Задания
Версия для печати и копирования в MS Word
Тип 7 № 8047
На рисунке изображен график производной функции f(x), определенной на интервале (−16; 4). Найдите количество точек экстремума функции f(x) на отрезке [−14; 2].
Спрятать решение
Решение.
Точки экстремума соответствуют точкам смены знака производной — изображенным на графике нулям производной. Производная обращается в нуль в точках −13, −11, −9, −7. На отрезке [−14; 2] функция имеет 4 точки экстремума.
Ответ: 4.
Аналоги к заданию № 27496: 6427 8039 8047 7805 7811 7813 7815 7819 7827 7831 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.2.1 Монотонность функции. Промежутки возрастания и убывания, 3.2.5 Точки экстремума функции, 3.2.6 Наибольшее и наименьшее значения функции, 4.1.1 Понятие о производной функции, геометрический смысл производной, 4.2.1 Применение производной к исследованию функций и построению графиков
Спрятать решение
·
Прототип задания
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
Гость 08.04.2016 15:30
есть еще точка экстремума, это точка 3
Ирина Сафиулина
Добрый день!
Точка х=3 не входит в заданный промежуток
ЕГЭ по математике — Профиль 2023. Открытый банк заданий с ответами.
Тренировочный вариант и ответы с решением пробник ЕГЭ 2023 по информатике 11 класс ФИПИ состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера. На выполнение экзаменационной работы по информатике и ИКТ отводится 3 часа 55 минут (235 минут).
Скачать тренировочный вариант с ответами
Скачать файлы для варианта
Другие тренировочные варианты
ege_2023_informatika_23_02
Разбор варианта. ЕГЭ по Информатике 2023
1. На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. В таблице в левом столбце указаны номера пунктов, откуда совершается движение, в первой строке – куда. Определите минимально возможную длину пути BDE. Передвигаться можно только по указанным дорогам.
2. Логическая функция F задаётся выражением w ∨ (y → z) ∧ x. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какой столбец в таблице каждой переменной в выражении. В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
3. В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады августа 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок внесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
4. Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известно, что слово СПОРТЛОТО кодируется как 10010100110011110000100. Какой код соответствует букве Л, если известно, что коды подбирались под минимальную длину заданного слова.
5. На вход алгоритма подаётся натуральное число N большее 4. Алгоритм строит по нему новое число R следующим образом. 1. Строится двоичная запись числа N. 2. Далее эта запись обрабатывается по следующему правилу: а) если количество цифр в двоичной записи числа нечётное, то центральный бит двоичного представления инвертируется; б) если количество цифр в двоичной записи числа чётное, то два центральных бита двоичного представления инвертируется; Например, для исходного числа 610 = 1102 результатом является число 1002 = 410, а для исходного числа 910 = 10012 результатом является число 11112 = 1510. Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 100 и меньшее N. В ответе запишите это число в десятичной системе счисления.
6. Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 5 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n – целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n – целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m – целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз.
7. Спутник каждую секунду делает снимок 20 на 7.6 километра. Размер пикселя на местности 0.65х0.65 метра. Цвет пикселя выбирается из палитры в 256 цветов. Оцените объем памяти (в МБ) для хранения одного изображения. Сжатие не производится. Ответ округлите до большего целого числа.
8. Определите количество десятизначных чисел, записанных в восьмеричной системе счисления, в записи которых ровно пять цифры 7 и при этом никакая нечетная цифра не стоит рядом с цифрой 7.
9. Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнено строго одно из условий: – в строке есть повторяющиеся числа; – в строке есть ровно три нечетных числа. В ответе запишите только число.
10. Текст произведения Ника Горькавого «Теория Катастроф» представлен в виде текстового файла. Откройте файл и определите, сколько бифуркационных технологий содержал итоговый список. В ответе запишите только число.
11. Вася решил закодировать персональные данные всех 1347 учеников всей школы. Для каждого ученика был сформирован ID из нескольких полей: номер класса, буква (а,б,в,г,д), пол, день и месяц рождения, номер имени по таблице имен (всего 103), номер фамилии по таблице фамилий (всего 733). Сперва Вася для каждого поля выделил минимальное количество байт. Затем попробовал закодировать все поля непрерывной битовой строкой и для каждого ID выделил минимальное количество байт. Сколько байт сэкономил Вася во втором случае для кодирования всех учеников школы?
12. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр) А) заменить(v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить(111, 27) преобразует строку 05111150 в строку 0512750. Если в строке нет вхождений цепочки v, то выполнение команды заменить(v, w) не меняет эту строку. Б) нашлось(v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется. Цикл выполняется, пока условие истинно.
13. На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Определите количество различных путей ненулевой длины, которые начинаются и заканчиваются в городе Е, не содержат этот город в качестве промежуточного пункта и проходят через промежуточные города не более одного раза.
14. Дано выражение 12×4536 + 1×12345 В записи чисел переменной x обозначена неизвестная цифра из допустимого алфавита для указанных систем счисления. Определите наибольшее значение x, при котором значение данного арифметического выражения кратно 13. Для найденного значения x вычислите частное от деления значения арифметического выражения на 13 и укажите его в ответе в десятичной системе счисления.
15. На числовой прямой даны два отрезка: B = [23;37] и C = [41;73]. Укажите наименьшую длину такого отрезка А, для которого логическое выражение ¬((¬(x ∈ B) → (x ∈ C)) → (x ∈ A)) ложно (т.е. принимает значение 0) при любом значении переменной x.
16. Обозначим частное от деления натурального числа a на натуральное число b как a//b, а остаток как a%b. Например, 17//3 = 5, 17%3 = 2. Алгоритм вычисления значения функции F(n), где n – целое неотрицательное число, задан следующими соотношениями: F(n) = n при n < 10; F(n) = F(n//10) + F(n%10) , если 10 ⩽ n < 1000; F(n) = F(n//1000) — F(n%1000) , если n ⩾ 1000. Определите количество значений n, не превышающих 106 , для которых F(n) = 0?
17. В файле содержится последовательность целых чисел по модулю менее 10000. а) рассматриваются только пары в которых строго одно число оканчивается на 7. б) квадрат разности элементов пары меньше модуля разности квадратов хотя бы одной пары (отвечающей условию а). В ответе запишите два числа: сначала количество найденных пар, затем минимальный квадрат разности. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
18. Квадрат разлинован на N×N клеток (1 < N < 30). Роботу нужно перейти через поле с севера (верхняя строка) на юг (нижняя строка). Он может начать переход с любой клетки первой строки и закончить на любой клетке нижней строки. С каждым шагом Робот переходит в следующую строку и может за одно перемещение попасть в одну из трех клеток следующей строки (на клетку прямо вниз или на одну из клеток слева/справа от неё). Ходы только влево или вправо (без смены строки), назад (в предыдущую строку) и за границы поля запрещены. В каждой клетке поля лежит монета достоинством от 1 до 100. Робот собирает все монеты по пройденному маршруту. Определите максимальную возможную денежную сумму и количество монет с чётным значением, которую может собрать Робот, пройдя с северной границы поля (сверху) до южной границы поля (снизу). В ответе укажите два числа: сначала максимальную сумму, затем количество монет с четным значением по маршруту с максимальной суммой.
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в меньшую кучу один или три камня. Изменять количество камней в большей куче не разрешается. Игра завершается, когда количество камней в кучах становится равным. Победителем считается игрок, сделавший последний ход, то есть первым сравнявшим количество камней в двух кучах. Игроки играют рационально, т.е. без ошибок. В начальный момент в первой куче было 13 камней, а во второй – S камней, 1 ≤ S ≤ 23? Укажите такое минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.
20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия: – Петя не может выиграть за один ход; – Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответ в порядке возрастания
21. Для игры, описанной в задании 19, найдите два значения S, при котором одновременно выполняются три условия: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом; – Петя может выбирать, каким ходом выиграет Ваня;
22. В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0. Определите максимальное количество процессов, которые завершатся за 73 мс, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
23. У исполнителя Кузнечик есть 4 команды: 1. Прибавить 1 2. Прибавить 3 3. Вычесть 1 4. Вычесть 3 Сколько существует программ, для которых при исходном числе 42 результатом будет являться число 42, при этом траектория вычисления содержит только числа от 40 до 49, притом не более 1 раза, т.е. без повторов.
24. Текстовый файл содержит строку из десятичных цифр и букв латинского алфавита. Найдите минимальную длину подстроки включающей все шестнадцатеричные цифры. Строка может включать повторяющиеся цифры и другие символы. В ответе укажите найденную длину..
25. Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы: символ «?» означает ровно одну произвольную цифру; символ «*» означает любую последовательность цифр произвольной длины; в том числе «*» может задавать и пустую последовательность. Например, маске 123*4?5 соответствуют числа 123405 и 12300405. Найдите все натуральные числа, не превышающие 1010, которые соответствуют маске 1?1?1?1*1 и при этом без остатка делятся на 2023, а сумма цифр числа равна 22. В ответе запишите все найденные числа в порядке возрастания. Количество строк в таблице для ответа избыточно.
26. В сетевом приложении реализован кэш размером V МБ для файлов размером от 1 до 999 МБ. Пользователи запрашивают файлы в порядке, заданном в исходном файле. Алгоритм кэширования сперва заполняет весь кэш. Для размещение следующего файла кэш нужно освободить. Для этого из кэша удаляется один подходящий файл, так чтобы свободное место было минимальным и достаточным для размещения нового файла. Если удаление даже самого большого файла не освобождает необходимого места, то удаляется самый большой файл и алгоритм рекурсивно повторяется, пока не будет достаточного места для нового файла.
27. Дана последовательность натуральных чисел. Расстояние между элементами последовательности – это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними равно 1, если два элемента стоят через один – расстояние равно 2 и т. д. Назовём тройкой любые три числа из последовательности, расстояние между которыми не меньше 17. Необходимо определить количество троек, в которых сумма чисел в тройке делится без остатка на 7717.
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.
Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.
Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.
Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.
Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.
Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.
Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.
Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.
Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .
Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.
Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?
Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.
Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.
Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).
Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.
Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.
Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]
Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.
Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.
Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.
Задание 17.
Найдите все значения a, при каждом из которых система уравнений
begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}
не имеет решений.
Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?
Источник варианта: СтатГрад/statgrad.org.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 3
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.
- ОГЭ по математике
Подборка тренировочных вариантов по математике для 9 класса в формате ОГЭ 2023 с ответами и критериями оценивания.
Изменений относительно 2022 года нет, потому актуальны и варианты прошлого года.
Тренировочные варианты ОГЭ 2023 по математике
alexlarin.net | уровень 1 | уровень 2 |
вариант 327 | larin22-oge-327-1 | larin22-oge-327 |
вариант 328 | larin22-oge-328-1 | larin22-oge-328 |
вариант 329 | larin23-oge-329-1 | larin23-oge-329 |
вариант 330 | larin23-oge-330-1 | larin23-oge-330 |
вариант 331 | larin23-oge-331-1 | larin23-oge-331 |
вариант 332 | larin23-oge-332-1 | larin23-oge-332 |
вариант 333 | larin23-oge-333-1 | larin23-oge-333 |
вариант 334 | larin23-oge-334-1 | larin23-oge-334 |
вариант 335 | larin23-oge-335-1 | larin23-oge-335 |
вариант 336 | larin23-oge-336-1 | larin23-oge-336 |
вариант 337 | larin23-oge-337-1 | larin23-oge-337 |
вариант 338 | larin23-oge-338-1 | larin23-oge-338 |
вариант 339 | larin23-oge-339-1 | larin23-oge-339 |
вариант 340 | larin23-oge-340-1 | larin23-oge-340 |
вариант 341 | larin23-oge-341-1 | larin23-oge-341 |
вариант 342 | larin23-oge-342-1 | larin23-oge-342 |
вариант 343 | larin23-oge-343-1 | larin23-oge-343 |
вариант 344 | larin23-oge-344-1 | larin23-oge-344 |
вариант 345 | larin23-oge-345-1 | larin23-oge-345 |
вариант 346 | larin23-oge-346-1 | larin23-oge-346 |
вариант 347 | larin23-oge-347-1 | larin23-oge-347 |
вариант 348 | larin23-oge-348-1 | larin23-oge-348 |
вариант 349 | larin23-oge-349-1 | larin23-oge-349 |
вариант 350 | larin23-oge-350-1 | larin23-oge-350 |
вариант 351 | larin23-oge-351-1 | larin23-oge-351 |
вариант 352 | larin23-oge-352-1 | larin23-oge-352 |
math100.ru | |
Вариант 54 | math100-oge-54 |
Вариант 55 | math100-oge-55 |
Вариант 56 | math100-oge-56 |
Вариант 57 | math100-oge-57 |
Вариант 58 | math100-oge-58 |
Вариант 59 | math100-oge-59 |
Вариант 60 | math100-oge-60 |
Вариант 61 | math100-oge-61 |
Вариант 62 | math100-oge-62 |
Вариант 63 | math100-oge-63 |
Вариант 64 | math100-oge-64 |
Вариант 65 | math100-oge-65 |
Вариант 66 | math100-oge-66 |
Вариант 67 | math100-oge-67 |
Вариант 68 | math100-oge-68 |
Вариант 69 | math100-oge-69 |
Вариант 70 | math100-oge-70 |
Вариант 71 | math100-oge-71 |
Вариант 72 | math100-oge-72 |
Вариант 73 | math100-oge-73 |
Вариант 74 | math100-oge-74 |
Вариант 75 | math100-oge-75 |
Вариант 76 | math100-oge-76 |
Вариант 77 | math100-oge-77 |
Вариант 78 | math100-oge-78 |
Вариант 79 | math100-oge-79 |
Вариант 80 | math100-oge-80 |
time4math.ru | |
Варианты 1-2 | ответы |
Варианты 3-4 | ответы |
Варианты 5-6 | ответы |
Варианты 7-8 | ответы |
Варианты 9-10 | ответы |
Варианты 11-12 | ответы |
Варианты 13-14 | ответы |
Варианты 15-16 | ответы |
vk.com/pezhirovschool | |
Вариант 1 (с решением) | скачать |
Вариант 2 (с решением) | скачать |
Вариант 3 (с решением) | скачать |
Вариант 4 (с решением) | скачать |
Вариант 5 (с ответами) | скачать |
Вариант 6 | скачать |
vk.com/oge100ballov | |
variant 1 | скачать |
variant 2 | скачать |
variant 3 | скачать |
variant 4 | скачать |
yagubov.ru | |
вариант 33 (сентябрь) | скачать |
вариант 34 (октябрь) | скачать |
вариант 35 (ноябрь) | скачать |
вариант 36 (декабрь) | скачать |
вариант 37 (январь) | скачать |
вариант 38 (февраль) | скачать |
вариант 39 (март) | скачать |
vk.com/math.studying | |
вариант 1 | ответы |
вариант 2 | ответы |
vk.com/matematicalate | |
variant 1 | скачать |
variant 2 | скачать |
variant 3 | скачать |
Характеристика структуры и содержания КИМ ОГЭ 2023 по математике
Работа содержит 25 заданий и состоит из двух частей.
Часть 1 содержит 19 заданий с кратким ответом; часть 2 – 6 заданий с развёрнутым ответом. При проверке базовой математической компетентности экзаменуемые должны продемонстрировать владение основными алгоритмами, знание и понимание ключевых элементов содержания (математических понятий, их свойств, приёмов решения задач и проч.), умение пользоваться математической записью, применять знания к решению математических задач, не сводящихся к прямому применению алгоритма, а также применять математические знания в простейших практических ситуациях.
Задания части 2 направлены на проверку владения материалом на повышенном и высоком уровнях. Их назначение – дифференцировать хорошо успевающих школьников по уровням подготовки, выявить наиболее подготовленных обучающихся, составляющих потенциальный контингент профильных классов.
Эта часть содержит задания повышенного и высокого уровней сложности из различных разделов математики.
Все задания требуют записи решений и ответа. Задания расположены по нарастанию трудности: от относительно простых до сложных, предполагающих свободное владение материалом и высокий уровень математической культуры.
Связанные страницы:
Скотт МакКол – обычный парень, который совместно со своим лучшим ином Стайлзом решил сходить в лес. Для чего же?Друзья просто желали посмотреть на труп, который совершенно не так давно нашла милиция. Когда парнишки оказались в лесу, их ожидало разочарование: заместо мертвого тела они узрели полицейских, которые принудили ребят разойтись по домам. Лишь вот Скотт не выполнил указ. Отбившись от преследования, парень остался посреди темного леса. Но его одиночество нарушилось внезапным нападением существа, схожего на волка с человечьими чертами. Оно укусило юношу, после чего же скрылось в лесу.
Скотт не придает этому значения, пока в его теле не начинают происходить странноватые и невообразимые конфигурации. Его реакция и зрение стали намного лучше, а слух приметно обострился…
- Название: Teen Wolf
- Год выхода: 2011-06-05
- Страна: США
- Режиссер: Рассел Малкэй, Тим Эндрю, Дженнифер Линч
- Статус сериала: Завершен
- Перевод: VO-production
- Качество: FHD (1080p) (43 мин)
- Возраст: Сериал для зрителей старше 16+ лет
-
8.0
7.6
- В главных ролях: Тайлер Пози, Холлэнд Роден, Дилан О’Брайен, Линден Эшби, ДжейАр Борн, Мелисса Понцио, Тайлер Хэклин, Шелли Хенниг, Дилан Спрейберри, Кристал Рид
- Жанры: Ужасы, Фэнтези, Мистический, Комедия, Боевик, Триллер, Зарубежный, Мелодрама, Драма
6 сезон 20 серия
Волчонок смотреть онлайн в хорошем качестве бесплатно
Смотреть онлайн
Плеер 2
Плеер 3
Свет