — 1,5.) Ответ: — 1,5. |
Задача 6. Найдите значение выражения (sqrt 3 — sqrt {12} {sin ^2}frac{{5{pi }}}{{12}})
Ответ
ОТВЕТ: — 1,5. Решение
Воспользуемся формулой косинус двойного угла: (cos 2alpha = 1 — 2{sin ^2}alpha ) (sqrt 3 — sqrt {12} {sin ^2}frac{{5pi }}{{12}} = sqrt 3 left( {1 — 2{{sin }^2}frac{{5pi }}{{12}}} right) = sqrt 3 cos left( {2 cdot frac{{5pi }}{{12}}} right) = ) ( = sqrt 3 cos frac{{5pi }}{6} = sqrt 3 cdot left( { — frac{{sqrt 3 }}{2}} right) = — 1,5.) Ответ: — 1,5. |
Задача 7. Найдите ( — 47cos 2alpha ), если (cos alpha = — 0,4)
Ответ
ОТВЕТ: 31,96. Решение
Воспользуемся формулой косинус двойного угла: (cos 2alpha = 2{cos ^2}alpha — 1) ( — 47cos 2alpha = — 47 cdot left( {2{{cos }^2}alpha — 1} right) = — 47 cdot left( {2 cdot {{left( { — 0,4} right)}^2} — 1} right) = ) ( = — 47 cdot left( {0,32 — 1} right) = — 47 cdot left( { — 0,68} right) = 31,96.) Ответ: 31,96. |
Задача 8. Найдите значение выражения (frac{{5cos {{29}^ circ }}}{{sin {{61}^ circ }}})
Ответ
ОТВЕТ: 5. Решение
(frac{{5cos {{29}^ circ }}}{{sin {{61}^ circ }}} = frac{{5cos left( {{{90}^ circ } — {{61}^ circ }} right)}}{{sin {{61}^ circ }}} = frac{{5sin {{61}^ circ }}}{{sin {{61}^ circ }}} = 5.) При решении воспользовались формулой приведения: (cos left( {{{90}^ circ } — alpha } right) = sin alpha .) Ответ: 5. |
Задача 9. Найдите значение выражения (36sqrt 3 {text{tg}}frac{{\pi }}{3}sin frac{{\pi }}{6})
Ответ
ОТВЕТ: 54. Решение
(36sqrt 3 ,,tgfrac{pi }{3} cdot sin frac{pi }{6} = 36sqrt 3 cdot sqrt 3 cdot frac{1}{2} = 18 cdot 3 = 54.) Ответ: 54. |
Задача 10. Найдите значение выражения (4sqrt 2 cos frac{{\pi }}{4}cos frac{{7{\pi }}}{3})
Ответ
ОТВЕТ: 2. Решение
(4sqrt 2 cos frac{pi }{4}cos frac{{7pi }}{3} = 4sqrt 2 cdot frac{{sqrt 2 }}{2}cos left( {frac{{7pi }}{3} — 2pi } right) = 4 cdot cos frac{pi }{3} = 4 cdot frac{1}{2} = 2.) При решении воспользовались периодичностью косинуса: (cos left( {alpha — 2pi } right) = cos alpha .) Ответ: 2. |
Задача 11. Найдите значение выражения (frac{8}{{sin left( { — frac{{27{\pi }}}{4}} right)cos left( {frac{{31{\pi }}}{4}} right)}})
Ответ
ОТВЕТ: — 16. Решение
(sin left( { — frac{{27pi }}{4}} right) = sin left( { — frac{{27pi }}{4} + 8pi } right) = sin frac{{5pi }}{4} = — frac{{sqrt 2 }}{2}) (cos left( {frac{{31pi }}{4}} right) = cos left( {frac{{31pi }}{4} — 8pi } right) = cos left( { — frac{pi }{4}} right) = cos frac{pi }{4} = frac{{sqrt 2 }}{2}) (frac{8}{{sin left( { — frac{{27pi }}{4}} right) cdot cos left( {frac{{31pi }}{4}} right)}} = frac{8}{{ — frac{{sqrt 2 }}{2} cdot frac{{sqrt 2 }}{2}}} = — 16.) Ответ: — 16. |
Задача 12. Найдите значение выражения (33sqrt 2 cos left( {{{495}^ circ }} right))
Ответ
ОТВЕТ: — 33. Решение
(33sqrt 2 cos left( {{{495}^ circ }} right) = 33sqrt 2 cos left( {{{495}^ circ } — {{360}^ circ }} right) = 33sqrt 2 cos {135^ circ } = 33sqrt 2 cdot left( { — frac{{sqrt 2 }}{2}} right) = — 33.) Ответ: — 33. |
Задача 13. Найдите значение выражения (2sqrt 3 {text{tg}}left( { — {{300}^ circ }} right))
Ответ
ОТВЕТ: 6. Решение
(2sqrt 3 tgleft( { — {{300}^ circ }} right) = 2sqrt 3 tgleft( { — {{300}^ circ } + {{360}^ circ }} right) = 2sqrt 3 tg{60^ circ } = 2sqrt 3 cdot sqrt 3 = 6.) Ответ: 6. |
Задача 14. Найдите значение выражения ( — 18sqrt 2 sin left( { — {{135}^ circ }} right))
Ответ
ОТВЕТ: 18. Решение
( — 18sqrt 2 sin left( { — {{135}^ circ }} right) = 18sqrt 2 sin {135^ circ } = 18sqrt 2 cdot frac{{sqrt 2 }}{2} = 18.) Ответ: 18. |
Задача 15. Найдите значение выражения (24sqrt 2 cos left( { — frac{{\pi }}{3}} right)sin left( { — frac{{\pi }}{4}} right))
Ответ
ОТВЕТ: — 12. Решение
(24sqrt 2 cos left( { — frac{pi }{3}} right)sin left( { — frac{pi }{4}} right) = — 24sqrt 2 cos frac{pi }{3}sin frac{pi }{4} = — 24sqrt 2 cdot frac{1}{2} cdot frac{{sqrt 2 }}{2} = — 12.) Ответ: — 12. |
Задача 16. Найдите значение выражения (frac{{14sin {{19}^ circ }}}{{sin {{341}^ circ }}})
Ответ
ОТВЕТ: — 14. Решение
(frac{{14sin {{19}^ circ }}}{{sin {{341}^ circ }}} = frac{{14sin {{19}^ circ }}}{{sin left( {{{341}^ circ } — {{360}^ circ }} right)}} = frac{{14sin {{19}^ circ }}}{{sin left( { — {{19}^ circ }} right)}} = frac{{14sin {{19}^ circ }}}{{ — sin {{19}^ circ }}} = — 14.) Ответ: — 14. |
Задача 17. Найдите значение выражения (frac{{36cos {{93}^ circ }}}{{cos {{87}^ circ }}})
Ответ
ОТВЕТ: — 36. Решение
(frac{{36cos {{93}^ circ }}}{{cos {{87}^ circ }}} = frac{{ — 36cos left( {{{180}^ circ } — {{93}^ circ }} right)}}{{cos {{87}^ circ }}} = frac{{ — 36cos {{87}^ circ }}}{{cos {{87}^ circ }}} = — 36.) Ответ: — 36. |
Задача 18. Найдите значение выражения (frac{{ — 37{text{tg6}}{{text{3}}^ circ }}}{{{text{tg11}}{{text{7}}^ circ }}})
Ответ
ОТВЕТ: 37. Решение
(frac{{ — 37tg{{63}^ circ }}}{{tg{{117}^ circ }}} = frac{{ — 37tg{{63}^ circ }}}{{ — tgleft( {{{180}^ circ } — {{117}^ circ }} right)}} = frac{{37tg{{63}^ circ }}}{{tg{{63}^ circ }}} = 37.) Ответ: 37. |
Задача 19. Найдите значение выражения (frac{{14sin {{409}^ circ }}}{{sin {{49}^ circ }}})
Ответ
ОТВЕТ: 14. Решение
(frac{{14sin {{409}^ circ }}}{{sin {{49}^ circ }}} = frac{{14sin left( {{{409}^ circ } — {{360}^ circ }} right)}}{{sin {{49}^ circ }}} = frac{{14sin {{49}^ circ }}}{{sin {{49}^ circ }}} = 14.) Ответ: 14. |
Задача 20. Найдите значение выражения (5{text{tg1}}{{text{7}}^ circ } cdot {text{tg10}}{{text{7}}^ circ })
Ответ
ОТВЕТ: — 5. Решение
(5,tg{17^ circ } cdot tg{107^ circ } = 5,tg{17^ circ } cdot tgleft( {{{90}^ circ } + {{17}^ circ }} right) = — 5,tg{17^ circ } cdot ctg{17^ circ } = — 5.) При решении воспользовались формулой приведения: (tgleft( {{{90}^ circ } + alpha } right) = — tgalpha ) и формулой: (tgalpha cdot ctgalpha = 1.) Ответ: — 5. |
Задача 21. Найдите значение выражения ( — 6{text{tg3}}{{text{1}}^ circ } cdot {text{tg5}}{{text{9}}^ circ })
Ответ
ОТВЕТ: — 6. Решение
( — 6,,tg{31^ circ } cdot tg{59^ circ } = — ,6,tg{31^ circ } cdot tgleft( {{{90}^ circ } — {{59}^ circ }} right) = — ,6,tg{31^ circ } cdot ctg{31^ circ } = — 6.) При решении воспользовались формулой приведения: (tgleft( {{{90}^ circ } — alpha } right) = ctgalpha .) Ответ: — 6. |
Задача 22. Найдите значение выражения (frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{sin }^2}{{221}^ circ }}})
Ответ
ОТВЕТ: — 12. Решение
(frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{sin }^2}{{221}^ circ }}} = frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{sin }^2}left( {{{90}^ circ } + {{131}^ circ }} right)}} = frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{cos }^2}{{131}^ circ }}} = — frac{{12}}{1} = — 12.) Ответ: — 12. |
Задача 23. Найдите значение выражения (frac{{27}}{{{{cos }^2}{{116}^ circ } + {{cos }^2}{{206}^ circ }}})
Ответ
ОТВЕТ: 27. Решение
(frac{{27}}{{{{cos }^2}{{116}^ circ } + {{cos }^2}{{206}^ circ }}} = frac{{27}}{{{{cos }^2}{{116}^ circ } + {{cos }^2}left( {{{90}^ circ } + {{116}^ circ }} right)}} = frac{{27}}{{{{cos }^2}{{116}^ circ } + {{left( { — sin {{116}^ circ }} right)}^2}}} = ) ( = frac{{27}}{{{{cos }^2}{{116}^ circ } + {{sin }^2}{{116}^ circ }}} = frac{{27}}{1} = 27.) Ответ: 27. |
Задача 24. Найдите значение выражения (frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}{{196}^ circ }}})
Ответ
ОТВЕТ: — 5. Решение
(frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}{{196}^ circ }}} = frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}left( {{{180}^ circ } + {{16}^ circ }} right)}} = frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{left( { — cos {{16}^ circ }} right)}^2}}} = ) ( = frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}{{16}^ circ }}} = frac{{ — 5}}{1} = — 5.) Ответ: — 5. |
Задача 25. Найдите значение выражения (frac{{ — 14sin {{84}^ circ }}}{{sin {{42}^ circ } cdot sin {{48}^ circ }}})
Ответ
ОТВЕТ: — 28. Решение
Воспользуемся формулой синуса двойного угла: (sin 2alpha = 2sin alpha cos alpha ) (frac{{ — 14sin {{84}^ circ }}}{{sin {{42}^ circ } cdot sin {{48}^ circ }}} = frac{{ — 14sin left( {2 cdot {{42}^ circ }} right)}}{{sin {{42}^ circ }sin {{48}^ circ }}} = frac{{ — 14 cdot 2 cdot sin {{42}^ circ } cdot cos {{42}^ circ }}}{{sin {{42}^ circ } cdot cos left( {{{90}^ circ } — {{48}^ circ }} right)}} = frac{{ — 28cos {{42}^ circ }}}{{cos {{42}^ circ }}} = — 28.) При решении воспользовались формулой приведения: (cos left( {{{90}^ circ } — alpha } right) = sin alpha .) Ответ: — 28. |
Задача 26. Найдите значение выражения (frac{{5sin {{74}^ circ }}}{{cos {{37}^ circ } cdot cos {{53}^ circ }}})
Ответ
ОТВЕТ: 10. Решение
Воспользуемся формулой синуса двойного угла: (sin 2alpha = 2sin alpha cos alpha ) (frac{{5sin {{74}^ circ }}}{{cos {{37}^ circ } cdot cos {{53}^ circ }}} = frac{{5 cdot sin left( {2 cdot {{37}^ circ }} right)}}{{cos {{37}^ circ }cos {{53}^ circ }}} = frac{{5 cdot 2 cdot sin {{37}^ circ }cos {{37}^ circ }}}{{cos {{37}^ circ } cdot sin left( {{{90}^ circ } — {{53}^ circ }} right)}} = frac{{10sin {{37}^ circ }}}{{sin {{37}^ circ }}} = 10.) При решении воспользовались формулой приведения: (sin left( {{{90}^ circ } — alpha } right) = cos alpha .) Ответ: 10. |
Задача 27. Найдите значение выражения (20sin {135^ circ } cdot cos {45^ circ })
Ответ
ОТВЕТ: 10. Решение
(20sin {135^ circ } cdot cos {45^ circ } = 20frac{{sqrt 2 }}{2} cdot frac{{sqrt 2 }}{2} = 10.) Ответ: 10. |
Задача 28. Найдите ({text{tg}}alpha ), если (cos alpha = frac{1}{{sqrt {10} }}) и (a in left( {frac{{3{\pi }}}{2};;2{\pi }} right))
Ответ
ОТВЕТ: — 3. Решение
1 Вариант Воспользуемся формулой: (1 + t{g^2}alpha = frac{1}{{{{cos }^2}alpha }}). Тогда: (1 + t{g^2}alpha = frac{1}{{{{left( {frac{1}{{sqrt {10} }}} right)}^2}}},,,,,, Leftrightarrow ,,,,,1 + t{g^2}alpha = 10,,,,,, Leftrightarrow ,,,,,t{g^2}alpha = 9) Следовательно, (tgalpha = 3) или (tgalpha = — 3). Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его тангенс отрицательный. Поэтому (tgalpha = — 3.) 2 Вариант Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha + {cos ^2}alpha = 1) ({sin ^2}alpha + {left( {frac{1}{{sqrt {10} }}} right)^2} = 1,,,,, Leftrightarrow ,,,,,,{sin ^2}alpha = 1 — frac{1}{{10}},,,,, Leftrightarrow ,,,,,{sin ^2}alpha = frac{9}{{10}}) Следовательно, (sin alpha = frac{3}{{sqrt {10} }}) или (sin alpha = — frac{3}{{sqrt {10} }}). Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его синус отрицательный. Поэтому (sin alpha = — frac{3}{{sqrt {10} }}). Воспользуемся тем, что: (tgalpha = frac{{sin alpha }}{{cos alpha }} = frac{{ — frac{3}{{sqrt {10} }}}}{{frac{1}{{sqrt {10} }}}} = — 3.) Ответ: — 3. |
Задача 29. Найдите ({text{tg}}alpha ), если (sin alpha = — frac{5}{{sqrt {26} }}) и (alpha in left( {{\pi };;frac{{3{\pi }}}{2}} right))
Ответ
ОТВЕТ: 5. Решение
1 Вариант Воспользуемся формулой: (1 + ct{g^2}alpha = frac{1}{{{{sin }^2}alpha }}) Тогда: (1 + ct{g^2}alpha = frac{1}{{{{left( { — frac{5}{{sqrt {26} }}} right)}^2}}},,,,,,, Leftrightarrow ,,,,,,,1 + ct{g^2}alpha = frac{{26}}{{25}},,,,,,, Leftrightarrow ,,,,,,,ct{g^2}alpha = frac{1}{{25}}) Следовательно, (ctgalpha = frac{1}{5}) или (ctgalpha = — frac{1}{5}). Так как (alpha ,, in ,,left( {pi ;frac{{3pi }}{2}} right)), то есть лежит в третьей четверти, то его котангенс положительный. Поэтому (ctgalpha = frac{1}{5}.) Так как (tgalpha cdot ctgalpha = 1), то (tgalpha = frac{1}{{ctgalpha }} = frac{1}{{frac{1}{5}}} = 5.) 2 Вариант Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha + {cos ^2}alpha = 1.) ({left( { — frac{5}{{sqrt {26} }}} right)^2} + {cos ^2}alpha = 1,,,,,, Leftrightarrow ,,,,,,{cos ^2}alpha = 1 — frac{{25}}{{26}},,,,,, Leftrightarrow ,,,,,,{cos ^2}alpha = frac{1}{{26}}.) Следовательно, (cos alpha = frac{1}{{sqrt {26} }}) или (cos alpha = — frac{1}{{sqrt {26} }}). Так как (alpha ,, in ,,left( {pi ;frac{{3pi }}{2}} right)), то есть лежит в третьей четверти, то косинус отрицательный. Поэтому (cos alpha = — frac{1}{{sqrt {26} }}). Воспользуемся тем, что: (tgalpha = frac{{sin alpha }}{{cos alpha }} = frac{{ — frac{5}{{sqrt {26} }}}}{{ — frac{1}{{sqrt {26} }}}} = 5.) Ответ: 5. |
Задача 30. Найдите (3cos alpha ), если (sin alpha = — frac{{2sqrt 2 }}{3}) и (alpha in left( {frac{{3{\pi }}}{2};;2{\pi }} right))
Ответ
ОТВЕТ: 1. Решение
Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha + {cos ^2}alpha = 1.) ({left( { — frac{{2sqrt 2 }}{3}} right)^2} + {cos ^2}alpha = 1,,,,,, Leftrightarrow ,,,,,{cos ^2}alpha = 1 — frac{8}{9},,,,,, Leftrightarrow ,,,,,,{cos ^2}alpha = frac{1}{9}) Следовательно, (cos alpha = frac{1}{3}) или (cos alpha = — frac{1}{3}). Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его косинус положительный. Поэтому (cos alpha = frac{1}{3}.) Тогда: (3cos alpha = 3 cdot frac{1}{3} = 1.) Ответ: 1. |
Задача 31. Найдите (7sin alpha ), если (cos alpha = frac{{3sqrt 5 }}{7}) и (alpha in left( {1,5{\pi };;2{\pi }} right))
Ответ
ОТВЕТ: — 2. Решение
Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha + {cos ^2}alpha = 1.) ({sin ^2}alpha + {left( {frac{{3sqrt 5 }}{7}} right)^2} = 1,,,,,, Leftrightarrow ,,,,,{sin ^2}alpha = 1 — frac{{45}}{{49}},,,,,, Leftrightarrow ,,,,,,{sin ^2}alpha = frac{4}{{49}}) Следовательно: (sin alpha = frac{2}{7}) или (sin alpha = — frac{2}{7}). Так как (alpha ,, in ,,left( {1,5pi ;2pi } right)), то есть лежит в четвертой четверти, то его синус отрицательный. Поэтому (sin alpha = — frac{2}{7}.) Тогда: (7sin alpha = 7 cdot left( { — frac{2}{7}} right) = — 2.) Ответ: — 2. |
Задача 32. Найдите (24cos 2alpha ), если (sin alpha = — 0,2)
Ответ
ОТВЕТ: 22,08. Решение
Воспользуемся формулой косинус двойного угла: (cos 2alpha = 1 — 2{sin ^2}alpha ) (24cos 2alpha = 24 cdot left( {1 — 2{{sin }^2}alpha } right) = 24 cdot left( {1 — 2 cdot {{left( { — 0,2} right)}^2}} right) = 24 cdot left( {1 — 0,08} right) = 24 cdot 0,92 = 22,08) Ответ: 22,08. |
Задача 33. Найдите (frac{{10sin 6alpha }}{{3cos 3alpha }}), если (sin 3alpha = 0,6)
Ответ
ОТВЕТ: 4. Решение
Воспользуемся формулой синуса двойного угла: (sin 2alpha = 2sin alpha cos alpha ) (frac{{10sin 6alpha }}{{3cos 3alpha }} = frac{{10 cdot sin left( {2 cdot 3alpha } right)}}{{3cos 3alpha }} = frac{{10 cdot 2 cdot sin 3alpha cdot cos 3alpha }}{{3cos 3alpha }} = frac{{20 cdot sin 3alpha }}{3} = frac{{20 cdot 0,6}}{3} = 4.) Ответ: 4. |
Задача 34. Найдите значение выражения (frac{{3cos left( {{\pi } — beta } right) + sin left( {frac{{\pi }}{2} + beta } right)}}{{cos left( {beta + 3{\pi }} right)}})
Ответ
ОТВЕТ: 2. Решение
(frac{{3cos left( {pi — beta } right) + sin left( {frac{pi }{2} + beta } right)}}{{cos left( {beta + 3pi } right)}} = frac{{ — 3cos beta + cos beta }}{{ — cos beta }} = frac{{ — 2cos beta }}{{ — cos beta }} = 2.) Ответ: 2. |
Задача 35. Найдите значение выражения (frac{{2sin left( {alpha — 7{\pi }} right) + cos left( {frac{{3{\pi }}}{2} + alpha } right)}}{{sin left( {a + {\pi }} right)}})
Ответ
ОТВЕТ: 1. Решение
(frac{{2sin left( {alpha — 7pi } right) + cos left( {frac{{3pi }}{2} + alpha } right)}}{{sin left( {alpha + pi } right)}} = frac{{ — 2sin alpha + sin alpha }}{{ — sin alpha }} = frac{{ — sin alpha }}{{ — sin alpha }} = 1.) Ответ: 1. |
Задача 36. Найдите значение выражения (5{text{tg}}left( {5{\pi } — gamma } right) — {text{tg}}left( { — gamma } right)), если ({text{tg}}gamma {text{ = 7}})
Ответ
ОТВЕТ: — 28. Решение
(5,tgleft( {5pi — gamma } right) — tgleft( { — gamma } right) = — 5,tggamma + tggamma = — 4,tggamma = — 4 cdot 7 = — 28.) Ответ: — 28. |
Задача 37. Найдите (sin left( {frac{{7{\pi }}}{2} — alpha } right)), если (sin alpha = 0,8) и (a in left( {frac{{\pi }}{2};;{\pi }} right))
Ответ
ОТВЕТ: 0,6. Решение
(sin left( {frac{{7pi }}{2} — alpha } right) = — cos alpha ) Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha + {cos ^2}alpha = 1) ({0,8^2} + {cos ^2}alpha = 1,,,,, Leftrightarrow ,,,,,{cos ^2}alpha = 1 — 0,64,,,,, Leftrightarrow ,,,,,{cos ^2}alpha = 0,36) Следовательно, (cos alpha = 0,6) или (cos alpha = — 0,6). Так как (alpha ,, in ,,left( {frac{pi }{2};pi } right)), то есть лежит во второй четверти, то его косинус отрицательный. Поэтому: (sin left( {frac{{7pi }}{2} — alpha } right) = — cos alpha = — left( { — 0,6} right) = 0,6.) Ответ: 0,6. |
Задача 38. Найдите (26cos left( {frac{{3{\pi }}}{2} + alpha } right)), если (cos alpha = frac{{12}}{{13}}) и (alpha in left( {frac{{3{\pi }}}{2};;2{\pi}} right))
Ответ
ОТВЕТ: — 10. Решение
(26cos left( {frac{{3pi }}{2} + alpha } right) = 26sin alpha ) Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha + {cos ^2}alpha = 1) ({sin ^2}alpha + {left( {frac{{12}}{{13}}} right)^2} = 1,,,,,, Leftrightarrow ,,,,,,{sin ^2}alpha = 1 — frac{{144}}{{169}},,,,,,, Leftrightarrow ,,,,,{sin ^2}alpha = frac{{25}}{{169}}) Следовательно, (sin alpha = frac{5}{{13}}) или (sin alpha = — frac{5}{{13}}). Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его синус отрицательный. Поэтому: (26cos left( {frac{{3pi }}{2} + alpha } right) = 26sin alpha = 26 cdot left( { — frac{5}{{13}}} right) = — 10.) Ответ: — 10. |
Задача 39. Найдите ({text{tg}}left( {alpha + frac{{5{\pi }}}{2}} right)), если ({text{tg}}alpha {text{ = 0}}{text{,4}})
Ответ
ОТВЕТ: — 2,5. Решение
(tgleft( {alpha + frac{{5pi }}{2}} right) = — ctgalpha ) Воспользуемся тем, что: (tgalpha cdot ctgalpha = 1.) Тогда: (ctgalpha = frac{1}{{tgalpha }} = frac{1}{{0,4}} = 2,5.) Поэтому: (tgleft( {alpha + frac{{5pi }}{2}} right) = — ctgalpha = — 2,5.) Ответ: — 2,5. |
Задача 40. Найдите ({text{t}}{{text{g}}^2}alpha ), если (4{sin ^2}alpha + 9{cos ^2}alpha = 6)
Ответ
ОТВЕТ: 1,5. Решение
Выполним следующее преобразование: (6 = 6 cdot 1 = 6left( {{{sin }^2}alpha + {{cos }^2}alpha } right) = 6{sin ^2}alpha + 6{cos ^2}alpha ) Тогда: (4{sin ^2}alpha + 9{cos ^2}alpha = 6,,,,, Leftrightarrow ,,,,,4{sin ^2}alpha + 9{cos ^2}alpha = 6{sin ^2}alpha + 6{cos ^2}alpha ,,,,, Leftrightarrow ) ( Leftrightarrow ,,,,,2{sin ^2}alpha = 3{cos ^2}alpha ,,,,, Leftrightarrow ,,,,,frac{{{{sin }^2}alpha }}{{{{cos }^2}alpha }}, = frac{3}{2},,,,,, Leftrightarrow ,,,,,t{g^2}alpha = 1,5.) Ответ: 1,5. |
Задача 41. Найдите (frac{{3cos alpha — 4sin alpha }}{{2sin alpha — 5cos alpha }}), если ({text{tg}}alpha {text{ = 3}})
Ответ
ОТВЕТ: — 9. Решение
1 Вариант Разделим числитель и знаменатель дроби на (cos alpha ). Тогда: (frac{{3cos alpha — 4sin alpha }}{{2sin alpha — 5cos alpha }} = frac{{frac{{3cos alpha }}{{cos alpha }} — frac{{4sin alpha }}{{cos alpha }}}}{{frac{{2sin alpha }}{{cos alpha }} — frac{{5cos alpha }}{{cos alpha }}}} = frac{{3 — 4,,tgalpha }}{{2,,tgalpha — 5}} = frac{{3 — 4 cdot 3}}{{2 cdot 3 — 5}} = frac{{ — 9}}{1} = — 9.) 2 Вариант Так как (tgalpha = 3), то (frac{{sin alpha }}{{cos alpha }} = 3) и (sin alpha = 3cos alpha ). Тогда: (frac{{3cos alpha — 4sin alpha }}{{2sin alpha — 5cos alpha }} = frac{{3cos alpha — 4 cdot 3cos alpha }}{{2 cdot 3cos alpha — 5cos alpha }} = frac{{3cos alpha — 12cos alpha }}{{6cos alpha — 5cos alpha }} = frac{{ — 9cos alpha }}{{cos alpha }} = — 9.) Ответ: — 9. |
Задача 42. Найдите (frac{{10cos alpha + 4sin alpha + 15}}{{2sin alpha + 5cos alpha + 3}}), если ({text{tg}}alpha {text{ = }} — {text{2}}{text{,5}})
Ответ
ОТВЕТ: 5. Решение
1 Вариант Разделим числитель и знаменатель дроби на (cos alpha ). Тогда: (frac{{10cos alpha + 4sin alpha + 15}}{{2sin alpha + 5cos alpha + 3}} = frac{{frac{{10cos alpha }}{{cos alpha }} + frac{{4sin alpha }}{{cos alpha }} + frac{{15}}{{cos alpha }}}}{{frac{{2sin alpha }}{{cos alpha }} + frac{{5cos alpha }}{{cos alpha }} + frac{3}{{cos alpha }}}} = frac{{10 + 4,,tgalpha + frac{{15}}{{cos alpha }}}}{{2,,tgalpha + 5 + frac{3}{{cos alpha }}}} = ) ( = frac{{10 + 4 cdot left( { — 2,5} right) + frac{{15}}{{cos alpha }}}}{{2 cdot left( { — 2,5} right) + 5 + frac{3}{{cos alpha }}}} = frac{{10 — 10 + frac{{15}}{{cos alpha }}}}{{ — 5 + 5 + frac{3}{{cos alpha }}}} = frac{{frac{{15}}{{cos alpha }}}}{{frac{3}{{cos alpha }}}} = frac{{15}}{{cos alpha }} cdot frac{{cos alpha }}{3} = 5.) 2 Вариант Так как (tgalpha = — 2,5), то (frac{{sin alpha }}{{cos alpha }} = — 2,5) и (sin alpha = — 2,5cos alpha ). Тогда: (frac{{10cos alpha + 4sin alpha + 15}}{{2sin alpha + 5cos alpha + 3}} = frac{{10cos alpha + 4 cdot left( { — 2,5cos alpha } right) + 15}}{{2 cdot left( { — 2,5cos alpha } right) + 5cos alpha + 3}} = frac{{10cos alpha — 10cos alpha + 15}}{{ — 5cos alpha + 5cos alpha + 3}} = frac{{15}}{3} = 5.) Ответ: 5. |
Задача 43. Найдите ({text{tg}}alpha ), если (frac{{6sin alpha — 2cos alpha }}{{4sin alpha — 4cos alpha }} = — 1)
Ответ
ОТВЕТ: 0,6. Решение
Разделим числитель и знаменатель левой части на (cos alpha ): (frac{{frac{{6sin alpha }}{{cos alpha }} — frac{{2cos alpha }}{{cos alpha }}}}{{frac{{4sin alpha }}{{cos alpha }} — frac{{4cos alpha }}{{cos alpha }}}} = — 1,,,,, Leftrightarrow ,,,,,frac{{6,,tgalpha — 2}}{{4,,tgalpha — 4}} = frac{{ — 1}}{1},,,,, Leftrightarrow ,,,,,6,,tgalpha — 2 = — 4,tgalpha + 4,,,,, Leftrightarrow ) ( Leftrightarrow ,,,,,10,,tgalpha = 6,,,,, Leftrightarrow ,,,,,tgalpha = 0,6.) Ответ: 0,6. |
Задача 44. Найдите ({text{tg}}alpha ), если (frac{{3sin alpha — 5cos alpha + 2}}{{sin alpha + 3cos alpha + 6}} = frac{1}{3})
Ответ
ОТВЕТ: 2,25. Решение
Воспользуемся свойством пропорции: (frac{{3sin alpha — 5cos alpha + 2}}{{sin alpha + 3cos alpha + 6}} = frac{1}{3},,,,,, Leftrightarrow ,,,,,,3left( {3sin alpha — 5cos alpha + 2} right) = sin alpha + 3cos alpha + 6,,,,,, Leftrightarrow ) ( Leftrightarrow ,,,,,,9sin alpha — 15cos alpha + 6 = sin alpha + 3cos alpha + 6,,,,, Leftrightarrow ,,,,,8sin alpha = 18cos alpha ,,,,, Leftrightarrow ) ( Leftrightarrow ,,,,,frac{{sin alpha }}{{cos alpha }} = frac{{18}}{8},,,,, Leftrightarrow ,,,,,tgalpha = 2,25.) Ответ: 2,25. |
Задача 45. Найдите значение выражения (7cos left( {{\pi } + beta } right) — 2sin left( {frac{{\pi }}{2} + beta } right)), если (cos beta = — frac{1}{3})
Ответ
ОТВЕТ: 3. Решение
(7cos left( {pi + beta } right) — 2sin left( {frac{pi }{2} + beta } right) = — 7cos beta — 2cos beta = — 9cos beta = — 9 cdot left( { — frac{1}{3}} right) = 3.) Ответ: 3. |
Задача 46. Найдите значение выражения (5sin left( {alpha — 7{\pi }} right) — 11cos left( {frac{{3{\pi }}}{2} + alpha } right)), если (sin alpha = — 0,25)
Ответ
ОТВЕТ: 4. Решение
(5sin left( {alpha — 7pi } right) — 11cos left( {frac{{3pi }}{2} + alpha } right) = — 5sin alpha — 11sin alpha = — 16sin alpha = — 16 cdot left( { — 0,25} right) = 4.) Ответ: 4. |
Задача 47. Найдите (3cos 2alpha ), если (cos alpha = frac{1}{2})
Ответ
ОТВЕТ: — 1,5. Решение
Воспользуемся формулой косинус двойного угла: (cos 2alpha = 2{cos ^2}alpha — 1) (3cos 2alpha = 3left( {2{{cos }^2}alpha — 1} right) = 3 cdot left( {2 cdot {{left( {frac{1}{2}} right)}^2} — 1} right) = 3 cdot left( {2 cdot frac{1}{4} — 1} right) = 3 cdot left( { — frac{1}{2}} right) = — 1,5.) Ответ: — 1,5. |