Фазовые переходы
-
Темы кодификатора ЕГЭ: изменение агрегатных состояний вещества, плавление и кристаллизация, испарение и конденсация, кипение жидкости, изменение энергии в фазовых переходах.
-
Плавление и кристаллизация
-
График плавления
-
Удельная теплота плавления
-
График кристаллизации
-
Парообразование и конденсация
-
Кипение
-
График кипения
-
График конденсации
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: изменение агрегатных состояний вещества, плавление и кристаллизация, испарение и конденсация, кипение жидкости, изменение энергии в фазовых переходах.
Лёд, вода и водяной пар — примеры трёх агрегатных состояний вещества: твёрдого, жидкого и газообразного. В каком именно агрегатном состоянии находится данное вещество — зависит от его температуры и других внешних условий, в которых оно находится.
При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы — изменения агрегатных состояний вещества тела. Нас будут интересовать следующие фазовые переходы.
• Плавление (твёрдое тело жидкость) и кристаллизация (жидкость
твёрдое тело).
• Парообразование (жидкость пар) и конденсация (пар
жидкость).
к оглавлению ▴
Плавление и кристаллизация
Большинство твёрдых тел являются кристаллическими, т.е. имеют кристаллическую решётку — строго определённое, периодически повторяющееся в пространстве расположение своих частиц.
Частицы (атомы или молекулы) кристаллического твёрдого тела совершают тепловые колебания вблизи фиксированных положений равновесия — узлов кристаллической решётки.
Например, узлы кристаллической решётки поваренной соли — это вершины кубических клеток «трёхмерной клетчатой бумаги» (см. рис. 1, на котором шарики большего размера обозначают атомы хлора (изображение с сайта en.wikipedia.org.)); если дать испариться воде из раствора соли, то оставшаяся соль будет нагромождением маленьких кубиков.
Рис. 1. Кристаллическая решётка
Плавлением называется превращение кристаллического твёрдого тела в жидкость. Расплавить можно любое тело — для этого нужно нагреть его до температуры плавления, которая зависит лишь от вещества тела, но не от его формы или размеров. Температуру плавления данного вещества можно определить из таблиц.
Наоборот, если охлаждать жидкость, то рано или поздно она перейдёт в твёрдое состояние. Превращение жидкости в кристаллическое твёрдое тело называется кристаллизацией или отвердеванием. Таким образом, плавление и кристаллизация являются взаимно обратными процессами.
Температура, при которой жикость кристаллизуется, называется температурой кристаллизации. Оказывается, что температура кристаллизации равна температуре плавления: при данной температуре могут протекать оба процесса. Так, при лёд плавится, а вода кристаллизуется; что именно происходит в каждом конкретном случае — зависит от внешних условий (например, подводится ли тепло к веществу или отводится от него).
Как происходят плавление и кристаллизация? Каков их механизм? Для уяснения сути этих процессов рассмотрим графики зависимости температуры тела от времени при его нагревании и охлаждении — так называемые графики плавления и кристаллизации.
к оглавлению ▴
График плавления
Начнём с графика плавления (рис. 2). Пусть в начальный момент времени (точка на графике) тело является кристаллическим и имеет некоторую температуру
.
Рис. 2. График плавления
Затем к телу начинает подводиться тепло (скажем, тело поместили в плавильную печь), и температура тела повышается до величины — температуры плавления данного вещества. Это участок
графика.
На участке тело получает количество теплоты
где — удельная теплоёмкость вещества твёрдого тела,
— масса тела.
При достижении температуры плавления (в точке ) ситуация качественно меняется. Несмотря на то, что тепло продолжает подводиться, температура тела остаётся неизменной. На участке
происходит плавление тела — его постепенный переход из твёрдого состояния в жидкое. Внутри участка
мы имеем смесь твёрдого вещества и жидкости, и чем ближе к точке
, тем меньше остаётся твёрдого вещества и тем больше появляется жидкости. Наконец, в точке
от исходного твёрдого тела не осталось ничего: оно полностью превратилось в жидкость.
Участок соответствует дальнейшему нагреванию жидкости (или, как говорят, расплава). На этом участке жидкость поглощает количество теплоты
где — удельная теплоёмкость жидкости.
Но нас сейчас больше всего интересует — участок фазового перехода. Почему не меняется температура смеси на этом участке? Тепло-то подводится!
Вернёмся назад, к началу процесса нагревания. Повышение температуры твёрдого тела на участке есть результат возрастания интенсивности колебаний его частиц в узлах кристаллической решётки: подводимое тепло идёт на увеличение кинетической энергии частиц тела (на самом деле некоторая часть подводимого тепла расходуется на совершение работы по увеличению средних расстояний между частицами — как мы знаем, тела при нагревании расширяются. Однако эта часть столь мала, что её можно не принимать во внимание.).
Кристаллическая решётка расшатывается всё сильнее и сильнее, и при температуре плавления размах колебаний достигает той предельной величины, при которой силы притяжения между частицами ещё способны обеспечивать их упорядоченное расположение друг относительно друга. Твёрдое тело начинает «трещать по швам», и дальнейшее нагревание разрушает кристаллическую решётку — так начинается плавление на участке .
С этого момента всё подводимое тепло идёт на совершение работы по разрыву связей, удерживающих частицы в узлах кристаллической решётки, т.е. на увеличение потенциальной энергии частиц. Кинетическая энергия частиц при этом остаётся прежней, так что температура тела не меняется. В точке кристаллическая структура исчезает полностью, разрушать больше нечего, и подводимое тепло снова идёт на увеличение кинетической энергии частиц — на нагревание расплава.
к оглавлению ▴
Удельная теплота плавления
Итак, для превращения твёрдого тела в жидкость мало довести его до температуры плавления. Необходимо дополнительно (уже при температуре плавления) сообщить телу некоторое количество теплоты для полного разрушения кристаллической решётки (т.е. для прохождения участка
).
Это количество теплоты идёт на увеличение потенциальной энергии взаимодействия частиц. Следовательно, внутренняя энергия расплава в точке больше внутренней энергии твёрдого тела в точке
на величину
.
Опыт показывает, что величина прямо пропорциональна массе тела:
Коэффициент пропорциональности не зависит от формы и размеров тела и является характеристикой вещества. Он называется удельной теплотой плавления вещества. Удельную теплоту плавления данного вещества можно найти в таблицах.
Удельная теплота плавления численно равна количеству теплоты, необходимому для превращения в жидкость одного килограмма данного кристаллического вещества, доведённого до температуры плавления.
Так, удельная теплота плавления льда равна кДж/кг, свинца —
кДж/кг. Мы видим, что для разрушения кристаллической решётки льда требуется почти в
раз больше энергии! Лёд относится к веществам с большой удельной теплотой плавления и поэтому весной тает не сразу (природа приняла свои меры: обладай лёд такой же удельной теплотой плавления, как и свинец, вся масса льда и снега таяла бы с первыми оттепелями, затопляя всё вокруг).
к оглавлению ▴
График кристаллизации
Теперь перейдём к рассмотрению кристаллизации — процесса, обратного плавлению. Начинаем с точки предыдущего рисунка. Предположим, что в точке
нагревание расплава прекратилось (печку выключили и расплав выставили на воздух). Дальнейшее изменение температуры расплава представлено на рис. (3).
Рис. 3. График кристаллизации
Жидкость остывает (участок ), пока её температура не достигнет температуры кристаллизации, которая совпадает с температурой плавления
.
С этого момента температура расплава меняться перестаёт, хотя тепло по-прежнему уходит от него в окружающую среду. На участке происходит кристаллизация расплава — его постепенный переход в твёрдое состояние. Внутри участка
мы снова имеем смесь твёрдой и жидкой фаз, и чем ближе к точке
, тем больше становится твёрдого вещества и тем меньше — жидкости.Наконец,вточке
жидкостинеостаётсявовсе—онаполностьюкристаллизовалась.
Следующий участок соответствует дальнейшему остыванию твёрдого тела, возникшего в результате кристаллизации.
Нас опять-таки интересует участок фазового перехода : почему температура остаётся неизменной, несмотря на уход тепла?
Снова вернёмся в точку . После прекращения подачи тепла температура расплава понижается, так как его частицы постепенно теряют кинетическую энергию в результате соударений с молекулами окружающей среды и излучения электромагнитных волн.
Когда температура расплава понизится до температуры кристаллизации (точка ), его частицы замедлятся настолько, что силы притяжения окажутся в состоянии «развернуть» их должным образом и придать им строго определённую взаимную ориентацию в пространстве. Так возникнут условия для зарождения кристаллической решётки, и она действительно начнёт формироваться благодаря дальнейшему уходу энергии из расплава в окружающее пространство.
Одновременно начнётся встречный процесс выделения энергии: когда частицы занимают свои места в узлах кристаллической решётки, их потенциальная энергия резко уменьшается, за счёт чего увеличивается их кинетическая энергия — кристаллизующаяся жидкость является источником тепла (часто у проруби можно увидеть сидящих птиц. Они там греются!). Выделяющееся в ходе кристаллизации тепло в точности компенсирует потерю тепла в окружающую среду, и потому температура на участке не меняется.
В точке расплав исчезает, а вместе с завершением кристаллизации исчезает и этот внутренний «генератор» тепла. Вследствие продолжающегося рассеяния энергии во внешнюю среду понижение температуры возобновится, но только остывать уже будет образовавшееся твёрдое тело (участок
).
Как показывает опыт, при кристаллизации на участке выделяется ровно то же самое количество теплоты
, которое было поглощено при плавлении на участке
.
к оглавлению ▴
Парообразование и конденсация
Парообразование — это переход жидкости в газообразное состояние (в пар). Существует два способа парообразования: испарение и кипение.
Испарением называется парообразование, которое происходит при любой температуре со свободной поверхности жидкости. Как вы помните из листка «Насыщенный пар», причиной испарения является вылет из жидкости наиболее быстрых молекул, которые способны преодолеть силы межмолекулярного притяжения. Эти молекулы и образуют пар над поверхностью жидкости.
Разные жидкости испаряются с разными скоростями: чем больше силы притяжения молекул друг к другу — тем меньшее число молекул в единицу времени окажутся в состоянии их преодолеть и вылететь наружу, и тем меньше скорость испарения. Быстро испаряются эфир, ацетон, спирт (их иногда называют летучими жидкостями), медленнее — вода, намного медленнее воды испаряются масло и ртуть.
Скорость испарения растёт с повышением температуры (в жару бельё высохнет скорее), поскольку увеличивается средняя кинетическая энергия молекул жидкости, и тем самым возрастает число быстрых молекул, способных покинуть её пределы.
Скорость испарения зависит от площади поверхности жидкости: чем больше площадь, тем большее число молекул получают доступ к поверхности, и испарение идёт быстрее (вот почему при развешивании белья его тщательно расправляют).
Одновременно с испарением наблюдается и обратный процесс: молекулы пара, совершая беспорядочное движение над поверхностью жидкости, частично возвращаются обратно в жидкость. Превращение пара в жидкость называется конденсацией.
Конденсация замедляет испарение жидкости. Так, в сухом воздухе бельё высохнет быстрее, чем во влажном. Быстрее оно высохнет и на ветру: пар сносится ветром, и испарение идёт более интенсивно
В некоторых ситуациях скорость конденсации может оказаться равной скорости испарения. Тогда оба процесса компенсируют друг друга и наступает динамическое равновесие: из плотно закупоренной бутылки жидкость не улетучивается годами, а над поверхностью жидкости в этом случае находится насыщенный пар.
Конденсацию водяного пара в атмосфере мы постоянно наблюдаем в виде облаков, дождей и выпадающей по утрам росы; именно испарение и конденсация обеспечивают круговорот воды в природе, поддерживая жизнь на Земле.
Поскольку испарение — это уход из жидкости самых быстрых молекул, в процессе испарения средняя кинетическая энергия молекул жидкости уменьшается, т.е. жидкость остывает. Вам хорошо знакомо ощущение прохлады и порой даже зябкости (особенно при ветре), когда выходишь из воды: вода, испаряясь по всей поверхности тела, уносит тепло, ветер же ускоряет процесс испарения (nеперь понятно, зачем мы дуем на горячий чай. Кстати сказать, ещё лучше при этом втягивать воздух в себя, поскольку на поверхность чая тогда приходит сухой окружающий воздух, а не влажный воздух из наших лёгких ;-)).
Ту же прохладу можно почувствовать, если провести по руке кусочком ваты, смоченным в летучем растворителе (скажем, в ацетоне или жидкости для снятия лака). В сорокаградусную жару благодаря усиленному испарению влаги через поры нашего тела мы сохраняем свою температуру на уровне нормальной; не будь этого терморегулирующего механизма, в такую жару мы бы попросту погибли.
Наоборот, в процессе конденсации жидкость нагревается: молекулы пара при возвращении в жидкость разгоняются силами притяжения со стороны находящихся поблизости молекул жидкости, в результате чего средняя кинетическая энергия молекул жидкости увеличивается (сравните это явление с выделением энергии при кристаллизации расплава!).
к оглавлению ▴
Кипение
Кипение — это парообразование, происходящее по всему объёму жидкости.
Кипение оказывается возможным потому, что в жидкости всегда растворено какое-то количество воздуха, попавшего туда в результате диффузии. При нагревании жидкости этот воздух расширяется, пузырьки воздуха постепенно увеличиваются в размерах и становятся видимы невооружённым глазом (в кастрюле с водой они осаждают дно и стенки). Внутри воздушных пузырьков находится насыщенный пар, давление которого, как вы помните, быстро растёт с повышением температуры.
Чем крупнее становятся пузырьки, тем большая действует на них архимедова сила, и определённого момента начинается отрыв и всплытие пузырьков. Поднимаясь вверх, пузырьки попадают в менее нагретые слои жидкости; пар в них конденсируется, и пузырьки сжимаются опять. Схлопывание пузырьков вызывает знакомый нам шум, предшествующий закипанию чайника. Наконец, с течением времени вся жидкость равномерно прогревается, пузырьки достигают поверхности и лопаются, выбрасывая наружу воздух и пар — шум сменяется бульканьем, жидкость кипит.
Пузырьки, таким образом, служат «проводниками» пара изнутри жидкости на её поверхность. При кипении наряду с обычным испарением идёт превращение жидкости в пар по всему объёму — испарение внутрь воздушных пузырьков с последующим выводом пара наружу. Вот почему кипящая жидкость улетучивается очень быстро: чайник, из которого вода испарялась бы много дней, выкипит за полчаса.
В отличие от испарения, происходящего при любой температуре, жидкость начинает кипеть только при достижении температуры кипения — именно той температуры, при которой пузырьки воздуха оказываются в состоянии всплыть и добраться до поверхности. При температуре кипения давление насыщенного пара становится равно внешнему давлению на жидкость (в частности, атмосферному давлению). Соответственно, чем больше внешнее давление, тем при более высокой температуре начнётся кипение.
При нормальном атмосферном давлении ( атм или
Па) температура кипения воды равна
. Поэтому давление насыщенного водяного пара при температуре
равно
Па. Этот факт необходимо знать для решения задач — часто он считается известным по умолчанию.
На вершине Эльбруса атмосферное давление равно атм, и вода там закипит при температуре
. А под давлением
атм вода начнёт кипеть только при
.
Температура кипения (при нормальном атмосферном давлении) является строго определённой для данной жидкости величиной (температуры кипения, приводимые в таблицах учебников и справочников — это температуры кипения химически чистых жидкостей. Наличие в жидкости примесей может изменять температуру кипения. Скажем, водопроводная вода содержит растворённый хлор и некоторые соли, поэтому её температура кипения при нормальном атмосферном давлении может несколько отличаться от ). Так, спирт кипит при
, эфир — при
, ртуть — при
. Обратите внимание: чем более летучей является жидкость, тем ниже её температура кипения. В таблице температур кипения мы видим также, что кислород кипит при
. Значит, при обычных температурах кислород — это газ!
Мы знаем, что если чайник снять с огня, то кипение тут же прекратится — процесс кипения требует непрерывного подвода тепла. Вместе с тем, температура воды в чайнике после закипания перестаёт меняться, всё время оставаясь равной . Куда же при этом девается подводимое тепло?
Ситуация аналогична процессу плавления: тепло идёт на увеличение потенциальной энергии молекул. В данном случае — на совершение работы по удалению молекул на такие расстояния, что силы притяжения окажутся неспособными удерживать молекулы неподалёку друг от друга, и жидкость будет переходить в газообразное состояние.
к оглавлению ▴
График кипения
Рассмотрим графическое представление процесса нагревания жидкости — так называемый график кипения (рис. 4).
Рис. 4. График кипения
Участок предшествует началу кипения. На участке
жидкость кипит, её масса уменьшается. В точке
жидкость выкипает полностью.
Чтобы пройти участок , т.е. чтобы жидкость, доведённую до температуры кипения, полностью превратить в пар, к ней нужно подвести некоторое количество теплоты
. Опыт показывает, что данное количество теплоты прямо пропорционально массе жидкости:
Коэффициент пропорциональности называется удельной теплотой парообразования жидкости (при температуре кипения). Удельная теплота парообразования численно равна количеству теплоты, которое нужно подвести к 1 кг жидкости, взятой при температуре кипения, чтобы полностью превратить её в пар.
Так, при удельная теплота парообразования воды равна
кДж/кг. Интересно сравнить её с удельной теплотой плавления льда (
кДж/кг) — удельная теплота парообразования почти в семь раз больше! Это и не удивительно: ведь для плавления льда нужно лишь разрушить упорядоченное расположение молекул воды в узлах кристаллической решётки; при этом расстояния между молекулами остаются примерно теми же. А вот для превращения воды в пар нужно совершить куда большую работу по разрыву всех связей между молекулами и удалению молекул на значительные расстояния друг от друга.
к оглавлению ▴
График конденсации
Процесс конденсации пара и последующего остывания жидкости выглядит на графике симметрично процессу нагревания и кипения. Вот соответствующий график конденсации для случая стоградусного водяного пара, наиболее часто встречающегося в задачах (рис. 5).
Рис. 5. График конденсации
В точке имеем водяной пар при
. На участке
идёт конденсация; внутри этого участка — смесь пара и воды при
. В точке
пара больше нет, имеется лишь вода при
. Участок
— остывание этой воды.
Опыт показывает, что при конденсации пара массы (т. е. при прохождении участка
) выделяется ровно то же самое количество теплоты
, которое было потрачено на превращение в пар жидкости массы
при данной температуре.
Давайте ради интереса сравним следующие количества теплоты:
• , которое выделяется при конденсации
г водяного пара;
• , которое выделяется при остывании получившейся стоградусной воды до температуры, скажем,
.
Имеем:
Дж;
Дж.
Эти числа наглядно показывают, что ожог паром гораздо страшнее ожога кипятком. При попадании на кожу кипятка выделяется «всего лишь» (кипяток остывает). А вот при ожоге паром сначала выделится на порядок большее количество теплоты
(пар конденсируется), образуется стоградусная вода, после чего добавится та же величина
при остывании этой воды.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Фазовые переходы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
09.03.2023
МКТ. Агрегатные состояния вещества
Раздел ОГЭ по физике: 2.1. Молекула – мельчайшая частица вещества. Агрегатные состояния вещества. Модели строения газов, жидкостей, твердых тел.
Основы молекулярно-кинетической теории
Существует множество явлений природы, которые можно понять, лишь зная строение вещества. К таким явлениям относятся, например, процессы нагревания и охлаждения тел, превращения вещества из твёрдого состояния в жидкое и газообразное, образования тумана и др.
В основе молекулярно-кинетической теории строения вещества лежат три положения:
- Все вещества состоят из мельчайших частиц – молекул и атомов. Молекулы разделены промежутками.
- Молекулы находятся в беспрерывном хаотическом движении.
- Между молекулами существуют силы взаимодействия (притяжение и отталкивание).
Атом – наименьшая частица химического элемента, которая является носителем его химических свойств. Атом состоит из положительно заряженного ядра и отрицательно заряженных электронов, движущихся по законам квантовой механики. Размеры атома ~ 10–10 м.
Молекула – наименьшая устойчивая частица вещества, обладающая всеми его химическими свойствами и состоящая из одинаковых (простое вещество) или разных (сложное вещество) атомов, объединённых химическими связями. При уменьшении расстояния между молекулами сила притяжения увеличивается медленнее, чем сила отталкивания.
Доказательством положения 1 МКТ служат факты, установленные в ходе наблюдений и экспериментов. К таким фактам относятся сжимаемость тел, растворимость веществ в воде и др. Так, если растворить немного краски в воде, то вода окрасится. Если каплю этой воды поместить в другой стакан с чистой водой, то эта вода также окрасится, только цвет её будет менее насыщенным. Можно повторить эту операцию ещё несколько раз. В каждом случае раствор будет окрашен, только более слабо, чем в предыдущем. Это значит, что капля краски делится на частицы. Приведённые факты и описанный опыт позволяют сделать вывод о том, что тела не сплошные, они состоят из маленьких частиц.
О том, что тела не сплошные, а между частицами, из которых они состоят, существуют промежутки, свидетельствует то, что газ в цилиндре можно сжать поршнем, можно сжать воздух в воздушном шаре, ластик или кусок резины, тела сжимаются при охлаждении и расширяются при нагревании. Так, ненагретый шарик свободно проходит через кольцо, диаметр которого чуть больше диаметра шарика. Если шарик нагреть в пламени спиртовки, то он в кольцо не пройдет.
Из опытов, которые были рассмотрены выше, следует, что вещество можно разделить на отдельные частицы, сохраняющие его свойства. Однако существует определённый предел деления вещества, т.е. существует самая маленькая частица вещества, которая сохраняет его свойства. Меньшей частицы, которая сохраняет свойства данного вещества, просто не существует. Наименьшая частица вещества, которая сохраняет его химические свойства, называется молекулой.
Слова «химические свойства» означают следующее. Поваренная соль — это вещество, представляющее собой соединение натрия и хлора (NaCl). Это соединение имеет определённые химические свойства, в частности, оно может вступать в реакцию с каким-либо другим веществом. При этом и кристалл соли, и молекула этого химического соединения будут вести себя в реакции одинаково. В этом смысле и говорят, что молекула сохраняет химические свойства данного вещества.
Опыты, которые были описаны, говорят о том, что молекулы имеют маленькие размеры. Увидеть их невооруженным глазом невозможно. Диаметр крупных молекул примерно 10–8 см. Поскольку молекулы так малы, то в телах их содержится очень много. Так, в 1 см3 воздуха содержится 27*1018 молекул.
Масса молекул, так же как и её размеры, очень мала. Например, масса одной молекулы водорода равна 3,3 * 10–24 г или 3,3 * 10–27 кг. Масса молекул одного и того же вещества одинакова. В настоящее время масса и размеры молекул различных веществ определены достаточно точно.
Молекулы состоят из ещё более мелких частиц, которые называются атомами. Например, молекулу воды можно разделить на водород и кислород. Однако водород и кислород уже другие вещества, и они обладают свойствами, отличными от свойств воды. Разложить молекулу воды на такие вещества можно в процессе химической реакции.
Молекула воды состоит из двух атомов водорода и одного атома кислорода; молекула поваренной соли — из одного атома натрия и одного атома хлора. Молекула сахара более сложная: она состоит из б атомов углерода, 12 атомов водорода и 6 атомов кислорода, а молекула белков состоит из тысячи атомов.
Существуют вещества, молекулы которых содержат однородные атомы. Например, молекула водорода состоит из двух атомов водорода, молекула кислорода — из двух атомов кислорода.
В природе есть вещества, которые состоят не из молекул, а из атомов. Их называют простыми. Примерами таких веществ могут служить алюминий, железо, ртуть, олово и др.
Любое вещество, независимо от того, как оно получено, содержит одни и те же атомы. Например, молекула воды, полученная при таянии льда, или из сока ягод, или налитая из-под крана, содержит два атома водорода и один атом кислорода. Молекула кислорода, извлечённая из атмосферного воздуха или полученная в ходе какой-либо химической реакции, содержит два атома кислорода.
- Положение 2 МКТ. Молекулы находятся в непрерывном беспорядочном (хаотическом) движении. Поскольку молекулы малы, то непосредственно наблюдать и доказать их движение невозможно. Однако целый ряд экспериментальных фактов и наблюдаемых явлений является следствием движения молекул. К ним относятся прежде всего броуновское движение и диффузия.
- Положение 3 МКТ. Молекулы взаимодействуют между собой, между ними действуют силы и притяжения и отталкивания.
Наблюдения показывают, что тела не распадаются на отдельные молекулы. Твёрдые тела, например деревянную палку, металлический стержень, трудно растянуть или сломать. Их также трудно и сжать. Нелегко сжать и жидкость в сосуде. Газы сжать легче, но всё равно нужно приложить для этого некоторое усилие.
Если тела не распадаются на молекулы, то очевидно, что молекулы притягиваются друг к другу. Взаимное притяжение удерживает молекулы друг около друга.
Если взять два свинцовых цилиндра и прижать их друг к другу, а затем отпустить, то они разъединятся. Если поверхности цилиндров зачистить и вновь прижать их друг к другу, то цилиндры «слипнутся». Они не разъединятся даже в том случае, если к нижнему цилиндру подвесить груз массой несколько килограммов. Этот результат можно объяснить так: цилиндры удерживаются вместе, поскольку между молекулами действуют силы притяжения.
До того, как цилиндры зачистили, они разъединялись, поскольку поверхности цилиндров имели неровности, которые были устранены при зачистке. Поверхности стали гладкими, и это привело к уменьшению расстояний между молекулами, находящимися на поверхностях цилиндров, когда их прижали друг к другу. Следовательно, силы притяжения между молекулами действуют на малых расстояниях. Эти расстояния равны примерно размерам молекулы. Именно поэтому нельзя разбив чашку и соединив осколки, получить целую чашку. Нельзя, разломив палку на две части и соединив их, получить целую палку.
Наряду с силами притяжения, между молекулами действуют силы отталкивания, которые препятствуют сближению молекул. Это объясняет то, что тела трудно сжать, сжатая пружина принимает первоначальную форму после прекращения действия на неё внешней силы. Это происходит потому, что при сжатии молекулы сближаются и силы отталкивания, действующие между ними, возрастают. Они и приводят пружину в первоначальное состояние.
При растяжении тела сила отталкивания уменьшается в большей степени, чем сила притяжения. При сжатии тела сила отталкивания увеличивается в большей степени, чем сила притяжения.
Три агрегатных состояния
Вещества могут находиться в трёх агрегатных состояниях: в твёрдом, жидком и газообразном. Свойства тел в разных агрегатных состояниях различны.
Так, твёрдое тело имеет определённую форму и определённый объём. Его трудно сжать или растянуть; если его сжать, а потом отпустить, то оно, как правило, восстанавливает свою форму и объём. Исключение составляют некоторые вещества, твёрдое состояние которых близко по своим свойствам к жидкостям (пластилин, воск, вар).
Жидкость принимает форму сосуда, в который она налита. Это говорит о том, что жидкость в условиях Земли не имеет своей формы. Только очень маленькие капли жидкости имеют свою форму — форму шара.
Объём жидкости изменить чрезвычайно трудно. Так, если набрать воду в насос, закрыть отверстие внизу и попытаться сжать воду, вряд ли это удастся. Это означает, что жидкость имеет собственный объём.
В отличие от жидкости объём газа изменить довольно легко. Это можно сделать, сжав руками мяч или воздушный шарик. Газ не имеет собственного объёма, он занимает полностью объём сосуда, в котором находится. То же можно сказать и о форме газа.
Таким образом, твёрдые тела имеют собственные форму и объём, жидкости имеют собственный объём, но не имеют собственной формы, газы не имеют ни собственного объёма, ни собственной формы. Твёрдые тела и жидкости трудно сжать, газы легко сжимаемы.
Объяснить эти свойства тел можно, используя знания о строении вещества.
Поскольку газы занимают весь предоставленный им объём, то очевидно, что силы притяжения между молекулами газа малы. А это значит, что молекулы находятся на сравнительно больших расстояниях друг от друга. В среднем они в десятки раз больше расстояний между молекулами жидкости. Это подтверждается тем, что газы легко сжимаемы.
Малые силы притяжения влияют и на характер движения молекул газа. Молекула газа движется прямолинейно до столкновения с другой молекулой, в результате чего меняет направление своего движения и движется прямолинейно до следующего столкновения.
Твёрдые тела трудно сжать. Это связано с тем, что молекулы находятся близко друг от друга и при небольшом изменении расстояния между ними резко возрастают силы отталкивания. Сравнительно большое притяжение между молекулами твёрдых тел приводит к тому, что они сохраняют форму и объём.
Атомы или молекулы большинства твёрдых тел расположены в определённом порядке и образуют кристаллическую решётку. На рисунке 63 изображена кристаллическая решётка поваренной соли. В узлах кристаллической решётки находятся атомы натрия (Na) и хлора (Сl). Частицы твёрдого тела (атомы или молекулы) совершают колебательное движение относительно узла кристаллической решётки.
В жидкостях молекулы расположены также довольно близко друг к другу. Поэтому их трудно сжать, и они имеют свой объём. Однако силы притяжения между молекулами жидкости не настолько велики, чтобы жидкость сохраняла свою форму.
Модели строения газа, жидкости и твёрдого тела
Конспект урока «Агрегатные состояния вещества».
Следующая тема: «».
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
Агрегатные состояния вещества
Любое вещество состоит из молекул, и физические свойства вещества определяются тем, как упорядочены молекулы и как они взаимодействуют между собой. В обычной жизни можно встретить вещества в трех состояниях:
- жидкость;
- газ;
- твердое состояние.
Эти состояния называются агрегатными состояниями вещества. Также существует и четвертое агрегатное состояние – плазма. Но шансы встретить его в быту крайне низки.
Твердые вещества
Это агрегатное состояние имеет любой предмет, который можно встретить в быту – дерево, камень, ложка и т.п. В твердых веществах молекулы и атомы располагаются на своих местах на близком расстоянии, сравнимом с размером самих молекул, и удерживаются межмолекулярными связями химического характера. Кинетическая энергия молекул не столь велика, чтобы преодолеть эти связи. Частицы лишь колеблются около определенного положения.
Если структура расположения имеет упорядоченную форму, то такие вещества относятся к кристаллическим. Если молекулы расположены хаотически, то вещество относится к категории аморфных.
Твердые вещества (при отсутствии механических воздействий) сохраняют свою форму и не пытаются занять весь предоставленный объем.
Газы
Самый распространенный газ (точнее, смесь газов), с которым имеет дело каждый человек – это воздух. На его примере можно рассмотреть свойства газов в целом.
Газы представляют собой очень слабо связанные друг с другом молекулы, которые движутся хаотически. Расстояние между молекулами достаточно велико, поэтому кинетическая энергия частиц достаточна для преодоления силы притяжения между молекулами. Это позволяет газам занимать весь предоставленный объем.
Заполнение объема можно увидеть на примере накачиваемой автомобильной или велосипедной шины. Сначала в резиновой оболочке количество газа невелико, шина выглядит сморщенной. По мере закачки воздуха шина расправляется и становится объемной и упругой. Если размер оболочки (сосуда) увеличить, то молекулы газа вновь равномерно распределятся уже в новом объеме.
Жидкости
В жидкостях связи между молекулами сильнее, чем у газов, но слабее, чем в твердых веществах. Частицы не образуют кристаллической решетки, располагаются хаотично и могут относительно свободно передвигаться, причем, чем выше температура, тем активнее движение. Поэтому жидкости не сохраняют форму, но сохраняют объем. Если перелить воду, например, из стакана в чашку, то жидкость примет форму чашки.
Самая распространенная жидкость на Земле – вода. Ее свойства знакомы всем.
Фазовые переходы
Одно и то же вещество в зависимости от условий может быть в одном из агрегатных состояний. Классический пример для воды при разных температурах и давлении:
- жидкость;
- водяной пар;
- лед.
При нагревании кинетическая энергия молекул увеличивается, межмолекулярные связи становятся недостаточными, чтобы удержать частицы в единой структуре. Поэтому лед превращается сначала в жидкость, а потом в пар.
Переход вещества из одного агрегатного состояния в другое называется фазовым переходом. При фазовом переходе молекулярный состав не изменяется, меняется лишь связь между частицами.
При повышении температуры фазовые переходы у большинства кристаллических веществ происходят в определенном порядке:
- из твердого состояния в жидкое;
- при дальнейшем повышении температуры – из жидкого в газообразное.
Некоторые вещества способны при нагревании переходить из твердого состояния сразу в газообразное. Такой переход называется сублимацией или сухой возгонкой. Такой эффект наблюдается, например, у кристаллов йода.
Все сказанное относится к кристаллическим веществам. У веществ, относящихся к категории аморфных, процессы идут по-другому. При нагревании они постепенно становятся мягкими и переходят в вязкое состояние. Даже в твердом состоянии они обладают определенной текучестью, хотя иногда очень низкой. Например, текучесть стекла в обычных условиях практически незаметна.
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
Молекулярно-кинетическая теория (МКТ) — раздел молекулярной физики, изучающий свойства вещества на основе представлений об их молекулярном строении и определенных законах взаимодействия между атомами (молекулами), из которых состоит вещество.
Основные положения МКТ
? Все вещества состоят из молекул
Это было подтверждено с помощью фотографий, полученных с использованием электронного микроскопа.
? Между молекулами есть промежутки
Существование промежутков доказывают разные объемы жидкостей до смешивания и после нее. Так, объем смеси воды и спирта меньше суммы объемов воды и спирта до их смешивания.
При нагревании промежутки между молекулами увеличиваются, а при охлаждении уменьшаются. Исключение составляет вода и резина. У воды промежутки между молекулами при охлаждении увеличиваются. У резины промежутки между молекулами при нагревании уменьшаются.
? Молекулы движутся
Движение молекул доказывает существование явления диффузии.
Определение
Диффузия — перемешивание веществ без постороннего воздействия.
Чем быстрее молекулы движутся, тем выше температура вещества. И наоборот. Поэтому скорость диффузии зависит от температуры вещества.
Броуновское движение — тепловое движение частиц под действием молекул вещества, в котором эти частицы взвешены.
?Молекулы взаимодействуют
Доказательством служит склеивание двух плоских стекол, смоченных водой. На расстоянии, сравнимых с размерами молекул, заметнее проявляется притяжение. При уменьшении расстояний заметнее проявляется отталкивание.
Свойства твердых, жидких и газообразных веществ
Агрегатное состояние вещества |
Сохраняет объем |
Сохраняет форму |
Особые свойства |
Твердое тело |
+ |
+ |
– |
Жидкость |
+ |
– |
Текучесть |
Газ |
– |
– |
Летучесть |
Строение твердых, жидких и газообразных веществ
Твердое тело |
Жидкость |
Газ |
|
Строение |
|
|
|
Расстояние между молекулами |
Сравнимо с размером молекул |
Чуть больше, чем в твердом состоянии |
Многократно превышает размеры молекул |
Характер движения |
Колебательное |
Скачкообразное |
Хаотическое |
Скорости молекул |
Малы |
Скорее малы |
Огромны |
Взаимодействие между молекулами |
Наибольшее |
Меньше, чем у твердых тел |
Наименьшее |
Важно! Химический состав молекул не зависит от агрегатного состояния.
Микроскопические параметры вещества
К микроскопическим параметрам вещества относят параметры одной частицы этого вещества.
Относительная атомная масса
Определение
Относительная атомная масса — значение массы атома, выраженное в атомных единицах массы (а.е.м.).
Относительная атомная масса обозначается Ar. Это безразмерная величина, определяющаяся как отношение массы атома данного элемента к 1⁄12 массе нейтрального атома изотопа углерода 12C:
Ar=m0112m0C
m0 — масса одного атома, m0С — масса атома углерода.
Внимание! Относительную атомную массу можно узнать из таблицы Менделеева.
Пример №1. Определить по таблице Менделеева относительную атомную массу хлора.
В таблице Менделеева относительная атомная масса указывается под названием химического элемента:
Видно, что Ar = 35,453 а.е.м. При решении задач это значение обычно округляют до 35,5 а.е.м.
Относительная молекулярная масса
Определение
Относительная молекулярная масса — масса молекулы, выраженная в а.е.м.
Относительная молекулярная масса обозначается Mr. Это безразмерная величина, равная сумме относительных масс атомов, входящих в состав молекулы:
Mr=∑Ar
Пример №2. Определить относительную молекулярную массу озона.
В молекуле озона содержится 3 атома кислорода. Следовательно:
Mr=3Ar=16·3=48 (а.е.м.)
Количество вещества
Определение
Количество вещества — физическая величина, отображающая количество молекул (атомов) в веществе.
Количество вещества обозначается как ν («ню»). Единица измерения — моль.
Моль — количество вещества, в котором содержится столько же молекул (атомов), сколько содержится атомов в 12 г углерода.
Количество вещества определяется формулой:
ν=NNA
N — количество молекул (атомов) в веществе, NA — количество частиц в одном моле вещества (постоянная Авогадро).
Единица измерения постоянной Авогадро — 1/моль, или моль–1. В 1 моле содержится 6∙1023 частиц вещества. Именно столько атомов содержит 1 моль (или 12 г) углерода.
Пример №3. В баллоне находится 3∙1025 молекул газа. Определите количество вещества в баллоне.
ν=NNA=3·10256·1023=0,5∙102=50 (моль)
Молярная масса
Определение
Молярная масса — масса одного моля вещества.
Молярная масса обозначается как M. Единица измерения — килограмм на моль (кг/моль, но можно использовать и грамм на моль!). Численно молярная масса равна произведению относительной молекулярной массы на 10–3 (только для килограмма!):
M=Mr•10−3
Пример №4. Определить молярную массу озона.
Относительная молекулярная масса озона равна 48 а.е.м. Поэтому:
M=Mr•10−3=48•10−3 (кгмоль)
Масса молекулы
Масса молекулы — масса одной молекулы вещества, выраженная в килограммах (кг).
Масса молекулы обозначается как m0. Численно она равна отношению молярной массы к количеству частиц вещества в одном моле (или отношению массы вещества к количеству частиц, содержащихся в нем):
m0=MNA=mN
Отсюда отношение количества молекул к постоянной Авогадро равно отношению массы вещества к его молярной массе. Следовательно, количество вещества можно определить также формулой:
ν=mM
Пример №5. Определить массу одной молекулы озона.
m0=MNA=486•1023=8•10−23 (кг)
Плотность, масса вещества и концентрация частиц
Определение
Плотность вещества — масса одного кубического метра вещества.
Плотность вещества обозначается как ρ. Единица измерения — килограммы на кубический метр (кг/м3). Численно плотность равна отношению массы вещества к объему, который оно занимает:
ρ=mV
m — масса вещества, которое занимает объем V.
Определение
Концентрация частиц — физическая величина, равная отношению числа частиц к объему, который они занимают.
Концентрация частиц обозначается как n. Единица измерения — 1/м3. Определяется формулой:
n=NV
Поэтому плотность можно выразить через объем, равный отношению числа частиц к концентрации этих частиц:
ρ=mV=mnN
При делении массы вещества на количество содержащихся в нем частиц мы получим массу одной частицы — m0. Поэтому плотность вещества также равна:
ρ=mnN=m0n
Отсюда концентрация вещества также равна:
n=ρm0
Масса вещества определяется произведением плотности вещества на его объем (или количеством вещества на молярную массу):
m=ρV=νM
Пример №6. Определить массу 5 молей озона.
m=νM=5•48•10−3=240•10−3=0,24 (кг)
Через массу вещества можно также выразить количество этого вещества:
ν=mM=ρVM
Количество атомов и молекул
Количество молекул N определяется произведением количества вещества на число частиц в одном моле или произведением концентрации частиц на объем вещества:
Nмол=νNA=nV
Количество атомов в веществе выражается формулой:
Nатом=kNмол
k — количество атомов в одной молекуле.
Пример №7. В баллоне находится 4 моль газа. Сколько примерно молекул газа находится в баллоне?
Nмол=νNA=4∙6∙1023=24∙1023 (молекул)
Подсказки к задачам
Если двухатомный газ перешел в одноатомное состояние, то 1 моль газа превращается в 2 моля:
ν2 = 2ν1
Но молярная масса при этом уменьшается вдвое:
M2 = 0,5M1
Чтобы перевести плотность из г/см3 в кг/м3, нужно умножить ее значение в г/см3 на 1000:
1 г/см3∙1000 = 1 кг/м3
Если 1 каплю масла объемом V вылить в воду, и она растечется, образовав пленку толщиной в 1 молекулу и площадью S, то диаметр молекулы d будет равен:
d=VS
Объем капли можно вычислить по формуле:
V=mρ
Площадь пятна:
S=πR2=πD24
Задание EF18524
Расстояние между молекулами вещества много больше размеров самих молекул. Двигаясь во всех направлениях, молекулы быстро распределяются по всему сосуду. В каком состоянии находится вещество?
Ответ:
а) в газообразном
б) в жидком
в) в твёрдом
г) в газообразном или жидком
Алгоритм решения
- Выделить из описания параметры, характер которых может указывать на вид агрегатного состояния вещества.
- Установить, какому агрегатному состоянию соответствуют указанные значения этих параметров.
Решение
В условиях задачи обозначается:
- расстояние между молекулами вещества;
- характер движения молекул;
- свойство вещества, связанное с характером заполнения им сосуда.
Если расстояние между молекулами намного больше размеров самих молекул, то вещество находится в газообразном состоянии. Это подтверждают хаотичное движение молекул и способность вещества заполнять весь предоставленный ему объем.
Ответ: а
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF18208
Молекулы газов находятся в среднем на больших расстояниях друг от друга по сравнению с их размерами, силы взаимодействия между ними незначительны. Этим можно объяснить следующие свойства газов.
А. Газ не сохраняет своей формы.
Б. Газ не сохраняет своего объёма.
В. Газ имеет большую сжимаемость.
Какое(-ие) из утверждений правильно(-ы)?
Алгоритм решения
- Установить, как влияет большое расстояние между молекулами на свойства газов.
- Выбрать правильные варианты ответов и записать их в алфавитном порядке.
Решение
Так как между молекулами газа большое расстояние, они слабо взаимодействуют друг с другом. Практически полное отсутствие сил притяжения позволяет двигаться им хаотически, что способствует быстрому заполнению газом объема сосуда. Причем неважно, какой объем и какую форму имеет сосуд. Следовательно, верными ответами можно считать как А, так и Б.
Теперь проверим последний вариант. Газы действительно обладают большой сжимаемостью. Это можно объяснить тем, что отталкиваются молекулы при расстояниях, которые меньше размеров самих молекул. Но в газах это расстояние намного больше. Поэтому, прежде чем возникнет отталкивание, газ можно будет легко сжать в несколько раз. Следовательно, ответ В тоже верен.
Ответ: АБВ
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алиса Никитина | Просмотров: 4.4k