Задание 3. Теория вероятностей на ЕГЭ по математике.
Мы начнем с простых задач и основных понятий теории вероятностей.
Случайным называется событие, которое нельзя точно предсказать заранее. Оно может либо произойти, либо нет.
Вы выиграли в лотерею — случайное событие. Пригласили друзей отпраздновать выигрыш, а они по дороге к вам застряли в лифте — тоже случайное событие. Правда, мастер оказался поблизости и освободил всю компанию через десять минут — и это тоже можно считать счастливой случайностью…
Наша жизнь полна случайных событий. О каждом из них можно сказать, что оно произойдет с некоторой вероятностью. Скорее всего, вы интуитивно знакомы с этим понятием. Теперь мы дадим математическое определение вероятности.
Начнем с самого простого примера. Вы бросаете монетку. Орел или решка?
Такое действие, которое может привести к одному из нескольких результатов, в теории вероятностей называют испытанием.
Орел и решка — два возможных исхода испытания.
Орел выпадет в одном случае из двух возможных. Говорят, что вероятность того, что монетка упадет орлом, равна .
Бросим игральную кость. У кубика шесть граней, поэтому возможных исходов тоже шесть.
Например, вы загадали, что выпадет три очка. Это один исход из шести возможных. В теории вероятностей он будет называться благоприятным исходом.
Вероятность выпадения тройки равна (один благоприятный исход из шести возможных).
Вероятность четверки — тоже .
А вот вероятность появления семерки равна нулю. Ведь грани с семью точками на кубике нет.
Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.
Очевидно, что вероятность не может быть больше единицы.
Вот другой пример. В пакете яблок, из них — красные, остальные — зеленые. Ни формой, ни размером яблоки не отличаются. Вы запускаете в пакет руку и наугад вынимаете яблоко. Вероятность вытащить красное яблоко равна , а зеленое — .
Вероятность достать красное или зеленое яблоко равна .
БЕСПЛАТНЫЙ МИНИ-КУРС ПО ТЕОРВЕРУ
Определение вероятности. Простые задачи из вариантов ЕГЭ.
Разберем задачи по теории вероятностей, входящие в сборники для подготовки к ЕГЭ.
В фирме такси в данный момент свободно машин: красных, желтых и зеленых. По вызову выехала одна из машин, случайно оказавшихся ближе всего к заказчице. Найдите вероятность того, что к ней приедет желтое такси.
Всего имеется машин, то есть к заказчице приедет одна из пятнадцати. Желтых — девять, и значит, вероятность приезда именно желтой машины равна , то есть .
В сборнике билетов по биологии всего билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет. Найдите вероятность того, что в этом билете не будет вопроса о грибах.
Очевидно, вероятность вытащить билет без вопроса о грибах равна , то есть .
Родительский комитет закупил пазлов для подарков детям на окончание учебного года, из них с картинами известных художников и с изображениями животных. Подарки распределяются случайным образом. Найдите вероятность того, что Вовочке достанется пазл с животным.
Задача решается аналогично.
Ответ: .
В чемпионате по гимнастике участвуют спортсменок: — из России, — из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая последней, окажется из Китая.
Давайте представим, что все спортсменки одновременно подошли к шляпе и вытянули из нее бумажки с номерами. Кому-то из них достанется двадцатый номер. Вероятность того, что его вытянет китайская спортсменка, равен (поскольку из Китая — спортсменок). Ответ: .
Ученика попросили назвать число от до . Какова вероятность того, что он назовет число кратное пяти?
Каждое пятое число из данного множества делится на . Значит, вероятность равна .
Брошена игральная кость. Найдите вероятность того, что выпадет нечетное число очков.
— нечетные числа; — четные. Вероятность нечетного числа очков равна .
Ответ: .
Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?
Заметим, что задачу можно сформулировать по-другому: бросили три монеты одновременно. На решение это не повлияет.
Как вы думаете, сколько здесь возможных исходов?
Бросаем монету. У этого действия два возможных исхода: орел и решка.
Две монеты — уже четыре исхода:
орел | орел |
орел | решка |
решка | орел |
решка | решка |
Три монеты? Правильно, исходов, так как .
Вот они:
орел | орел | орел |
орел | орел | решка |
орел | решка | орел |
решка | орел | орел |
орел | решка | решка |
решка | орел | решка |
решка | решка | орел |
решка | решка | решка |
Два орла и одна решка выпадают в трех случаях из восьми.
Ответ: .
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет очков. Результат округлите до сотых.
Бросаем первую кость — шесть исходов. И для каждого из них возможны еще шесть — когда мы бросаем вторую кость.
Получаем, что у данного действия — бросания двух игральных костей — всего возможных исходов, так как .
А теперь — благоприятные исходы:
Вероятность выпадения восьми очков равна .
Стрелок попадает в цель с вероятностью . Найдите вероятность того, что он попадёт в цель четыре выстрела подряд.
Если вероятность попадания равна — следовательно, вероятность промаха . Рассуждаем так же, как и в предыдущей задаче. Вероятность двух попадания подряд равна . А вероятность четырех попаданий подряд равна .
Лень разбираться самому?
Присоединяйся к мини-курсу по теории вероятностей
ПОДРОБНЕЕ
Вероятность: логика перебора.
В кармане у Пети было монеты по рублей и монеты по рублей. Петя не глядя переложил какие-то монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.
Мы знаем, что вероятность события равна отношению числа благоприятных исходов к общему числу исходов. Но как посчитать все эти исходы?
Можно, конечно, обозначить пятирублевые монеты цифрами , а десятирублевые цифрами — а затем посчитать, сколькими способами можно выбрать три элемента из набора .
Однако есть более простое решение:
Кодируем монеты числами: , (это пятирублёвые), (это десятирублёвые). Условие задачи можно теперь сформулировать так:
Есть шесть фишек с номерами от до . Сколькими способами можно разложить их по двум карманам поровну, так чтобы фишки с номерами и не оказались вместе?
Давайте запишем, что у нас в первом кармане.
Для этого составим все возможные комбинации из набора . Набор из трёх фишек будет трёхзначным числом. Очевидно, что в наших условиях и — это один и тот же набор фишек. Чтобы ничего не пропустить и не повториться, располагаем соответствующие трехзначные числа по возрастанию:
…
А дальше? Мы же говорили, что располагаем числа по возрастанию. Значит, следующее — , а затем:
.
Все! Мы перебрали все возможные комбинации, начинающиеся на . Продолжаем:
.
Всего возможных исходов.
У нас есть условие — фишки с номерами и не должны оказаться вместе. Это значит, например, что комбинация нам не подходит — она означает, что фишки и обе оказались не в первом, а во втором кармане. Благоприятные для нас исходы — такие, где есть либо только , либо только . Вот они:
134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256 – всего благоприятных исходов.
Тогда искомая вероятность равна .
Ответ: .
Сумма событий, произведение событий и их комбинации
Вероятность того, что новый электрический чайник прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Проработав год, чайник может либо сломаться на второй год, либо благополучно служить и после 2 лет работы.
Пусть – вероятность того, что чайник прослужил больше года.
– вероятность того, что он сломается на второй год, – вероятность того, что он прослужит больше двух лет.
Очевидно,
Тогда
Ответ: 0,06.
События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.
Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.
Вероятность суммы несовместных событий равна сумме их вероятностей.
В нашей задаче события «чайник сломался на второй год работы» и «чайник работает больше двух лет» — несовместные. Чайник или сломался, или остается в рабочем состоянии.
На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути случайным, определите, с какой вероятностью паук выйдет через выход А.
Пронумеруем развилки, на которых паук может случайным образом свернуть в ту или другую сторону.
Он может либо выйти в выход D, и вероятность этого события равна Либо уйти дальше в лабиринт. На второй развилке он может либо свернуть в тупик, либо выйти в выход В (с вероятностью На каждой развилке вероятность свернуть в ту или другую сторону равна а поскольку развилок пять, вероятность выбраться через выход А равна то есть 0,03125.
События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.
В нашей задаче так и есть: неразумный паук сворачивает налево или направо случайным образом, независимо от того, что он делал до этого.
Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.
(А) Два грузовика, работая совместно, вывозят снег с улицы Нижняя Подгорная, причем первый грузовик должен сделать три рейса с грузом снега, а второй — два. Вероятность застрять с грузом снега при подъеме в горку равна 0,2 для первого грузовика и 0,25 — для второго. С какой вероятностью грузовики вывезут снег с улицы Нижняя Подгорная, ни разу не застряв на горке?
Вероятность для первого грузовика благополучно одолеть горку Для второго Поскольку первый грузовик должен сделать 3 рейса, а второй – два, грузовики ни разу не застрянут на горке с вероятностью
Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Нарисуем все возможные исходы ситуации. Покупатель пришел в магазин, который принадлежит агрофирме, и купил яйцо. Надо найти вероятность того, что это яйцо из первого хозяйства.
Яйца могут быть только или из первого домашнего хозяйства, или из второго, причем эти два события несовместны. Других яиц в этот магазин не поступает.
Пусть вероятность того, что купленное яйцо из первого хозяйства, равна . Тогда вероятность того, что яйцо из второго хозяйства (противоположного события), равна .
Яйца могут быть высшей категории и не высшей.
В первом хозяйстве 40% яиц имеют высшую категорию, а 60% — не высшую. Это значит, что случайно выбранное яйцо из первого хозяйства с вероятностью 40% будет высшей категории.
Во втором хозяйстве 20% яиц высшей категории, а 80% — не высшей.
Пусть случайно выбранное в магазине яйцо — из первого хозяйства и высшей категории. Вероятность этого события равна произведению вероятностей:
Вероятность того, что яйцо из второго хозяйства и высшей категории, равна
Если мы сложим эти две вероятности, мы получим вероятность того, что яйцо имеет высшую категорию. По условию, высшую категорию имеют 35% яиц, значит, эта вероятность равна 0,35.
Мы получили уравнение:
Решаем это уравнение и находим, что – вероятность того, что яйцо, купленное у этой агрофирмы, оказалось из первого хозяйства.
Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
С чем пришел пациент в клинику? – С подозрением на гепатит. Возможно, он действительно болен гепатитом, а возможно, у его плохого самочувствия другая причина. Может быть, он просто съел что-нибудь. Вероятность того, что он болен гепатитом, равна 0,05 (то есть 5%). Вероятность того, что он здоров, равна 0,95 (то есть 95%).
Пациенту делают анализ. Покажем на схеме все возможные исходы:
Если он болен гепатитом, анализ дает положительный результат с вероятностью 0,9. То есть анализ покажет: «есть гепатит».
Заметим, что анализ не во всех случаях выявляет гепатит у того, кто действительно им болен. С вероятностью 0,1 анализ не распознает гепатит у больного.
Более того. Анализ может ошибочно дать положительный результат у того, кто не болеет гепатитом. Вероятность такого ложного положительного результата 0,01. Тогда с вероятностью 0,99 анализ даст отрицательный результат, если человек здоров.
Найдем вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
Благоприятные для этой ситуации исходы: человек болен, и анализ положительный (вероятность одновременного наступления этих двух событий равна ), или человек здоров, и анализ ложный положительный (вероятность одновременного наступления этих двух событий равна ). Так как события «человек болен» и «человек не болен» несовместны, то вероятность того, что результат анализа будет положительным, равна
Ответ: 0,0545.
Чтобы поступить в институт на специальность «Лингвистика», абитуриент З. должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.
Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.
Заметим, что в задаче не спрашивается, будет ли абитуриент по фамилии З. учиться и лингвистике, и коммерции сразу и получать два диплома. Здесь надо найти вероятность того, что З. сможет поступить хотя бы на одну из двух данных специальностей – то есть наберет необходимое количество баллов.
Для того чтобы поступить хотя бы на одну из двух специальностей, З. должен набрать не менее 70 баллов по математике. И по русскому. И еще – обществознание или иностранный.
Вероятность набрать 70 баллов по математике для него равна 0,6.
Вероятность набрать баллы по математике и русскому равна
Разберемся с иностранным и обществознанием. Нам подходят варианты, когда абитуриент набрал баллы по обществознанию, по иностранному или по обоим. Не подходит вариант, когда ни по языку, ни по «обществу» он не набрал баллов. Значит, вероятность сдать обществознание или иностранный не ниже чем на 70 баллов равна
В результате вероятность сдать математику, русский и обществознание или иностранный равна Это ответ.
Чтобы полностью освоить тему, смотрите видеокурс по теории вероятностей. Это бесплатно.
Еще задачи ЕГЭ по теме «Теория вероятностей».
Смотрите также: парадокс Монти Холла.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 3. Теория вероятностей на ЕГЭ по математике.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех
равновозможных исходов
$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию
$А$.
Вероятность события — это число из отрезка $[0; 1]$
В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые.
Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.
Решение:
Найдем количество желтых автомобилей:
$50-35=15$
Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$,
следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$
Ответ:$0,3$
Противоположные события
Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно
происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают
${(А)}↖{-}$.
$Р(А)+Р{(А)}↖{-}=1$
Независимые события
Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.
Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:
$Р(А·В)=Р(А)·Р(В)$
Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.
Решения:
Вероятность $Р(А)$ — выиграет первый билет.
Вероятность $Р(В)$ — выиграет второй билет.
События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей
$Р(А·В)=Р(А)·Р(В)$
$Р=0,15·0,12=0,018$
Ответ: $0,018$
Несовместные события
Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)
Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:
$Р(А+В)=Р(А)+Р(В)$
На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение:
Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:
$Р(А+В)=Р(А)+Р(В)$
$Р = 0,3+0,18=0,48$
Ответ: $0,48$
Совместные события
Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же
испытании. В противном случае события называются несовместными.
Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус
вероятность их произведения:
$Р(А+В)=Р(А)+Р(В)-Р(А·В)$
В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится
кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того,
что к концу дня кофе закончится хотя бы в одном из автоматов.
Решение:
Обозначим события, пусть:
$А$ = кофе закончится в первом автомате,
$В$ = кофе закончится во втором автомате.
Тогда,
$A·B =$ кофе закончится в обоих автоматах,
$A + B =$ кофе закончится хотя бы в одном автомате.
По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.
События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий,
уменьшенной на вероятность их произведения:
$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$
Ответ: $0,88$
Способы решения задач по теории вероятностей ЕГЭ по математике
профильного уровня
Раздел «Элементы комбинаторики, статистики и теории вероятностей» в материалах
открытого банка заданий ФИПИ по математике ЕГЭ профильного уровня содержит 403
задачи на 41 странице. В статье выделены несколько типов задач по различным темам
курса теории вероятностей и предложены способы их решения. Каждый тип задач
сопровождают минимально необходимые теоретические сведения. Формулировки задач
скопированы с сайта ФИПИ.
1. Задачи на применение классической формулы вероятности события
Вероятностью события А называют отношение числа m благоприятствующих этому
событию исходов к общему числу n всех равновозможных несовместных элементарных
исходов, образующих полную группу:
.
Задача 1.1. В чемпионате по гимнастике участвуют 70 спортсменок: 25 из США, 17 из
Мексики, остальные из Канады. Порядок, в котором выступают гимнастки, определяется
жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из
Канады.
Решение. Число благоприятных исходов –это и есть число канадских спортсменок. Их 70—
(25+17) =28. Общее число исходов – 70, это количество спортсменок, участвующих в
чемпионате. Итак, искомая вероятность равна
.
Ответ: 0,4.
Замечание: решительно всё равно, какой по счёту, первой, как в условии задачи, или
второй, третьей, …, семидесятой будет выступать канадская спортсменка. Искомая
вероятность зависит только от количества канадских гимнасток и общего количества
участниц.
Задача 1.2. Перед началом первого тура чемпионата по теннису участников разбивают на
игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 76
теннисистов, среди которых 7 спортсменов из России, в том числе Анатолий Москвин.
Найдите вероятность того, что в первом туре Анатолий Москвин будет играть с каким—
либо теннисистом из России.
Решение. Для выбранного уже по условию задачи россиянина Анатолия Москвина
благоприятных исходов (его партнёр — российский теннисист) остаётся всего 6.
Уменьшается на единицу и общее число всех равновозможных исходов – число
спортсменов, готовых сражаться с Москвиным, их – 75. Значит, искомая вероятность
равна
Ответ: 0,08.
Задача 1.3. В случайном эксперименте симметричную монету бросают дважды. Найдите
вероятность того, что решка выпадет ровно один раз.
Решение. Перечислим все возможные исходы (их 4) при двух бросаниях монеты:
Видно из таблицы, что интересующему нас событию (ровно одному появлению решки)
благоприятствуют исходы с номерами 3 и 4. Их два, а возможных исходов в нашем случае
– 4. Стало быть, искомая вероятность равна
Ответ: 0,5.
Задача 1.4. В случайном эксперименте симметричную монету бросают дважды. Найдите
вероятность того, что орёл выпадет оба раза.
Решение. Благоприятному событию (А)— орёл выпадет оба раза благоприятствует один
исход – номер 2 (см. задачу 1.3). Таким образом, Р(А)=
Ответ: 0,25.
Задача 1.5. На олимпиаде по русскому языку 350 участников разместили в трёх
аудиториях. В первых двух удалось разместить по 140 человек, оставшихся перевели в
запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно
выбранный участник писал олимпиаду в запасной аудитории.
Решение. Найдём количество человек, писавших олимпиаду в запасной аудитории: 350—
(140+140) =70. Значит, искомая вероятность равна
.
Ответ: 0,2.
Задача 1.6. В группе туристов 300 человек. Их вертолётом доставляют в труднодоступный
район, перевозя по 15 человек за рейс. Порядок, в котором вертолёт перевозит туристов,
случаен. Найдите вероятность того, что турист В. полетит первым рейсом вертолёта.
Решение. Способ 1. Интересующее нас событие – «турист В. полетит первым рейсом
вертолёта» означает, что он попадает в число15 человек, вылетающих первым рейсом,
поэтому искомая вероятность есть
Способ 2. Всего рейсов
. Туристу В, согласно условию задачи, подходит только
один из них, значит, вероятность определяется отношением
.
Ответ: 0,05.
Задача 1.7. Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится
3 сумки со скрытыми дефектами. Найдите вероятность того, что купленная сумка
окажется качественной. Результат округлите до сотых.
Решение. Качественных сумок 100, а общее число сумок 100+3=103. Значит, вероятность
вычисляется как отношение
.
Ответ: 0,97.
Задача 1.8. В школе 51 пятиклассник, среди них — Саша и Настя. Всех пятиклассников
случайным образом делят на три группы, по 17 человек в каждой. Найдите вероятность
того, что Саша и Настя окажутся в одной группе.
Решение. Предполагаем, что Саша уже попал в одну из трёх групп, безразлично, какую.
Для Насти, таким образом, число мест в Сашиной группе сократилось до 16, т.к. место
занято Сашей. Заметим, что на единицу уменьшилось и общее число участников
распределения по группам, т.к. из их числа уже исключён Саша. Таким образом,
вероятность того, что Саша и Настя окажутся в одной группе, равна
.
Ответ: 0,32.
Задача 1.9. В случайном эксперименте бросают две игральные кости (кубика). Найдите
вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.
Решение. При бросании двух игральных костей возможны 36 исходов испытания, т.к.
любой исход испытания при бросании первой кости (1, 2, 3, 4, 5, 6) может сочетаться с
любым из шести исходов (1, 2, 3, 4, 5, 6) при бросании второй кости. Интересующему нас
событию — в сумме выпадет 7 очков благоприятны исходы: 1 и 6, 6 и 1, 5 и 2, 2 и 5, 4 и 3, 3
и 4. Их всего – 6. Значит, искомая вероятность
.
Ответ: 0,17
Задача 1.10. В случайном эксперименте бросают две игральные кости (кубика). Найдите
вероятность того, что в сумме выпадет 9 очков. Результат округлите до сотых.
Решение. Как и в предыдущей задаче, общее число всех равновозможных исходов – 36.
Благоприятными исходами будут: 6 и 3, 3 и 6, 4 и 5, 5 и 4. Их всего четыре. Вычисляем
вероятность:
Ответ: 0,11.
Задача 1.11. В случайном эксперименте бросают две игральные кости (кубика). Найдите
вероятность того, что в сумме выпадет 11 очков. Результат округлите до сотых.
Решение. Всех равновозможных исходов – 36. Благоприятные: 5 и 6, 6 и 5. Их два, и
поэтому вероятность равна
.
Ответ: 0,06.
Задача 1.12. Перед началом футбольного матча судья бросает монетку, чтобы определить,
какая из команд начнёт игру с мячом. Команда «Сапфир» играет три матча с разными
командами. Найдите вероятность того, что в этих матчах команда «Сапфир» начнёт игру с
мячом не более одного раза.
Решение. Составим таблицу, в которой символ «+» обозначит тот факт, что команда
Сапфир начинает игру, а символ будет означать, что игру начинает другая команда
(соперник Сапфира):
Очевидно, что интересующему нас событию А — в этих матчах команда «Сапфир» начнёт
игру с мячом не более одного раза, благоприятствуют исходы с номерами 5, 6, 7, 8. Всего
исходов – 8, значит, вероятность равна
Ответ: 0,5.
Задача 1.13. Перед началом футбольного матча судья бросает монетку, чтобы определить,
какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными
командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с
мячом все три раза.
Решение. Таблица исходов приведена в предыдущей задаче. Событию А — в этих матчах
команда «Биолог» начнёт игру с мячом все три раза, благоприятствует исход с номером 1
(он – единственный). Таким образом, искомая вероятность вычисляется как отношение
.
Ответ: 0,125.
Задача 1.14. Механические часы с двенадцатичасовым циферблатом в какой—то момент
сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась,
достигнув отметки 7, но не дойдя до отметки 1.
Решение. При рассмотрении подобных задач на геометрическую вероятность полезно
иметь ввиду, что один час на двенадцатичасовом циферблате занимает сектор
.
От 7 до 1 проходит 6 часов, часовая стрелка преодолевает 30 , таким образом,
искомая вероятность вычисляется как
.
С другой стороны, посмотрев на 12—часовой циферблат, можем видеть, что промежуток от
7 часов до 1 часа занимает ровно половину циферблата, значит, вероятность равна 0,5.
Ответ: 0,5.
Задача 1.15. В случайном эксперименте симметричную монету бросают трижды. Найдите
вероятность того, что решка выпадет все три раза.
Решение. Все возможные исходы (их при трёх бросаниях представлены в таблице:
Благоприятный исход один – последний: Решка—Решка—Решка. Вероятность, согласно
классической формуле, равна
Ответ: 0,125.
Задача 1.16. В случайном эксперименте симметричную монету бросают четырежды.
Найдите вероятность того, что орёл выпадет ровно два раза.
Решение. Можно составить таблицу и для четырёх бросаний симметричной монеты:
Число исходов равно 16. Благоприятные исходы в таблице имеют номера: 6,7,8,9,10,11. Их
всего 6. Значит, вероятность равна
.
Если взять на себя труд и выучить теорему Я. Бернулли, то составления таблицы можно
избежать.
Теорема: Если вероятность р наступления события А в каждом испытании постоянна, то
вероятность
того, что в серии n однородных независимых испытаний событие А
наступит ровно k раз, равна:
(1).
Здесь
– число сочетаний из n элементов по k в каждом, q – вероятность
события, противоположного событию А.
В условиях нашей задачи p=
, q=
=
,
. Подставляем в формулу
(1) и получаем:
.
Ответ: 0,375.
2. Задачи на нахождение вероятности противоположного события
Определение. Противоположными событиями называют два несовместных события,
образующих полную группу.
Два события называются несовместными, если они не могут появиться одновременно в
результате однократного опыта. События образуют полную группу, если в результате
опыта одно из событий обязательно произойдёт. Сумма вероятностей противоположных
событий равна 1, т.е.
. Здесь
— вероятность события,
противоположного событию А.
Задача 2.1. В среднем из 900 садовых насосов, поступивших в продажу, 27 подтекают.
Найдите вероятность того, что один случайно выбранный для контроля насос не
подтекает.
Решение. Событие А – насос подтекает, событие
– насос не подтекает.
Ответ: 0,97.
Задача 2.2. Вероятность того, что в случайный момент времени температура тела
здорового человека окажется ниже 36,8°C, равна 0,94. Найдите вероятность того, что в
случайный момент времени у здорового человека температура тела окажется 36,8°C или
выше.
Решение. Событие – «в случайный момент времени у здорового человека температура
тела окажется 36,8°C или выше» противоположно событию «что в случайный момент
времени температура тела здорового человека окажется ниже 36,8°C». Поэтому
.
Ответ: 0,06.
Задача 2.3. Серёжа, Саша, Ира, Соня, Женя, Толя, Ксюша и Федя бросили жребий — кому
начинать игру. Найдите вероятность того, что начинать игру должна будет не Ксюша.
Решение. Вероятность события А – «игру начнёт Ксюша» равна
, а
вероятность противоположного события — начинать игру должна будет не Ксюша, равна
.
Заметим, что можно было вычислять искомую вероятность как отношение числа детей,
которые «не Ксюши» — их семеро, к общему числу детей в игре (их 8 человек):
.
Ответ: 0,875.
3. Задачи на применение теоремы сложения вероятностей для несовместных
событий
Суммой (А+В) двух событий А и В называют событие, которое наступает тогда и только
тогда, когда наступает хотя бы одно из событий А или В.
Сложение вероятностей используется тогда, когда нужно вычислить вероятность суммы
случайных событий.
Теорема сложения вероятностей несовместных событий. Вероятность того, что
произойдёт одно из двух несовместных событий, равна сумме вероятностей этих событий:
.
Задача 3.1. На экзамене по геометрии школьник отвечает на один вопрос из списка
экзаменационных вопросов. Вероятность того, что это вопрос по теме «Вписанная
окружность», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна
0,35. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух
тем.
Решение: событие А – достанется вопрос по теме «Вписанная окружность», событие В –
достанется вопрос по теме «Внешние углы», тогда событие А+В — на экзамене школьнику
достанется вопрос по одной из этих двух тем. Учитывая, что «Вопросов, которые
одновременно относятся к этим двум темам, нет», применяем теорему сложения
вероятностей для двух несовместных событий: P(А+В) = 0,2+0,35 = 0,55.
Ответ: 0,55.
Задача 3.2. Вероятность того, что на тестировании по математике учащийся А. верно
решит больше 9 задач, равна 0,63. Вероятность того, что А. верно решит больше 8 задач,
равна 0,75. Найдите вероятность того, что А. верно решит ровно 9 задач.
Решение. Введём обозначения: событие А— решено более 9 задач, событие В – решено
больше 8 задач. Другими словами, событие В заключается в том, что решено ровно 9 или
больше 9 задач. Пусть событие С – учащийся решил ровно 9 задач. Тогда В=А+С. По
теореме сложения вероятностей для несовместных событий, Р(В)=Р(А)+Р(С), и,
следовательно, Р(С)=Р(В)—Р(А). Подставляя числовые значения, получаем: Р(С)=0,75—
0,63=0,12.
Ответ: 0,12.
Задача 3.3. Вероятность того, что на тестировании по физике учащийся А. верно решит
больше 6 задач, равна 0,61. Вероятность того, что А. верно решит больше 5 задач, равна
0,66. Найдите вероятность того, что А. верно решит ровно 6 задач.
Решение. Содержание задачи аналогично предыдущей. Пусть событие Е – решено верно
ровно 6 задач, событие F – решено верно больше 5 задач, событие K – решено верно
больше 6 задач. Тогда F=K+E и P(Е)=Р(F)—Р(K)=0,66-0,61=0,05.
Ответ: 0,05.
Задача 3.4. Вероятность того, что новый сканер прослужит больше года, равна 0,94.
Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность
того, что он прослужит меньше двух лет, но больше года.
Решение. Пусть событие А — новый сканер прослужит больше года, событие В —
прослужит больше двух лет, событие С – сканер прослужит меньше двух лет, но больше
года. Тогда А=В+С. Согласно теореме сложения вероятностей Р(А)=Р(В)+Р(С) и тогда
Р(С)=Р(А)—Р(В). Имеем: Р(С)=0,94-0,87=0,07.
Ответ: 0,07.
4. Задачи на применение теоремы умножения вероятностей независимых событий
Произведением двух событий А и В называют событие , которое заключается в
том, что происходят и событие А, и событие В.
Событие В называют независимым от события А, если вероятность появления события В
не зависит от того, произошло событие А или не произошло.
Теорема: Вероятность произведения двух независимых событий А и В равна
произведению вероятности одного из них на вероятность другого:
.
Задача 4.1. Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста
Б. с вероятностью 0,6. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью
0,45. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет
фигур. Найдите вероятность того, что А. выиграет оба раза.
Решение. Пусть событие А – шахматист А. выиграл первую партию, событие В –
шахматист А. выиграл вторую партию, тогда событие – шахматист А. выиграл обе
партии. Применяем теорему умножения вероятностей независимых событий:
.
Ответ: 0,27.
Используя теорему умножения вероятностей независимых событий, можно решить и
задачу 1.13:
Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из
команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами.
Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом все
три раза.
Решение. Вероятность начать игру при бросании жребия равна
. Вероятность того, что
это событие повторится три раза, по теореме умножения вероятностей (в данном случае
трёх) независимых событий равна
⸱
.
Ответ: 0,125.
Задача 4.2. В случайном эксперименте симметричную монету бросают дважды. Найдите
вероятность того, что орёл не выпадет ни разу.
Решение. Событие «орёл не выпадет ни разу» при двух бросаниях монеты означает
выпадение двух решек подряд. Поскольку вероятность выпадения решки при одном
бросании равна
, то вероятность события «выпадение двух решек» по теореме
умножения вероятностей двух независимых событий равна
.
Разумеется, эту задачу можно было решать и с помощью классической формулы
вычисления вероятности события (см. задачи 1.3, 1.4).
Ответ: 0,25.
Задача 4.3. Чтобы пройти в следующий круг соревнований, футбольной команде нужно
набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в
случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что
команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре
вероятности выигрыша и проигрыша одинаковы и равны 0,3.
Решение. Придётся вспомнить и понятие полной группы событий, и теорему сложения
вероятностей несовместных событий, и теорему умножения вероятностей независимых
событий. В задаче указаны вероятности выигрыша и проигрыша (обе равны 0,3), значит,
вероятность ничьей равна 1— (0,3+0,3) =0,4. Чтобы команда вышла в следующий круг, она,
согласно условию, должна набрать как минимум 4 очка за две игры, значит, она может
выиграть в обеих играх (это принесёт ей 6 очков), либо выиграть одну из игр, а другую
свести к ничьей (тогда получит 4 очка, чего ей, в принципе, тоже достаточно). Итак,
команду устраивает одно из трёх событий: выигрыш—выигрыш (событие А), выигрыш—
ничья (событие В), ничья—выигрыш (событие С). Все эти события — А, В, С — несовместны.
Найдём вероятности этих событий. Вероятность события А по теореме умножения
вероятностей независимых событий
. Аналогично
и
Применяем теорему сложения вероятностей для трёх
несовместных событий А, В, С. Получим:
Ответ: 0,33.
Еще одна статья по теории вероятностей. В ней собраны задачи на проценты, вероятности зависимых событий, а также задачи, требующие последовательного подсчёта разных вероятностей. Эти задачи относятся к категории «трудные задачи», однако разобрав их с нами, они таковыми вам уже не покажутся.
Теоретическая часть
Если имеются события А и В, то
Эти формулы следуют применять, когда А и В – зависимые совместные события (более простые случаи рассмотрены в предыдущих статьях (часть1, часть 2, часть 3, часть 4).
Задачи о зависимых событиях
Задача 5.1 В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,4. Вероятность того, что кофе закончится в обоих автоматах, равна 0,22. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
Решение.
1-й способ.
Так как 0,4 ·0,4 ≠ 0,22, то события «кофе закончился в 1-ом автомате» и «кофе закончился во 2-ом автомате» зависимые. Обозначим через А событие «кофе остался в первом автомате», через В – «кофе остался во втором автомате». Тогда .
Событие «кофе остался хотя бы в одном автомате» – это А U В, его вероятность равна Р(А U В) = 1 — 0,22 = 0,78, так как оно противоположно событию «кофе закончился в обоих автоматах». По формуле для пересечения событий: P(A ∩ B) = P(A) + P(B) — P(A ∪ B)= 0,6 + 0,6 — 0,78 = 0,42
2-й способ
Обозначим через Х событие «кофе закончился в первом автомате», через Y – «кофе закончился во втором автомате».
Тогда по условию Р(X) = Р(Y) = 0,4, P(X ∩ Y) = 0,22. Так как P(X ∩ Y) ≠ P(X) · P(Y), то события Х и Y зависимые. По формуле для объединения событий:
P(X∪Y)=P(X)+P(Y)-P(X∩Y) = 0,4 + 0,4 – 0,22 = 0,58.
Мы нашли вероятность события Х U Y «кофе закончился хотя бы в одном автомате». Противоположным событием будет «кофе остался в обоих автоматах», его вероятность равна = 1 –P(X ∪ Y) = 1 –0,58 = 0,42.
3-й способ.
Составим таблицу вероятностей возможных результатов в конце дня.
Второй автомат | |||
кофе закончился | кофе остался | ||
Первый автомат | кофе закончился | 0,22 | |
кофе остался |
По условию вероятность события «кофе закончился в обоих автоматах» равна 0,22. Это число мы сразу записали в соответствующую ячейку таблицы.
В первом автомате кофе закончится с вероятностью 0,4, поэтому сумма чисел в верхних ячейках таблицы должна быть равна 0,4. Значит, в правой верхней ячейке должно быть число 0,4 – 0,22 = 0,18.
Второй автомат | |||
кофе закончился | кофе остался | ||
Первый автомат | кофе закончился | 0,22 | 0,18 |
кофе остался |
Во втором автомате кофе закончится с вероятностью 0,4, поэтому сумма чисел в левых ячейках таблицы также должна быть равна 0,4. Значит, в левой нижней ячейке должно быть число 0,4 – 0,22 = 0,18.
Второй автомат | |||
кофе закончился | кофе остался | ||
Первый автомат | кофе закончился | 0,22 | 0,18 |
кофе остался | 0,18 |
Так как сумма чисел во всех четырёх ячейках должна быть равна 1, то искомое число в правой нижней ячейке равно 1 – 0,22 – 0,18 – 0,18 = 0,42.
Второй автомат | |||
кофе закончился | кофе остался | ||
Первый автомат | кофе закончился | 0,22 | 0,18 |
кофе остался | 0,18 | 0,42 |
Ответ: 0,42.
Задачи на проценты
Задача 5.2 Агрофирма закупает куриные яйца в двух домашних хозяйствах. 60% яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 40% яиц высшей категории. Всего высшую категорию получает 48% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Решение.
Пусть х – искомая вероятность. Пусть всего закуплено n яиц. Тогда в первом хозяйстве закуплено x · n яиц, из них 0,6х·n высшей категории. Во втором хозяйстве закуплено (1- x) · n яиц, из них 0,4 • (1- x) • n высшей категории. Всего высшую категорию имеют 0,48n яиц.
Отсюда
Ответ: 0,4
Задача 5.3 На фабрике керамической посуды 20% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 70% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до сотых.
Решение.
Пусть всего произведено х тарелок. Качественных тарелок 0,8х (80% от общего числа), они поступают в продажу.
Дефектных тарелок 0,2х, из них в продажу поступает 30%, то есть 0,3 • 0,2х = 0,06x.
Всего в продажу поступило 0,8х + 0,06x = 0,86x тарелок.
Вероятность купить тарелку без дефектов равна ≈ 0,93
Ответ: 0,93.
Разные задачи
Задача 5.4 На рок-фестивале выступают группы – по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Финляндии будет выступать после группы из Бельгии, но перед группой из Греции? Результат округлите до сотых.
Решение.
1-й способ.
Будем считать исходом порядок выступления групп на фестивале. Разобьём множество исходов на подмножества следующим образом: в одно подмножество будем включать исходы, полученные перестановками рок-групп из Финляндии, Бельгии и Греции (с сохранением мест всех остальных рок-групп).
Тогда в каждом подмножестве будет 6 исходов: ФБГ, ФГБ, БГФ, БФГ, ГБФ, ГФБ. Из этих шести исходов благоприятным будет только БФГ. Следовательно, благоприятными являются 1/6 всех исходов. Искомая вероятность равна 16 ≈ 0,17
2-й способ (этот способ не является математически верным, но при решении на экзамене может помочь, если первый способ непонятен)
Так как в условии не указано общее число рок-групп, будем считать, что их всего три: из Финляндии, Бельгии и Греции. Будем считать исходом порядок выступлений, всего 6 исходов: ФБГ, ФГБ, БГФ, БФГ, ГБФ, ГФБ. Благоприятным является только исход БФГ. Искомая вероятность равна 16 ≈ 0,17.
Ответ: 0,17.
Задача 5.5 При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,2, а при каждом последующем 0,7. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?
Решение.
1-й способ
Вероятность промаха при первом выстреле равна 1 – 0,2 = 0,8. Вероятность промаха при каждом последующем равна 0,3. Подсчитаем число выстрелов, при котором цель остаётся непоражённой с вероятностью менее 1 – 0,98 = 0,02.
Вероятность непоражения
после второго выстрела равна 0,8 • 0,3 = 0,24;
после третьего 0,24 • 0,3 = 0,072;
после четвёртого 0,072 • 0,3 = 0,0216;
после пятого 0,0216 • 0,3 = 0,00648.
Следовательно, необходимо 5 выстрелов.
2-й способ (этот способ имеет математическое значение, но непригоден на экзамене из-за необходимости приближённого вычисления логарифма)
Вероятность непоражения после n выстрелов равна , так как при первом выстреле вероятность промаха 0,8, а при каждом последующем 0,3.
По условию необходимо, чтобы
Ответ: 5.
Задача 5.6 Чтобы поступить в институт на специальность «Архитектура», абитуриент должен набрать на ЕГЭ не менее 60 баллов по каждому из трёх предметов – математике, русскому языку и истории. Чтобы поступить на специальность «Живопись», нужно набрать не менее 60 баллов по каждому из трёх предметов – русскому языку, истории и литературе.
Вероятность того, что абитуриент Н. получит не менее 60 баллов по истории, равна 0,8, по русскому языку 0, 5, по литературе 0,6 и по математике 0,9.
Найдите вероятность того, что Н. сможет поступить хотя бы на одну из двух упомянутых специальностей.
Решение.
Вероятность того, что Н. не сможет набрать 60 баллов ни по литературе, ни по математике равна (1 – 0,6) • (1 –0,9) = 0,4 • 0,1 = 0,04. Следовательно, хотя бы по одному из этих двух предметов он получит 60 баллов с вероятностью 1 – 0,04 = 0,96.
Для поступления нужно набрать требуемый балл по русскому языку, истории и хотя бы по одному предмету из литературы и математики. Вероятность поступления равна 0,5 • 0,8 • 0,96 = 0,384.
Ответ: 0,384.
Задача 5.7 В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. Сегодня 11 марта, погода в Волшебной стране хорошая. Найдите вероятность того, что 14 марта в Волшебной стране будет отличная погода.
Решение.
Составим таблицу вероятностей для погоды в Волшебной стране.
11 марта | 12 марта | 13 марта | 14 марта | |
хорошая |
1 |
|||
отличная | 0 |
Погода 12 марта с вероятностью 0,9 останется хорошей, с вероятностью 0,1 станет отличной. Занесём эти данные в таблицу.
11 марта | 12 марта | 13 марта | 14 марта | |
хорошая | 1 | 0,9 | ||
отличная | 0 | 0,1 |
Хорошая погода 13 марта может быть в двух случаях.
1) Погода 12 марта была хорошей и не изменилась. Вероятность этого равна 0,9 • 0,9 = 0,81.
2) Погода 12 марта была отличной и изменилась. Вероятность этого равна 0,1 • 0,1 = 0,01.
Таким образом, вероятность хорошей погоды 13 марта равна 0,81 + 0,01 = 0,82. Вероятность отличной погоды 13 марта равна 1 – 0,82 = 0,18. Заносим эти данные в таблицу.
11 марта | 12 марта | 13 марта | 14 марта | |
хорошая | 1 | 0,9 | 0,82 | |
отличная | 0 | 0,1 | 0,18 |
Отличная погода 14 марта может быть в двух случаях.
1) Погода 13 марта была хорошей и изменилась. Вероятность этого равна 0,82 • 0,1 = 0,082.
2) Погода 13 марта была отличной и не изменилась. Вероятность этого равна 0,18 • 0,9 = 0,162.
Таким образом, вероятность отличной погоды 14 марта равна 0,082 + 0,162 = 0,244.
11 марта | 12 марта | 13 марта | 14 марта | |
хорошая | 1 | 0,9 | 0,82 | |
отличная | 0 | 0,1 | 0,18 | 0,244 |
Ответ: 0,244.
Подведем итог
Это последняя часть материала по началам теории вероятностей, знание которого необходимо для успешной сдачи ЕГЭ по математике профильного уровня.
Для закрепления изученного предлагаю вам задачи для самостоятельного решения.
Вы также можете проверить правильность их выполнения, внеся свои ответы в предлагаемую форму.
Также рекомендую изучить «Задачи с параметром» и другие уроки по решению заданий ЕГЭ по математике, которые представлены на нашем канале Youtube.
Спасибо, что поделились статьей в социальных сетях
Источник «Подготовка к ЕГЭ. Математика. Теория вероятностей». Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова
ЕГЭ по математике Профиль. Задание 2: Уметь строить и исследовать простейшие математические модели. Материалы для подготовки к итоговой аттестации. Алгоритм выполнения задания. Примеры с объяснением выбора правильного ответа. Анализ типичных ошибок.
Вернуться к Оглавлению раздела «Анализ заданий ЕГЭ по математике».
ЕГЭ Профиль. Задание № 2.
АЛГОРИТМ ВЫПОЛНЕНИЯ
Задание № 2 проверяет умение использовать элементы теории вероятностей при решении прикладных задач. Для его выполнения понадобится производить действия с дробями и совершать простые вычисления. Задание представляет собой текстовую задачу, которая решается с помощью базовых арифметических операций. В ответе необходимо указать целое или дробное число, записанное в виде конечной десятичной дроби.
План выполнения:
- Внимательно прочитайте задачу.
- Выявите число всех элементарных событий и число благоприятствующих событий, не пропустив ни одного из всех возможных исходов и не включая ни одного лишнего.
- При решении задачи на классическое определение вероятности установите, зависимы (совместны) или независимы (несовместны) элементарные события.
- Выполните на черновике необходимые вычисления.
- Запишите полученное число в поле ответа КИМ и бланк ответов № 1.
Задачи на классическое
определение вероятности
Задача № 2 (1). В коробке лежит 40 шаров: 20 чёрных, 4 жёлтых и 16 зелёных. Наугад из коробки достают один шар. Найдите вероятность того, что этот шар будет жёлтым.
Решение:
Ответ: 0,1.
Задача № 2 (2). Участников шахматного турнира разбивают на пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 11 спортсменов из России, в том числе Пётр Орлов. Найдите вероятность того, что Пётр Орлов будет играть с шахматистом из России.
Решение:
Ответ: 0,4.
Задача № 2 (3). У Дениса в копилке лежит 6 рублёвых, 3 двухрублёвых, 2 пятирублёвых и 4 десятирублёвых монеты. Денис наугад достал из копилки одну монету. Найдите вероятность того, что оставшаяся в копилке сумма составит более 60 рублей.
Решение:
Ответ: 0,4.
Задачи на использование теорем
о вероятностях событий
Задача № 2 (4). Помещение освещается фонарём с двумя лампами. Вероятность перегорания лампы в течение года равна 0,2. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Решение:
Ответ: 0,96.
Задача № 2 (5). При проверке на вирусное заболевание делают анализ крови. Если анализ выявляет вирус, то результат является положительным. У больных анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на заболевание, действительно больны. Найдите вероятность того, что результат анализа у пациента будет положительным. Ответ округлите до сотых.
Решение:
Ответ: 0,05.
Задача № 2 (6). На экзамене по истории ученик отвечает на один вопрос из списка. Вероятность того, что это вопрос по теме «Крепостное право», равна 0,2. Вероятность того, что это вопрос по теме «Февральская революция», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене ученику достанется вопрос по одной из этих двух тем.
Решение:
Ответ: 0,35.
Тренировочные задания с самопроверкой
№ 2.1. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Ответ округлите до сотых.
Открыть ОТВЕТ
№ 2.2. В некотором городе на 6000 появившихся на свет младенцев приходится 3360 девочек. Найдите частоту рождения мальчиков в этом городе.
Открыть ОТВЕТ
№ 2.3. Вероятность того, что на тесте по математике ученица Настя верно решит не менее 12 задач, равна 0,84. Вероятность того, что Настя решит больше 11 задач, равна 0,96. Найдите вероятность того, что Настя решит ровно 12 задач.
Открыть ОТВЕТ
№ 2.4. Склад освещается двумя фонарями с лампами. Вероятность перегорания лампы одного фонаря в течение одного месяца равна 0,4. Найдите вероятность того, что в течение месяца хотя бы одна лампа не перегорит.
Открыть ОТВЕТ
№ 2.5. Вероятность того, что батарейка бракованная, равна 0,05. Покупатель в магазине выбирает случайную упаковку, в которой две такие батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.
Открыть ОТВЕТ
Вы смотрели: ЕГЭ по математике Профиль. Задание 2: Уметь строить и исследовать простейшие математические модели. Материалы для подготовки к итоговой аттестации. Алгоритм выполнения задания. Примеры с объяснением выбора правильного ответа. Анализ типичных ошибок.
Вернуться к Оглавлению раздела «Анализ заданий ЕГЭ по математике».
Просмотров:
17 245
Сборник
задач по теории вероятностей
Разработка
предназначена для учащихся 9–11 классов для подготовки к ОГЭ и ЕГЭ по
математике.
Цель:
показать решение типовых задач по данной теме, закрепить умение учащихся решать
данные задачи, предоставить задачи для самостоятельного решения, подготовить
учеников к сдаче ОГЭ и ЕГЭ.
В
сборнике предоставлено 129 задач с ответами для самостоятельного решения.
Источники информации:
Открытый
банк ЕГЭ ФИПИ http://fipi.ru/
Сайт Решу ЕГЭ.
Оглавление
Сборник
задач по теории вероятностей
Теория вероятностей. Теория. Основные понятия,
формулы.
Способы решения заданий № 2 и № 10 ЕГЭ профильный
уровень 2022.
Задачи для самостоятельного решения:
Теория вероятностей. Теория. Основные понятия, формулы.
Классическое
определение вероятности
Вероятностью события A называется отношение числа благоприятных для A исходов к
числу всех равновозможных исходов: Р (А) =
где n — общее число равновозможных исходов, m — число исходов, благоприятствующих
событию A.
Противоположные события
Событие, противоположное событию A, обозначают Ā. При проведении испытания
всегда происходит ровно одно из двух противоположных событий и
Объединение несовместных событий
Два события A и B называют несовместными, если отсутствуют исходы,
благоприятствующие одновременно как событию A, так и событию B.
Если события A и B несовместны, то вероятность их объединения равна сумме
вероятностей событий A и B: P(A U B) =P(A) + P(B)
Пересечение
независимых событий Два события A
и B называют независимыми, если вероятность каждого из них не зависит от
появления или непоявления другого события.
Событие C называют пересечением событий A и B (пишут C =
A∩B), если событие C означает, что произошли оба события A и B.
Если события A и B независимы, то вероятность их пересечения равна произведению
вероятностей событий A и B:
P(A∩B) = P(A) • P(B)
Формула сложения вероятностей совместных событий:
P (A U
B) =P(A) + P(B) – P(A∩B)
Алгоритм
применения формулы классической вероятности при решении задач
·
Четко
сформулируйте для себя, в чем состоит испытание, исходя из условия задачи.
·
2.
Сформулируйте, что происходит в результате испытания, то есть каков исход
испытания.
·
3.
Убедитесь в том, что исходы испытания являются попарно несовместными и
равновозможными.
·
4.
Найдите общее число n исходов данного испытания.
·
5.
Введите событие, вероятность которого требуется найти в условии задачи,
обозначив его, например, А.
·
6.
Установите число исходов k данного испытания, благоприятствующих введенному в
п.5 событию А. 7. Примените формулу P(A)=𝑘 𝑛.
Пусть было произведено n испытаний, в
результате которых событие А появилось ровно k раз. Тогда отношение kn
называют относительной частотой события А.
Правила суммы и произведения в задачах ЕГЭ
по математике
Если объект А может быть
выбран m способами, а объект В – другими n способами, причем выборы объектов А
и В несовместны, то выбор «либо А, либо В» может быть осуществлен m + n
способами. Если объект А может быть выбран m способами и после каждого такого
выбора объект В может быть выбран n способами, то выбор упорядоченной пары (А;
В) может быть осуществлен m×n способами.
Схема Бернулли
Пусть проводится серия из n идентичных
независимых экспериментов. В каждом из них вероятность события А равна p. Тогда
вероятность того, что в указанной серии экспериментов событие наступит ровно k
раз (k£n), вычисляется по формуле. Схема Бернулли
𝐶𝑛
𝑘𝑝
𝑘
(1 − 𝑝) 𝑛−�
Способы решения заданий № 2 и № 10 ЕГЭ профильный уровень
2022.
1. Из 1000 собранных на заводе телевизоров 5
штук бракованных. Эксперт проверяет один наугад выбранный телевизор из этой
1000. Найдите вероятность того, что проверяемый телевизор окажется бракованным.
Решение. При выборе телевизора наугад возможны 1000
исходов, событию A «выбранный телевизор — бракованный» благоприятны 5 исходов.
По определению вероятности P(A) = 5÷1000 = 0,005.
2. В урне 9 красных, 6 жёлтых и 5 зелёных шаров.
Из урны наугад достают один шар. Какова вероятность того, что этот шар окажется
жёлтым? Решение. Общее
число исходов равно числу шаров: 9 + 6 + 5 = 20. Число исходов,
благоприятствующих данному событию, равно 6. Искомая вероятность равна 6÷20 =
0,3.
2.1 Конференция длится три дня. В
первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова
вероятность того, что доклад профессора М. выпадет на третий день, если порядок
докладов определяется жеребьевкой?
Решение: P (A) = m/n=20/ (15+15+20) =20/50=0,4
3. Петя,
Вика, Катя, Игорь, Антон, Полина бросили жребий — кому начинать игру.
Найдите вероятность того, что начинать игру должен будет мальчик.
Решение. Вероятность
события равна отношению количества благоприятных случаев к количеству
всех случаев. Благоприятными случаями являются 3 случая, когда игру
начинает Петя, Игорь или Антон, а количество всех случаев 6. Поэтому
искомое отношение равно 3:6=0,5.
4. В чемпионате мира участвуют 16 команд.
С помощью жребия их нужно разделить на четыре группы по четыре команды в
каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2,
2, 2, 3, 3, 3, 3, 4, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова
вероятность того, что команда России окажется во второй группе?
Решение: обозначим
через А событие «команда России во второй группе». Тогда количество
благоприятных событий m
= 4 (четыре карточки с номером 2), а общее число равновозможных событий n
= 16 (16 карточек) по определению вероятности Р= 4: 16 = 0,25.
5. В
лыжных гонках участвуют 11 спортсменов из России, 6 спортсменов из Норвегии
и 3 спортсмена из Швеции. Порядок, в котором спортсмены стартуют,
определяется жребием. Найдите вероятность того, что первым будет
стартовать спортсмен не из России.
Решение. Всего
спортсменов 11 + 6 + 3 = 20 человек. Поэтому вероятность того, что первым
будет стартовать спортсмен не из России равна 9:20 = 0,45.
6. На каждые 1000 электрических
лампочек приходится 5 бракованных. Какова вероятность купить исправную
лампочку?
Решение. На
каждые 1000 лампочек приходится 5 бракованных, всего их 1005. Вероятность
купить исправную лампочку будет равна доле исправных лампочек на каждые
1005 лампочек, то есть 1000:1005=0,995.
7.
В группе туристов 8 человек. С помощью жребия они выбирают шестерых человек,
которые должны идти в село в магазин за продуктами. Какова вероятность того,
что турист Д., входящий в состав группы, пойдёт в магазин?
Решение:
6: 8=0,75.
8. В
чемпионате по футболу участвуют 16 команд, которые жеребьевкой
распределяются на 4 группы: A, B, C и D. Какова вероятность того,
что команда России не попадает в группу A?
Решение.
Каждая команда попадет в группу с вероятностью 0,25. Таким образом,
вероятность того, что команда не попадает в группу равна
1-0,25=0,75.
9. На
турнир по шахматам прибыло 26 участников в том числе Коля и Толя. Для
проведения жеребьевки первого тура участников случайным образом разбили на две
группы по 13 человек. Найти вероятность того, что Коля и Толя попадут в разные
группы. Решение.
Всего 26 мест. Пусть Коля займет случайное место в любой группе. Останется 25
мест, из них в другой группе 13. Исходом считаем выбор места для Толи.
Благоприятных исходов 13. Р=13/25 = 0,52.
10.
В классе 16 учащихся, среди них два друга —Вадим и Сергей. Учащихся
случайным образом разбивают на 4 равные группы. Найдите вероятность того, что
Вадим и Сергей окажутся в одной группе. Решение.
Если Сергею первому досталось некоторое место, то Олегу остаётся 15 мест. Из
них 3 — в той же группе, где Сергей. Искомая вероятность равна 3/15.
11.
В классе 21 учащийся, среди них два друга — Вадим и Олег. Класс случайным
образом разбивают на 3 равные группы. Найдите вероятность того, что Вадим и
Олег окажутся в одной группе.
Решение. Пусть один из друзей находится в некоторой
группе. Вместе с ним в группе окажутся 6 человек из 20 оставшихся учащихся.
Вероятность того, что друг окажется среди этих 6 человек, равна 6: 20 =
0,3.
12.
Перед началом первого тура чемпионата по настольному теннису участников
разбивают на игровые пары случайным образом с помощью жребия. Всего в
чемпионате участвует 16 спортсменов, среди которых 7 участников из России, в
том числе Платон Карпов. Найдите вероятность того, что в первом туре Платон
Карпов будет играть с каким-либо спортсменом из России? Решение
6:15=0, 4.
13.
Перед началом первого тура чемпионата по шашкам участников разбивают на игровые
пары случайным образом с помощью жребия. Всего в чемпионате участвует 26
шашистов, среди которых 3 участника из России, в том числе Василий Лукин.
Найдите вероятность того, что в первом туре Василий Лукин будет играть с
каким-либо шашистом из России? Решение: 2:
25=0,08.
14.
В классе 26 учащихся, среди них два друга — Сергей и Андрей. Учащихся
случайным образом разбивают на 2 равные группы. Найдите вероятность того, что
Сергей и Андрей окажутся в одной группе. Решение:12: 25 = 0,48.
15.
В классе 21 ученик, среди них 2 друга – Тоша и Гоша. На уроке физкультуры класс
случайным образом разбивают на 3 равные группы. Найдите вероятность того, что
Тоша и Гоша попали в одну группу. Решение: 6:
20 = 0,3.
16.
В классе 21 учащийся, среди них две подруги — Аня и Нина. Класс случайным
образом делят на семь групп, по 3 человека в каждой. Найдите вероятность того,
что Аня и Нина окажутся в одной группе. Решение: 2: 20 =
0,1.
17.
Механические часы с двенадцатичасовым циферблатом в какой-то момент
сломались и перестали идти. Найдите вероятность того, что часовая стрелка
остановилась, достигнув отметки 7, но не дойдя до отметки 1. Решение:
6: 12= 0,5 (6 делений между 12 и 7, всего 12 делений)
18. Механические часы с двенадцатичасовым
циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность
того, что часовая стрелка застыла, достигнув отметки 6, но не дойдя до отметки
9 часов. Решение: 3:12 = 0,25
При
решении задач с монетами число всех возможных исходов
можно посчитать по формуле п=2ª, где α –количество бросков
19. В
случайном эксперименте симметричную монету бросают 2 раза. Найдите
вероятность того, что орел выпадет ровно 1 раз.
Решение. Всего
возможны четыре исхода: решка-решка, решка-орёл, орёл-решка, орёл-орёл.
Орёл выпадает ровно один раз в двух случаях, поэтому вероятность
того, что орёл выпадет ровно один раз равна 2:4=0,5.
20. В случайном эксперименте симметричную
монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу.
Решение: 1:4=0,25
21. В случайном эксперименте симметричную
монету бросают трижды. Найдите вероятность того, что орёл не выпадет ни разу.
Решение. 1:8=0,125
22. В случайном эксперименте симметричную
монету бросают четырежды. Найдите вероятность того, что орёл выпадет ровно 2
раза. Решение. Составим список
возможных вариантов. Бросают 2 раза может выпасть О — Орел, Р —
Решка:
ОО, ОР, РО, РР. Всего 4 исхода из них только один случай удовлетворяет условию.
Вероятность (P) = 1 / 4 = 0.25.
23.
В случайном эксперименте симметричную монету бросают четырежды. Найдите
вероятность того, что решка не выпадет ни разу. Решение.
Всего исходов = 16, благоприятных 1 (ОООО).
1:16 = 0,0625.
При
решении задач с кубиками число всех возможных исходов
можно посчитать по формуле п=6ª, где α –количество бросков
24.
Определите вероятность того, что при бросании игрального кубика
(правильной кости) выпадет нечетное число очков.
Решение. При бросании кубика
равновозможных шесть различных исходов. Событию «выпадет
нечётное число очков» удовлетворяют три случая: когда на кубике выпадает
1, 3 или 5 очков. Поэтому вероятность того, что на кубике выпадет
нечётное число очков равна 3:6=0,5.
25. Определите
вероятность того, что при бросании кубика выпало число очков, не большее
3.
Решение. При
бросании кубика равно возможны шесть различных исходов. Событию
«выпадет не больше трёх очков» удовлетворяют три случая:
когда на кубике выпадает 1, 2, или 3 очка. Поэтому вероятность того,
что на кубике выпадет не больше трёх очков равна 3:6=0,5
26. Игральную
кость бросают дважды. Найдите вероятность того, что оба раза выпало число,
большее 3.
Решение. При
бросании кубика 6²= 36 различных исходов. Событию «выпадет
больше трёх очков» удовлетворяют три случая: когда на кубике выпадает
4, 5, или 6 очков, благоприятных исходов 9 (4,4; 4,5; 4,6; 5,4; 5,5; 5,6; 6,4;
6,5; 6,6.) Решение:
9: 36 = 0,25.
27. В случайном эксперименте бросают три
игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков.
Результат округлите до сотых. Решение.
При бросании кубика 6³= 216 различных
исходов, благоприятных 14.
14: 216 = 0,07.
28. Коля
выбирает трехзначное число. Найдите вероятность того, что оно делится
на 5.
Решение. Всего
трехзначных чисел 900. На пять делится каждое пятое их них, то есть таких
чисел 900:5=180. Вероятность того, что Коля выбрал трехзначное число, делящееся
на 5, определяется отношением количества трехзначных чисел, делящихся
на 5, ко всему количеству трехзначных чисел: 180:900=0,2.
29.Для
экзамена подготовили билеты с номерами от 1 до 50. Какова вероятность
того, что наугад взятый учеником билет имеет однозначный номер?
Решение. Всего
было подготовлено 50 билетов. Среди них 9 были однозначными. Таким образом,
вероятность того, что наугад взятый учеником билет имеет однозначный
номер равна 9:50=0,18.
30. В мешке содержатся жетоны с номерами от 5 до 54 включительно.
Какова вероятность, того, что извлеченный наугад из мешка жетон содержит
двузначное число?
Решение. Всего
в мешке жетонов — 50. Среди них 45 имеют двузначный номер. Таким образом,
вероятность, того, что извлеченный наугад из мешка жетон содержит двузначное
число равна 45: 50 = 0,9.
31.
Какова
вероятность того, что случайно выбранное натуральное число от 10 до 19 делится
на 3? 3:
10 = 0,3.
Противоположные
события.
32. Вероятность
того, что новая шариковая ручка пишет плохо (или не пишет), равна 0,19. Покупатель
в магазине выбирает одну такую ручку. Найдите вероятность того, что
эта ручка пишет хорошо.
Решение.
Вероятность того, что ручка пишет хорошо, равна
1 − 0,19 = 0,81.
33. Вероятность того, что
в случайный момент времени температура тела здорового человека окажется ниже
36,8°C равна 0,87. Найдите вероятность того, что в случайный момент времени
у здорового человека температура тела окажется 36,8°C или выше. Решение.
1-0,87=0,13
34. При изготовлении подшипников
диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного
не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный
подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм.
Решение. По
условию, диаметр подшипника будет лежать в пределах от 66,99 до 67,01
мм с вероятностью 0,965. Поэтому искомая вероятность противоположного
события равна 1 − 0,965 = 0,035.
Несовместные
и независимые события.
35.
На экзамене по геометрии школьнику достаётся одна задача из сборника.
Вероятность того, что эта задача по теме «Углы», равна 0,1. Вероятность
того, что это окажется задача по теме «Параллелограмм», равна 0,6. В
сборнике нет задач, которые одновременно относятся к этим двум
темам. Найдите вероятность того, что на экзамене школьнику достанется
задача по одной из этих двух тем.
Решение.
Суммарная вероятность несовместных событий равна сумме вероятностей
этих событий: P=0,6+ 0,1 = 0,7.
36. Вероятность
того, что на тесте по биологии учащийся О. верно решит больше 11 задач,
равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна
0,74. Найдите вероятность того, что О. верно решит ровно 11 задач.
Решение. Рассмотрим
события A = «учащийся решит 11 задач» и В = «учащийся решит больше 11
задач». Их сумма — событие A + B = «учащийся решит
больше 10 задач». События A и В несовместные, вероятность их суммы
равна сумме вероятностей этих событий: P (A + B) = P(A) + P(B). Тогда, используя
данные задачи, получаем: 0,74 = P(A) + 0,67, откуда P(A) = 0,74 − 0,67
= 0,07.
37. Вероятность того, что на тесте по химии учащийся П. верно решит больше 8
задач, равна 0,48. Вероятность того, что П. верно решит больше 7 задач, равна
0,54. Найдите вероятность того, что П. верно решит ровно 8 задач.
Решение. Вероятность решить несколько задач складывается из суммы вероятностей
решить каждую из этих задач. Больше 8: решить 9-ю, 10-ю … Больше 7: решить
8-ю, 9-ю, 10-ю …Вероятность решить 8-ю = 0,54-0,48=0,06
38.
На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что
случайно нажатая цифра будет меньше 4? Решение: 4: 10 = 0,4.
39. Биатлонист пять раз стреляет по
мишеням. Вероятность попадания в мишень при одном выстреле равна
0,8. Найдите вероятность того, что биатлонист первые три раза попал в
мишени, а последние два промахнулся. Результат округлите до сотых.
Решение. Поскольку
биатлонист попадает в мишени с вероятностью 0,8, он промахивается
с вероятностью 1 − 0,8 = 0,2. События попасть или промахнуться
при каждом выстреле независимы, вероятность произведения независимых
событий равна произведению их вероятностей. Тем самым, вероятность
события «попал, попал, попал, промахнулся, промахнулся» равна
0,8•0,8•0,8•0,2•0,2=0,02048.
40.
Помещение
освещается фонарём с двумя лампами. Вероятность перегорания лампы в
течение года равна 0,3. Найдите вероятность того, что в течение года
хотя бы одна лампа не перегорит.
Решение. Найдем
вероятность того, что перегорят обе лампы. Эти события независимые,
вероятность их произведения равно произведению вероятностей этих
событий: 0,3·0,3 = 0,09. Событие, состоящее в том, что не перегорит
хотя бы одна лампа, противоположное. Следовательно, его вероятность
равна 1 − 0,09 = 0,91.
41. Вероятность того, что батарейка
бракованная, равна 0,06. Покупатель в магазине выбирает случайную
упаковку, в которой две таких батарейки. Найдите вероятность того,
что обе батарейки окажутся исправными.
Решение.
Вероятность того, что батарейка исправна,
равна 0,94. Вероятность произведения независимых событий (обе батарейки
окажутся исправными) равна произведению вероятностей этих событий:
0,94·0,94 = 0,8836.
4
2. Если
гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б.
с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б.
с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем
во второй партии меняют цвет фигур. Найдите вероятность того, что А.
выиграет оба раза.
Решение. Возможность
выиграть первую и вторую партию не зависят друг от друга. Вероятность
произведения независимых событий равна произведению их вероятностей:
0,52 · 0,3 = 0,156.
4
3. В
магазине три продавца. Каждый из них занят с клиентом с вероятностью
0,3. Найдите вероятность того, что в случайный момент времени все три
продавца заняты одновременно (считайте, что клиенты заходят независимо
друг от друга).
Решение. Вероятность
произведения независимых событий равна произведению вероятностей
этих событий. Поэтому вероятность того, что все три продавца заняты
равна (0,3)³ = 0,027.
44. Из районного центра в деревню ежедневно
ходит автобус. Вероятность того, что в понедельник в автобусе окажется
меньше 20 пассажиров, равна 0,94. Вероятность того, что окажется меньше
15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров
будет от 15 до 19.
Решение. Рассмотрим
события A = «в автобусе меньше 15 пассажиров» и В = «в автобусе от
15 до 19 пассажиров». Их сумма — событие
A + B = «в автобусе меньше 20 пассажиров». События
A и В несовместные, вероятность их суммы равна сумме вероятностей
этих событий: P (A + B) = P(A) + P(B).
Тогда, используя данные задачи,
получаем: 0,94 = 0,56 + P(В), откуда P(В) = 0,94 − 0,56 = 0, 38.
45.
На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных
вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность»,
равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм»,
равна 0,15. Вопросов, которые одновременно относятся к этим двум
темам, нет. Найдите вероятность того, что на экзамене школьнику достанется
вопрос по одной из этих двух тем.
Решение. Вероятность
суммы двух несовместных событий равна сумме вероятностей этих событий:
0,2 + 0,15 = 0,35.
46.Вероятность того, что новый электрический чайник прослужит больше
года, равна 0,97. Вероятность того, что он прослужит больше двух лет,
равна 0,89. Найдите вероятность того, что он прослужит меньше двух лет,
но больше года.
Решение. Пусть
A = «чайник прослужит больше года, но меньше двух лет»,
В = «чайник прослужит больше двух лет», С = «чайник
прослужит ровно два года», тогда
A + B + С = «чайник прослужит больше года».
События A, В и С несовместные, вероятность их суммы равна сумме вероятностей
этих событий. Вероятность события С, состоящего в том, что чайник
выйдет из строя ровно через два года — строго в тот же день, час и секунду
— равна нулю. Тогда: P (A + B+ С) = P(A) + P(B)+ P(С)= P(A) + P(B)
откуда, используя
данные из условия, получаем 0,97 = P(A) + 0,89.
Тем самым, для искомой вероятности
имеем: P(A) = 0,97 − 0,89 = 0,08.
47. В Волшебной стране бывает два
типа погоды: хорошая и отличная, причём погода, установившись утром,
держится неизменной весь день. Известно, что с вероятностью 0,8 погода
завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной
стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране
будет отличная погода.
Решение. Для
погоды на 4, 5 и 6 июля есть 4 варианта: ХХО, ХОО, ОХО, ООО (здесь Х — хорошая,
О — отличная погода). Найдем вероятности наступления такой погоды:
P(XXO) = 0,8·0,8·0,2 = 0,128; P(XOO) = 0,8·0,2·0,8 = 0,128; P(OXO) =
0,2·0,2·0,2 = 0,008; P(OOO) = 0,2·0,8·0,8 = 0,128.Указанные события несовместные,
вероятность их суммы равна сумме вероятностей этих событий:
P(ХХО) + P(ХОО) + P(ОХО) + P(ООО) = 0,128 + 0,128 + 0,008 + 0,128 = 0,392.
48. В магазине стоят два платёжных автомата.
Каждый из них может быть неисправен с вероятностью 0,05 независимо
от другого автомата. Найдите вероятность того, что хотя бы один автомат
исправен.
Решение. Найдем
вероятность того, что неисправны оба автомата. Эти события независимые,
вероятность их произведения равна произведению вероятностей этих
событий: 0,05 · 0,05 = 0,0025. Событие, состоящее
в том, что исправен хотя бы один автомат, противоположное. Следовательно,
его вероятность равна 1 − 0,0025 = 0,9975.
49. В торговом центре два одинаковых
автомата продают кофе. Вероятность того, что к концу дня в автомате
закончится кофе, равна 0,3. Вероятность того, что кофе закончится в
обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня
кофе останется в обоих автоматах.
Решение. Рассмотрим
событие А = кофе закончится в первом автомате, В = кофе закончится
во втором автомате.
Вероятность того, что кофе останется
в первом автомате равна 1 − 0,3 = 0,7. Вероятность
того, что кофе останется во втором автомате равна
1 − 0,3 = 0,7. Вероятность того, что кофе останется в
первом или втором автомате равна 1 − 0,12 = 0,88. Поскольку
P(A + B) = P(A) + P(B) − P(A·B), имеем:
0,88 = 0,7 + 0,7 − х, откуда искомая вероятность
х = 0,52.
49.1 В торговом центре два одинаковых автомата продают кофе.
Обслуживание автоматов происходит по вечерам после закрытия центра. Известно,
что вероятность события «К вечеру в первом автомате закончится кофе» равна
0,25. Такая же вероятность события «К вечеру во втором автомате закончится
кофе». Вероятность того, что кофе к вечеру закончится в обоих автоматах, равна
0,15. Найдите вероятность того, что к вечеру кофе останется в обоих автоматах.
Решение: рассмотрим события
А = кофе закончится в первом автомате,
В = кофе закончится во втором автомате.
Тогда
A·B = кофе закончится в обоих автоматах,
A + B = кофе закончится хотя бы в одном автомате.
По условию P(A) = P(B) = 0,25; P(A·B) = 0,15.
События A и B совместные, вероятность суммы двух совместных
событий равна сумме вероятностей этих событий, уменьшенной на вероятность их
произведения:
P (A + B) = P(A) + P(B) − P(A·B) = 0,25 + 0,25 − 0,15 = 0,35.
Следовательно, вероятность противоположного события, состоящего в
том, что кофе останется в обоих автоматах, равна 1 − 0,35 = 0,65.
Возможно и
иное решение данного типа задач:
Вероятность того, что кофе останется в первом
автомате равна 1 − 0,25 = 0,75. Вероятность того, что кофе останется во втором
автомате равна 1 − 0,25 = 0,75. Вероятность того, что кофе останется в первом
или втором автомате равна 1 − 0,15 = 0,85. Поскольку P (A + B) = P(A) + P(B) − P(A·B),
имеем: 0,85 = 0,75 + 0,75 − х, откуда искомая вероятность х = 0,65.Заметим,
что события А и В не являются независимыми. Действительно, вероятность
произведения независимых событий была бы равна произведению вероятностей этих
событий: P(A·B) = 0,25·0,25 = 0,0625, однако, по условию, эта вероятность равна
0,15.
50. Две
фабрики выпускают одинаковые стекла для автомобильных фар. Первая
фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика
выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность
того, что случайно купленное в магазине стекло окажется бракованным.
Решение. Вероятность
того, что стекло куплено на первой фабрике и оно бракованное:
0,45 · 0,03 = 0,0135. Вероятность того, что стекло куплено
на второй фабрике и оно бракованное:
0,55 · 0,01 = 0,0055. Поэтому по формуле полной
вероятности вероятность того, что случайно купленное в магазине
стекло окажется бракованным равна
0,0135 + 0,0055 = 0,019.
51.
Ковбой Джон попадает в муху на стене с
вероятностью 0,9, если стреляет из пристрелянного револьвера. Если
Джон стреляет из непристрелянного револьвера, то он попадает в
муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4
пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый
попавшийся револьвер и стреляет в муху. Найдите вероятность того,
что Джон промахнётся.
Решение. Джон
попадает в муху, если схватит пристрелянный револьвер и попадет из
него, или если схватит непристрелянный револьвер и попадает из него.
По формуле условной вероятности, вероятности этих событий равны соРешениественно
0,4·0,9 = 0,36 и 0,6·0,2 = 0,12. Эти события несовместны,
вероятность их суммы равна сумме вероятностей этих событий:
0,36 + 0,12 = 0,48. Событие, состоящее в том, что Джон
промахнется, противоположное. Его вероятность равна
1 − 0,48 = 0,52.
52.
Чтобы поступить в институт
на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не
менее 70 баллов по каждому из трёх предметов — математика,
русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция»,
нужно набрать не менее 70 баллов по каждому из трёх предметов — математика,
русский язык и обществознание.
Вероятность того, что абитуриент З.
получит не менее 70 баллов по математике, равна 0,6, по русскому
языку — 0,8, по иностранному языку — 0,7 и по обществознанию —
0,5.
Найдите вероятность того, что З. сможет
поступить хотя бы на одну из двух упомянутых специальностей.
Решение. В
силу независимости событий, вероятность успешно сдать экзамены на
лингвистику: 0,6·0,8·0,7 = 0,336, вероятность успешно сдать экзамены
на коммерцию: 0,6·0,8·0,5 = 0,24, вероятность успешно сдать экзамены
и на «Лингвистику», и на «Коммерцию»: 0,6·0,8·0,7·0,5 = 0,168.
Успешная сдача экзаменов на «Лингвистику» и на «Коммерцию» — события
совместные, поэтому вероятность их суммы равна сумме вероятностей
этих событий, уменьшенной на вероятность их произведения. Тем самым,
поступить на одну из этих специальностей абитуриент может с вероятностью
0,336 + 0,24 − 0,168 = 0,408.
52.1 Чтобы
поступить в институт на специальность «Лингвистика», абитуриент должен набрать
на ЕГЭ не менее 69 баллов по каждому из трёх предметов — математика, русский
язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно
набрать не менее 69 баллов по каждому из трёх предметов — математика, русский
язык и обществознание.
Вероятность того, что абитуриент А. получит не менее 69 баллов по
математике, равна 0,6, по русскому языку — 0,6, по иностранному языку — 0,6 и
по обществознанию — 0,9.
Найдите вероятность того, что А. сможет поступить хотя бы на одну
из двух упомянутых специальностей.
Решение:
Для того, чтобы поступить
хоть куда-нибудь, А. нужно сдать и русский, и математику как минимум на 69
баллов, а помимо этого, еще сдать иностранный язык или обществознание не менее,
чем на 69 баллов. Пусть A, B, C и D — это события, в
которых А сдает математику, русский, иностранный и обществознание не менее, чем
на 69 баллов. Тогда поскольку P(C+D) =P(C)+P(D)-P(C*D) для вероятности поступления хотя бы на одну специальность
имеем:0.6*0.6(0.6+0.9-0.6*0.9) =0.3456
52.2 Чтобы
поступить в институт на специальность «Переводчик», абитуриент должен набрать
на ЕГЭ не менее 79 баллов по каждому из трёх предметов — математика, русский
язык и иностранный язык. Чтобы поступить на специальность «Таможенное дело»,
нужно набрать не менее 79 баллов по каждому из трёх предметов — математика,
русский язык и обществознание.
Вероятность того, что абитуриент Б. получит не менее 79 баллов по
математике, равна 0,9, по русскому языку — 0,7, по иностранному языку — 0,8 и
по обществознанию — 0,9.
Найдите вероятность того, что Б. сможет поступить хотя бы на одну
из двух упомянутых специальностей.
Решение:
В силу независимости событий, вероятность
успешно сдать экзамены на «Переводчика»: 0,9*0,7*0,8 = 0,504, вероятность
успешно сдать экзамены на «Таможенное дело»: 0,9*0,7*0,9 = 0,567, вероятность
успешно сдать экзамены и на «Переводчика», и на «Таможенное дело»:
0,9*0,7*0,8*0,9 = 0,4536. Успешная сдача экзаменов на «Переводчика» и на
«Таможенное дело» — события совместные, поэтому вероятность их суммы равна
сумме вероятностей этих событий, уменьшенной на вероятность их произведения.
Тем самым, поступить хотя бы на одну из этих специальностей абитуриент может с
вероятностью 0,504 + 0,567 − 0,4536 = 0,6174.
53.
По отзывам покупателей Иван Иванович оценил надёжность двух интернет-
магазинов. Вероятность того, что нужный товар доставят из магазина
А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б,
равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая,
что интернет-магазины работают независимо друг от друга, найдите
вероятность того, что ни один магазин не доставит товар.
Решение.
Вероятность того, что первый магазин не доставит товар равна
1 − 0,9 = 0,1. Вероятность того, что второй магазин
не доставит товар равна 1 − 0,8 = 0,2. Поскольку эти события
независимы, вероятность их произведения (оба магазина не доставят
товар) равна произведению вероятностей этих событий:
0,1 · 0,2 = 0,02.
54.
Перед
началом волейбольного матча капитаны команд тянут честный жребий,
чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор»
по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите
вероятность того, что «Статор» будет начинать только первую и последнюю
игры. Решение. Требуется
найти вероятность произведения трех событий: «Статор» начинает
первую игру, не начинает вторую игру, начинает третью игру. Вероятность
произведения независимых событий равна произведению вероятностей
этих событий. Вероятность каждого из них равна 0,5, откуда находим:
0,5·0,5·0,5 = 0,125. .
55.
Всем пациентам с подозрением на гепатит делают анализ крови.
Если анализ выявляет гепатит, то результат анализа называется положительным.
У больных гепатитом пациентов анализ даёт положительный результат
с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может
дать ложный положительный результат с вероятностью 0,01. Известно,
что 5% пациентов, поступающих с подозрением на гепатит, действительно
больны гепатитом. Найдите вероятность того, что результат анализа
у пациента, поступившего в клинику с подозрением на гепатит,
будет положительным.
Решение.
Анализ пациента может быть положительным по двум причинам: А) пациент
болеет гепатитом, его анализ верен; B) пациент не болеет гепатитом,
его анализ ложен. Это несовместные события, вероятность их суммы равна
сумме вероятностей этих событий. Имеем: Р(А)=0,9•0.05=0,045; Р(В)=
0,01•0,95=0,0095, Р(А+В) =Р(А)(В) =0,045+0,0095=0,0545.
56.
Автоматическая линия изготавливает батарейки. Вероятность
того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой
каждая батарейка проходит систему контроля. Вероятность того, что
система забракует неисправную батарейку, равна 0,99. Вероятность
того, что система по ошибке забракует исправную батарейку, равна
0,01. Найдите вероятность того, что случайно выбранная батарейка
будет забракована системой контроля.
Решение. Ситуация,
при которой батарейка будет забракована, может сложиться в результате
событий: A = батарейка действительно неисправна и забракована
справедливо или В = батарейка исправна, но по ошибке забракована.
Это несовместные события, вероятность их суммы равна сумме вероятностей
эти событий. Имеем: Р(А+В) =Р(А)+Р(В)=0,02•0,99+0,98•0,01=0,0198+0,0098=0,0296
.
57. Стрелок стреляет по мишени один
раз. В случае промаха стрелок делает второй выстрел по той же мишени.
Вероятность попасть в мишень при одном выстреле равна 0,7. Найдите вероятность
того, что мишень будет поражена (либо первым, либо вторым выстрелом).
Решение. Пусть
A — событие, состоящее в том, что мишень поражена стрелком с первого
выстрела, B — событие, состоящее в том, что мишень поражена со второго
выстрела. Вероятность события A равна P(A) = 0,7. Событие B наступает,
если, стреляя первый раз, стрелок промахнулся, а, стреляя второй раз,
попал. Это независимые события, их вероятность равна произведению
вероятностей этих событий: P(B) = 0,3·0,7 = 0,21. События A и B несовместные,
вероятность их суммы равна сумме вероятностей этих событий: P (A
+ B) = P(A)
+ P(B)
= 0,7 + 0,21 = 0,91.
58.
Перед
началом футбольного матча судья бросает монетку, чтобы определить,
какая из команд будет первой владеть мячом. Команда А должна сыграть
два матча — с командой В и с командой С. Найдите вероятность
того, что в обоих матчах первой мячом будет владеть команда А.
Решение. Рассмотрим
все возможные исходы жеребьёвки.
· Команда А в матче в обоих
матчах первой владеет мячом.
· Команда А в матче в обоих
матчах не владеет мячом первой.
· Команда А в матче с командой
В владеет мячом первой, а в матче с командой С — второй.
· Команда А в матче с командой
С владеет мячом первой, а в матче с командой В — второй.
Из четырех исходов один является
благоприятным, вероятность его наступления равна 1:4=0,25.
59.
Стрелок 4 раза стреляет по мишеням. Вероятность попадания в мишень
при одном выстреле равна 0,5. Найдите вероятность того, что стрелок первые
3 раза попал в мишени, а последний раз промахнулся.
Решение. Вероятность
промаха равна 1 − 0,5 = 0,5. Вероятность того, что стрелок
первые три раза попал в мишени равна 0,53 = 0,125. Откуда,
вероятность события, при котором стрелок сначала три раза попадает
в мишени, а четвёртый раз промахивается равна
0,125 · 0,5 = 0,0625.
60. Перед началом
матча по футболу судья бросает монету, чтобы определить, какая из команд будет
первой владеть мячом. Команда
«Байкал» играет по очереди с командами
«Амур», «Енисей»,
«Иртыш». Найти вероятность того, что команда «Байкал» будет первой владеть
мячом только в игре с «Амуром».
Решение. Монету
бросают 3 раза.
Для команды «Байкал»
возможные исходы в трех бросках {О О
О},{Р О О}, {О Р О}, {О О Р}, {Р Р О},{Р О Р}, {О Р Р},{Р
Р Р}. Всего исходов 8, благоприятныx1(выпадение орла в первой игре) {О Р Р,
1:8=0,125.
61.У Пети в кармане лежат шесть монет: четыре монеты по
рублю и две монеты по два рубля. Петя, не глядя, переложил какие-то три монеты
в другой карман. Найдите вероятность того, что теперь две двухрублевые монеты
лежат в одном кармане.
Решение. Пронумеруем монеты: рублевые – 1, 2, 3, 4; двухрублевые
– 5, 6. {123} {124}
{125} {126} {134} {135} {136} {145} {146} {156} {234}
{235} {236} {245} {246} {256} {345} {346} {356} {456}
n =
20 – число всех исходов. Взять три монеты можно так: (числа в порядке возрастания,
чтобы не пропустить комбинацию) m = 8 – число благоприятных исходов
(комбинации, в
которых монеты 5 и 6 (двухрублевые) не взяты или взяты обе. 8:20=0,4
62 На рисунке изображён лабиринт. Паук заползает в лабиринт в
точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом
разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что
выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук
придёт к выходу D.
Решение: (A)=0,5*0,5*0,5*0,5=1/16=0,0625
То есть, когда перед пауком
становится выбор пути, то мы находим вероятность того, что он выберет нужный
нам путь. Так как перед ним выбор из двух путей, то вероятность равна 0,5.
Таких выборов за весь путь к точке D будет
4, а значит нужно 4 раза перемножить вероятность 0,5. Конечный ответ равен
0,0625.
Существуют
похожие задачи на нахождение вероятности выбора пути, но в них намного больше
развилок, а также есть несколько путей к нужной точке или несколько таких
точек, что обязательно нужно учитывать.
63. Артём гуляет по парку. Он
выходит из точки S и, дойдя до очередной развилки, с равными
шансами выбирает следующую дорожку, но не возвращается обратно. Найдите
вероятность того, что таким образом он выйдет к пруду или фонтану.
Решение: чтобы выйти к фонтану Артёму нужно
пройти три развилки. На первой развилке нужно выбрать одну из четырёх дорожек,
на второй — одну из двух, на третьей — одну из двух. Значит, вероятность выйти
к фонтану равна 0,5*0,5*0,25=0,0625
Выйти к пруду Артём может двумя разными
способами. Первый способ: на первой развилке нужно выбрать одну из четырёх
дорожек, на второй — одну из двух. Вероятность этого способа
равна 0,25*0,5=0,125 Второй способ: на первой развилке нужно выбрать
одну из четырёх дорожек, на второй — две из четырёх. Вероятность этого способа
тоже равна 0,25*0,5=0,125
Значит, вероятность того, что Артём выйдет к
пруду или фонтану, равна 0,0625+0,125+0,125=0,3125.
64. Маша коллекционирует
принцесс из Киндер-сюрпризов. Всего в коллекции 10 разных принцесс, и они
равномерно распределены, то есть в каждом очередном Киндер-сюрпризе может с
равными вероятностями оказаться любая из 10 принцесс. У Маши уже есть две
разные принцессы из коллекции. Какова вероятность того, что для получения
следующей принцессы Маше придётся купить ещё 2 или 3 шоколадных яйца?
Решение.
Присвоим принцессам номера от 1 до 10. Пусть в коллекции у Маши принцессы с
номерами 1 и 2. Событие A – Маше придётся купить ещё 2 или 3 шоколадных яйца.
Событие B – Маше придётся купить ещё 2 яйца. Событие С – Маше придётся купить 3
шоколадных яйца. Тогда A=B+C. События B и C несовместны, P(B+C)=P(B)+P(C).
P(B)= 2 10 ∙ 8 10, P(C) = 2 10 ∙ 2 10 ∙ 8 10, P(B+C) = 210 ∙ 8 10 + 2 10
∙ 2 10 ∙ 8 10 = 0,16 + 0,032=0,192.
65. Симметричную монету
бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов»
больше вероятности события «выпадет ровно 4 орла»?
Решение. Воспользуемся
формулой Бернулли. Найдем вероятность события А, состоящего в том, что при
десяти бросаниях выпадет ровно 5 орлов:
Аналогично найдем
вероятность события B, состоящего в том, что при десяти бросаниях выпадет ровно
4 орла:
Тогда
Ответ: 1,2
Приведем решение
Вероятность того, что
выпадет ровно 5 орлов, равна отношению количества вариантов, при которых
выпадает ровно 5 орлов, к общему количеству вариантов: Вероятность
того, что выпадет ровно 4 орла, равна отношению количества вариантов, при
которых выпадает ровно 4 орла, к общему количеству вариантов: Тогда
отношение этих вероятностей
Количество вариантов, при
которых выпадет ровно 5 орлов, равно
Количество вариантов, при которых выпадет ровно 4 орла, равно
Тогда
Задачи для самостоятельного
решения:
1. В кармане у Миши было четыре конфеты — «Грильяж», «Белочка»,
«Коровка» и «Ласточка», а также ключи от квартиры. Вынимая ключи, Миша случайно
выронил из кармана одну конфету. Найдите вероятность того, что потерялась
конфета «Грильяж». Ответ: 0,25
2. На экзамен вынесено 60 вопросов, Андрей не выучил 3 из них.
Найдите вероятность того, что ему попадется выученный вопрос. Ответ: 0,95
3. В среднем из 1400 садовых насосов, поступивших в продажу, 7
подтекают. Найдите вероятность того, что один случайно выбранный для контроля
насос не подтекает. Ответ: 0,995
4. Фабрика выпускает сумки. В среднем 8 сумок из 100 имеют скрытые
дефекты. Найдите вероятность того, что купленная сумка окажется без дефектов. Ответ: 0,92
5. При производстве в среднем на каждые 2982 исправных насоса
приходится 18 неисправных. Найдите вероятность того, что случайно выбранный
насос окажется неисправным. Ответ: 0,006
6. Фабрика выпускает сумки.
В среднем на 190 качественных сумок приходится восемь сумок со скрытыми
дефектами. Найдите вероятность того, что купленная сумка окажется качественной.
Результат округлите до сотых.
Ответ:
0,96
7. На рок-фестивале
выступают группы — по одной от каждой из заявленных стран. Порядок выступления
определяется жребием. Какова вероятность того, что группа из Дании будет
выступать после группы из Швеции и после группы из Норвегии? Результат
округлите до сотых.
Ответ:
0,33
8. В некотором городе из
5000 появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения
девочек в этом городе. Результат округлите до тысячных.
Ответ:
0,498
9. На борту самолёта 12 кресел расположены рядом с запасными выходами
и 18 — за перегородками, разделяющими салоны. Все эти места удобны для
пассажира высокого роста. Остальные места неудобны. Пассажир В. высокого роста.
Найдите вероятность того, что на регистрации при случайном выборе места
пассажиру В. достанется удобное место, если всего в самолёте 300 мест.
Ответ:
0,1
10. На олимпиаде по русскому
языку 250 участников разместили в трёх аудиториях. В первых двух удалось
разместить по 120 человек, оставшихся перевели в запасную аудиторию в другом
корпусе. Найдите вероятность того, что случайно выбранный участник писал
олимпиаду в запасной аудитории.
Ответ:
0,04
11. В классе 26 учащихся,
среди них два друга — Андрей и Сергей. Учащихся случайным образом разбивают на
2 равные группы. Найдите вероятность того, что Андрей и Сергей окажутся в одной
группе.
Ответ:
0,48
12. В фирме такси в наличии 50 легковых автомобилей; 27 из них чёрного
цвета с жёлтыми надписями на бортах, остальные — жёлтого цвета с чёрными
надписями. Найдите вероятность того, что на случайный вызов приедет машина
жёлтого цвета с чёрными надписями.
Ответ:
0,46
13. В группе туристов 30 человек. Их вертолётом в несколько приёмов
забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором
вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П.
полетит первым рейсом вертолёта.
Ответ:
0,2
14. Вероятность того, что
новый DVD-проигрыватель в течение года поступит в гарантийный ремонт, равна
0,045. В некотором городе из 1000 проданных DVD-проигрывателей в течение года в
гарантийную мастерскую поступила 51 штука. На сколько отличается частота
события «гарантийный ремонт» от его вероятности в этом городе?
Ответ:
0,006
15.Механические часы с двенадцатичасовым циферблатом в какой-то
момент сломались и перестали идти. Найдите вероятность того, что часовая
стрелка остановилась, достигнув отметки 10, но не дойдя до отметки 1.
Ответ:
0,25
16. За круглый стол на 9
стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите
вероятность того, что обе девочки будут сидеть рядом.
Ответ:
0,25
17. За круглый стол на 5
стульев в случайном порядке рассаживаются 3 мальчика и 2 девочки. Найдите
вероятность того, что девочки будут сидеть рядом.
Ответ:
0,5
18. За круглый стол на 5
стульев в случайном порядке рассаживаются 3 мальчика и 2 девочки. Найдите
вероятность того, что девочки не будут сидеть рядом.
Ответ:
0,5
19. За круглый стол на 201
стул в случайном порядке рассаживаются 199 мальчиков и 2 девочки. Найдите
вероятность того, что между девочками будет сидеть один мальчик.
Ответ:
0,01
20. За круглый стол на 9
стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите
вероятность того, что девочки не будут сидеть рядом.
Ответ:
0,75
21. За круглый стол на 17 стульев в случайном порядке рассаживаются 15
мальчиков и 2 девочки. Найдите вероятность того, что девочки будут сидеть
рядом.
Ответ:
0,125
22. Проводится жеребьёвка Лиги Чемпионов. На первом этапе жеребьёвки
восемь команд, среди которых команда «Барселона», распределились случайным
образом по восьми игровым группам — по одной команде в группу. Затем по этим же
группам случайным образом распределяются еще восемь команд, среди которых
команда «Зенит». Найдите вероятность того, что команды «Барселона» и «Зенит»
окажутся в одной игровой группе.
Ответ:
0,125
23. В сборнике билетов по
биологии всего 25 билетов, в двух из них встречается вопрос о грибах. На
экзамене школьнику достаётся один случайно выбранный билет из этого сборника.
Найдите вероятность того, что в этом билете не будет вопроса о грибах.
Ответ:
0,92
24. В соревновании по биатлону участвуют спортсмены из 25 стран, одна
из которых ― Россия. Всего на старт вышло 60 участников, из которых 6 ― из
России. Порядок старта определяется жребием, стартуют спортсмены друг за
другом. Какова вероятность того, что десятым стартовал спортсмен из России?
Ответ:
0,1
25. В сборнике билетов по истории всего 50 билетов, в 13 из них
встречается вопрос о Великой Отечественной войне. Найдите вероятность того, что
в случайно выбранном на экзамене билете школьнику достанется вопрос о Великой
Отечественной войне.
Ответ:
0,26
26. У Вити в копилке лежит 12 рублёвых, 6 двухрублёвых, 4 пятирублёвых
и 3 десятирублёвых монеты. Витя наугад достаёт из копилки одну монету. Найдите
вероятность того, что оставшаяся в копилке сумма составит более 70 рублей.
Ответ:
0,72
27. У Дины в копилке лежит 7 рублёвых, 5 двухрублёвых, 6 пятирублёвых
и 2 десятирублёвых монеты. Дина наугад достаёт из копилки одну монету. Найдите
вероятность того, что оставшаяся в копилке сумма составит менее 60 рублей.
Ответ:
0,1
28. В случайном эксперименте симметричную монету бросают дважды.
Найдите вероятность того, что орел выпадет ровно один раз.
Ответ:
0,5
29. В случайном эксперименте симметричную монету бросают трижды.
Найдите вероятность того, что орел выпадет ровно два раза.
Ответ: 0,375
30. В случайном
эксперименте симметричную монету бросают трижды. Найдите вероятность того, что
выпадет хотя бы две решки.
Ответ: 0,5
31. Механические часы с двенадцатичасовым циферблатом в какой-то
момент сломались и перестали идти. Найдите вероятность того, что часовая
стрелка остановилась, достигнув отметки 4, но не дойдя до отметки 7 часов.
Ответ:
0,25
32. Перед началом первого
тура чемпионата по бадминтону участников разбивают на игровые пары случайным
образом с помощью жребия. Всего в чемпионате участвует 76 бадминтонистов, среди
которых 16 спортсменов из России, в том числе Игорь Чаев. Какова вероятность
того, что в первом туре Игорь Чаев будет играть с каким-либо бадминтонистом из
России.
Ответ:
0,2
33. В фирме такси в данный
момент свободно 20 машин: 10 черных, 2 желтых и 8 зеленых. По вызову выехала
одна из машин, случайно оказавшаяся ближе всего к заказчице. Найдите
вероятность того, что к ней приедет зеленое такси.
Ответ:
0,4
34. На тарелке 16 пирожков: 7
с рыбой, 5 с вареньем и 4 с вишней. Юля наугад выбирает один пирожок. Найдите
вероятность того, что он окажется с вишней.
Ответ:
0,25
35. В случайном эксперименте бросают две игральные кости. Найдите
вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.
Ответ:
0,14
36. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России,
7 из США, остальные — из Китая. Порядок, в котором выступают гимнастки,
определяется жребием. Найдите вероятность того, что спортсменка, выступающая
первой, окажется из Китая.
Ответ:
0,25
37. В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии,
7 спортсменов из Дании, 9 спортсменов из Швеции и 5 — из Норвегии. Порядок, в
котором выступают спортсмены, определяется жребием. Найдите вероятность того,
что спортсмен, который выступает последним, окажется из Швеции.
Ответ:
0,36
38. Научная конференция проводится в 5 дней. Всего запланировано 75
докладов — первые три дня по 17 докладов, остальные распределены поровну между
четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова
вероятность, что доклад профессора М. окажется запланированным на последний
день конференции?
Ответ:
0,16
39. Конкурс исполнителей проводится в 5 дней. Всего заявлено 80
выступлений — по одному от каждой страны, участвующей в конкурсе. Исполнитель
из России участвует в конкурсе. В первый день запланировано 8 выступлений,
остальные распределены поровну между оставшимися днями. Порядок выступлений
определяется жеребьёвкой. Какова вероятность, что выступление исполнителя из
России состоится в третий день конкурса?
Ответ:
0,225
40. На конференцию приехали 3 ученых из Норвегии, 3 из России и 4 из
Испании. Каждый из них делает на конференции один доклад. Порядок докладов
определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад
ученого из России.
Ответ:
0,3
41. Перед началом первого тура чемпионата по бадминтону участников
разбивают на игровые пары случайным образом с помощью жребия. Всего в
чемпионате участвует 26 бадминтонистов, среди которых 10 спортсменов из России,
в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан
Орлов будет играть с каким-либо бадминтонистом из России.
Ответ:
0,36
42. В сборнике билетов по биологии всего 55 билетов, в 11 из них
встречается вопрос по теме «Ботаника». Найдите вероятность того, что
в случайно выбранном на экзамене билете школьнику достанется вопрос по теме
«Ботаника».
Ответ:
0,2
43. В сборнике билетов по математике всего 25 билетов, в 10 из них
встречается вопрос по теме «Неравенства». Найдите вероятность того,
что в случайно выбранном на экзамене билете школьнику не достанется вопроса
по теме «Неравенства».
Ответ:
0,6
44. На чемпионате по прыжкам в воду выступают 25 спортсменов, среди
них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений
определяется жеребьёвкой. Найдите вероятность того, что шестым будет выступать
прыгун из Парагвая.
Ответ:
0,36
45. Вася, Петя, Коля и Лёша бросили жребий — кому начинать игру.
Найдите вероятность того, что начинать игру должен будет Петя.
Ответ:
0,25
46. В чемпионате мира
участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по
четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.
Капитаны команд тянут по
одной карточке. Какова вероятность того, что команда России окажется во второй
группе?
Ответ:
0,25
47. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность
того, что случайно нажатая цифра будет чётной?
Ответ:
0,5
48. Из множества натуральных чисел от 10 до 19 наудачу выбирают одно
число. Какова вероятность того, что оно делится на 3?
Ответ:
0,3
49. В группе туристов 5 человек. С помощью жребия они выбирают двух
человек, которые должны идти в село в магазин за продуктами. Какова вероятность
того, что турист Д., входящий в состав группы, пойдёт в магазин?
Ответ:
0,4
50. Перед началом футбольного
матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с
мячом. Команда «Физик» играет три матча с разными командами. Найдите
вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.
Ответ: 0,375
51. Игральный кубик бросают дважды. Сколько элементарных исходов опыта
благоприятствуют событию «А = сумма очков равна 5»?
Ответ: 4
52. В случайном эксперименте симметричную монету бросают дважды.
Найдите вероятность того, что наступит исход ОР (в первый раз выпадает орёл, во
второй — решка).
Ответ:
0,25
53. В фирме
такси в данный момент свободно машин: красных, желтых и зеленых.
По вызову выехала одна из машин, случайно оказавшихся ближе всего
к заказчице. Найдите вероятность того, что к ней
приедет желтое такси.
Решение:
0,6
54. В сборнике
билетов по биологии всего билетов,
в двух из них встречается вопрос о грибах. На экзамене
школьнику достаётся один случайно выбранный билет. Найдите вероятность того,
что в этом билете не будет вопроса
о грибах.
Ответ: 0,92
55.
Вероятность
того, что новый кофе машина прослужит больше года, равна 0,95. Вероятность
того, что он прослужит больше двух лет, равна 0,84. Найдите вероятность того,
что он прослужит меньше двух лет, но больше года.
Ответ: 0,11
56. Вероятность того, что в случайный момент времени
температура тела здорового человека окажется ниже, чем 36,8 °С, равна 0,81. Найдите вероятность того,
что в случайный момент времени у здорового человека температура окажется
36,8 °С или выше.
Ответ: 0,19
57. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке
«Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук
выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути
случайным, определите, с какой вероятностью паук придёт к выходу D
Ответ: 0,125
58. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке
«Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук
выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути
случайным, определите, с какой вероятностью паук придёт к выходу A
Ответ: 0,5
59. Автоматическая линия изготавливает батарейки. Вероятность того, что
готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка
проходит систему контроля. Вероятность того, что система забракует неисправную
батарейку, равна 0,99. Вероятность того, что система по ошибке забракует
исправную батарейку, равна 0,01. Найдите вероятность того, что случайно
выбранная батарейка будет забракована системой контроля.
Ответ: 0,0296.
60. Автоматическая линия изготавливает батарейки. Вероятность того, что
готовая батарейка неисправна, равна 0,03. Перед упаковкой каждая батарейка
проходит систему контроля. Вероятность того, что система забракует неисправную
батарейку, равна 0,95. Вероятность того, что система по ошибке забракует
исправную батарейку, равна 0,04. Найдите вероятность того, что случайно
выбранная изготовленная батарейка будет забракована системой контроля.
Ответ: 0,0673.
61. Чтобы поступить в
институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не
менее 70 баллов по каждому из трёх предметов — математика, русский язык и
иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать
не менее 70 баллов по каждому из трёх предметов — математика, русский язык и
обществознание.
Вероятность того, что абитуриент З.
получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8,
по иностранному языку — 0,7 и по обществознанию — 0,5.
Найдите вероятность того, что З.
сможет поступить хотя бы на одну из двух упомянутых специальностей.
Ответ: 0,408.
62. Чтобы поступить в
институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не
менее 68 баллов по каждому из трёх предметов — математика, русский язык и
иностранный язык. Чтобы поступить на специальность «Менеджмент», нужно набрать
не менее 68 баллов по каждому из трёх предметов — математика, русский язык и
обществознание.
Вероятность того, что абитуриент Р. получит не
менее 68 баллов по математике, равна 0,7, по русскому языку — 0,7, по
иностранному языку — 0,8 и по обществознанию — 0,5.
Найдите вероятность того, что Р. сможет поступить
хотя бы на одну из двух упомянутых специальностей.
Ответ: 0,392
63. В торговом
центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня
в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в
обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе
останется в обоих автоматах.
Ответ: 0,52.
64. В
торговом центре два одинаковых автомата продают жвачку. Вероятность того, что к
концу дня в автомате закончится жвачка, равна 0,3. Вероятность того, что жвачка
закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу
дня жвачка останется в обоих автоматах.
Ответ: 0,56
65.
Стрелок стреляет по мишени один раз. В случае промаха стрелок делает второй
выстрел по той же мишени. Вероятность попасть в мишень при одном выстреле равна
0,7. Найдите вероятность того, что мишень будет поражена (либо первым, либо
вторым выстрелом).
Ответ:
0,91
66. Ковбой Джон попадает в муху на стене
с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон
стреляет из не пристрелянного револьвера, то он попадает в муху с вероятностью
0,1. На столе лежит 10 револьверов, из них только 2 пристрелянные. Ковбой Джон
видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в
муху. Найдите вероятность того, что Джон промахнётся.
Ответ: 0,74
67. Ковбой Джон попадает в муху
на стене с вероятностью 0,7, если стреляет из пристрелянного револьвера. Если
Джон стреляет из не пристрелянного револьвера, то он попадает в муху с
вероятностью 0,4. На столе лежит 10 револьверов, из них только 5 пристрелянные.
Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и
стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Ответ: 0,45
68. Какова вероятность того,
что случайно выбранный телефонный номер оканчивается двумя чётными цифрами?
Ответ:
0,25
69. Если шахматист А. играет
белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,52. Если А.
играет черными, то А. выигрывает у Б. с вероятностью 0,3. Шахматисты А. и Б.
играют две партии, причём во второй партии меняют цвет фигур. Найдите
вероятность того, что А. выиграет оба раза.
Ответ:
0,156
70. На рисунке изображён
лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад
паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по
которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный,
определите, с какой вероятностью паук придёт к выходу
Ответ:
0,0625
71. Вероятность того, что в
случайный момент времени температура тела здорового человека окажется ниже,
чем 36,8 °С, равна 0,81. Найдите вероятность того, что в случайный момент
времени у здорового человека температура окажется 36,8 °С или выше.
Ответ:
0,19
72. При изготовлении
подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от
заданного не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что
случайный подшипник будет иметь диаметр меньше, чем 66,99 мм или больше, чем
67,01 мм.
Ответ:
0,035
73. Вероятность того, что батарейка бракованная, равна 0,06.
Покупатель в магазине выбирает случайную упаковку, в которой две таких
батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.
Ответ:
0,8836
74. В магазине три продавца. Каждый из них занят с клиентом с
вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все
три продавца заняты одновременно (считайте, что клиенты заходят независимо друг
от друга).
Ответ:
0,027
75. В торговом центре два
одинаковых автомата продают кофе. Обслуживание автоматов происходит по вечерам
после закрытия центра. Известно, что вероятность события «К вечеру в первом
автомате закончится кофе» равна 0,25. Такая же вероятность события «К вечеру во
втором автомате закончится кофе». Вероятность того, что кофе к вечеру
закончится в обоих автоматах, равна 0,15. Найдите вероятность того, что к
вечеру кофе останется в обоих автоматах.
Ответ:
0,65
76. Вероятность того, что новый электрический чайник прослужит больше
года, равна 0,97. Вероятность того, что он прослужит больше двух лет, равна
0,89. Найдите вероятность того, что он прослужит меньше двух лет, но больше
года.
Ответ:
0,08
77. Вероятность того, что новый электрический чайник прослужит больше
года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна
0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше
года.
Ответ:
0,06
78. Из районного центра в деревню ежедневно ходит автобус. Вероятность
того, что в понедельник в автобусе окажется меньше 18 пассажиров, равна 0,82.
Вероятность того, что окажется меньше 10 пассажиров, равна 0,51. Найдите
вероятность того, что число пассажиров будет от 10 до 17.
Ответ:
0,31
79. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в
мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист
первые три раза попал в мишени, а последние два промахнулся. Результат
округлите до сотых.
Ответ:
0,02
80. Помещение освещается фонарём с двумя лампами. Вероятность перегорания
лампы в течение года равна 0,3. Найдите вероятность того, что в течение года
хотя бы одна лампа не перегорит.
Ответ:
0,91
81. При артиллерийской
стрельбе автоматическая система делает выстрел по цели. Если цель не
уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех
пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при
первом выстреле равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов
потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?
В ответе укажите наименьшее необходимое
количество выстрелов.
Ответ: 5
82. На экзамене по геометрии
школьник отвечает на один вопрос из списка экзаменационных вопросов.
Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,2.
Вероятность того, что это вопрос по теме «Параллелограмм», равна 0,15.
Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих
двух тем.
Ответ:
0,35
83. Чтобы пройти в следующий круг соревнований, футбольной команде
нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она
получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите
вероятность того, что команде удастся выйти в следующий круг соревнований.
Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны
0,4.
Ответ:
0,32
84. В Волшебной стране бывает
два типа погоды: хорошая и отличная, причём погода, установившись утром,
держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра
будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране
хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная
погода.
Ответ:
0,392
85. В магазине стоят два
платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05
независимо от другого автомата. Найдите вероятность того, что хотя бы один
автомат исправен.
Ответ:
0,9975
86. Ковбой Джон попадает в
муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера.
Если Джон стреляет из не пристрелянного револьвера, то он попадает в муху с
вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные.
Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и
стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Ответ:
0,52
87. Две фабрики выпускают
одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих
стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а
вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло
окажется бракованным.
Ответ:
0,019
88. Всем пациентам с подозрением на гепатит делают анализ крови. Если
анализ выявляет гепатит, то результат анализа называется положительным.
У больных гепатитом пациентов анализ даёт положительный результат с
вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный
положительный результат с вероятностью 0,01. Известно, что 5% пациентов,
поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите
вероятность того, что результат анализа у пациента, поступившего в клинику с
подозрением на гепатит, будет положительным.
Ответ:
0,0545
89. Автоматическая линия изготавливает батарейки. Вероятность того,
что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка
проходит систему контроля. Вероятность того, что система забракует неисправную
батарейку, равна 0,99. Вероятность того, что система по ошибке забракует
исправную батарейку, равна 0,01. Найдите вероятность того, что случайно
выбранная изготовленная батарейка будет забракована системой контроля.
Ответ:
0,0296
90. Агрофирма закупает
куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца
высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего
высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо,
купленное у этой агрофирмы, окажется из первого хозяйства.
Ответ:
0,75
91. В торговом центре два одинаковых автомата продают кофе.
Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3.
Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите
вероятность того, что к концу дня кофе останется в обоих автоматах.
Ответ:
0,52
92. Чтобы поступить в институт на специальность «Лингвистика»,
абитуриент должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх
предметов — математика, русский язык и иностранный язык. Чтобы поступить на
специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх
предметов — математика, русский язык и обществознание.
93. Вероятность того, что абитуриент З.
получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8,
по иностранному языку — 0,7 и по обществознанию — 0,5.
Найдите вероятность того, что З.
сможет поступить хотя бы на одну из двух упомянутых специальностей.
Ответ:
0,408
94. Из районного центра в деревню ежедневно ходит автобус. Вероятность
того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94.
Вероятность того, что окажется меньше 15 пассажиров, равна 0,56. Найдите
вероятность того, что число пассажиров будет от 15 до 19.
Ответ:
0,38
95. Вероятность того, что на тестировании по биологии учащийся О. верно
решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше
10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11
задач.
Ответ:
0,07
96. На фабрике керамической посуды 10% произведённых тарелок имеют
дефект. При контроле качества продукции выявляется 80% дефектных тарелок.
Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно
выбранная при покупке тарелка не имеет дефектов. Результат округлите до сотых.
Ответ:
0,98
97. По отзывам покупателей
Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что
нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот
товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в
обоих магазинах. Считая, что интернет-магазины работают независимо друг от
друга, найдите вероятность того, что ни один магазин не доставит товар.
Ответ:
0,02
98. Перед началом
волейбольного матча капитаны команд тянут честный жребий, чтобы определить,
какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с
командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор»
будет начинать только первую и последнюю игры.
Ответ:
0,125
99. В кармане у Пети было 2
монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то
3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты
лежат теперь в разных карманах.
Ответ:
0,6
100. Стрелок стреляет по
мишени один раз. В случае промаха стрелок делает второй выстрел по той же
мишени. Вероятность попасть в мишень при одном выстреле равна 0,7. Найдите
вероятность того, что мишень будет поражена (либо первым, либо вторым
выстрелом).
Ответ:
0,91
101. Перед началом
волейбольного матча капитаны команд тянут жребий, чтобы определить, какая из
команд начнёт игру с мячом. Команда «Мотор» по очереди играет с командами
«Статор», «Стартер» и «Ротор». Найдите вероятность того, что «Мотор» будет
начинать с мячом только вторую игру.
Ответ:
0,125
102. Игральный кубик бросают
дважды. Известно, что в сумме выпало 8 очков. Найдите вероятность того, что во
второй раз выпало 3 очка. Ответ: 0,2
103. При двукратном бросании
игральной кости в сумме выпало 9 очков. Какова вероятность того, что хотя бы
раз выпало 5 очков?
Ответ:
0,5
104. Игральную кость бросили
два раза. Известно, что три очка не выпали ни разу. Найдите при этом условии
вероятность события «сумма выпавших очков окажется равна 8».
Ответ:
0,12
105. Игральную кость бросили
один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4.
Какова вероятность того, что был сделан один бросок? Ответ округлите до сотых.
Ответ:
0,63
106. Игральную кость бросили
один или несколько раз. Оказалось, что сумма всех выпавших очков равна 3.
Какова вероятность того, что было сделано два броска? Ответ округлите до сотых.
Ответ:
0,24
107. Первый игральный кубик обычный, а на гранях второго кубика нет
чётных чисел, а нечётные числа 1, 3 и 5 встречаются по два раза. В остальном
кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно,
что в каком-то порядке выпали 3 и 5 очков. Какова вероятность того, что бросали
второй кубик?
Ответ:
0,8
108. Первый игральный кубик обычный, а на гранях второго кубика нет
чисел, больших, чем 2, а числа 1 и 2 встречаются по три раза. В остальном
кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно,
что в каком-то порядке выпали 1 и 2 очков. Какова вероятность того, что бросали
второй кубик?
Ответ:
0,9
109. Первый игральный кубик
обычный, а на гранях второго кубика нет чётных чисел, а нечётные числа 1, 3 и 5
встречаются по два раза. В остальном кубики одинаковые. Один случайно выбранный
кубик бросают два раза. Известно, что в каком-то порядке выпали 3 и 5 очков.
Какова вероятность того, что бросали первый кубик?
Ответ:
0,2
110. Первый игральный кубик
обычный, а на гранях второго кубика числа 1 и 2 встречаются по три раза. В
остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза.
Известно, что в каком-то порядке выпали 1 и 2 очков. Какова вероятность того,
что бросали первый кубик?
Ответ:
0,1
111. Первый игральный кубик
обычный, а на гранях второго кубика нет нечётных чисел, а чётные числа 2, 4 и 6
встречаются по два раза. В остальном кубики одинаковые. Один случайно выбранный
кубик бросают два раза. Известно, что в каком-то порядке выпали 4 и 6 очков.
Какова вероятность того, что бросали второй кубик?
Ответ:
0,8
112. Первый игральный кубик
обычный, а на гранях второго кубика нет нечётных чисел, а чётные числа 2, 4 и 6
встречаются по два раза. В остальном кубики одинаковые. Один случайно выбранный
кубик бросают два раза. Известно, что в каком-то порядке выпали 4 и 6 очков.
Какова вероятность того, что бросали первый кубик?
Ответ:
0,2
113. Первый игральный кубик
обычный, а на гранях второго кубика числа 5 и 6 встречаются по три раза. В
остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза.
Известно, что в каком-то порядке выпали 5 и 6 очков. Какова вероятность того,
что бросали второй кубик?
Ответ:
0,9
114. Маша коллекционирует принцесс из Киндер-сюрпризов. Всего в
коллекции 10 разных принцесс, и они равномерно распределены, то есть в каждом
очередном Киндер-сюрпризе может с равными вероятностями оказаться любая из 10
принцесс. У Маши уже есть две разные принцессы из коллекции. Какова вероятность
того, что для получения следующей принцессы Маше придётся купить ещё 2 или 3
шоколадных яйца?
Ответ:
0,192
115.
Артём гуляет по
парку. Он выходит из точки S и, дойдя до очередной развилки, с
равными шансами выбирает следующую дорожку, но не возвращается обратно. Найдите
вероятность того, что таким образом он выйдет к пруду или фонтану.
Ответ:
0,3125
116. Симметричную игральную
кость бросили 3 раза. Известно, что в сумме выпало 6 очков. Какова вероятность
события «хотя бы раз выпало 3 очка»?
Ответ:
0,6
117. В городе 48 % взрослого
населения — мужчины. Пенсионеры составляют 12,6 % взрослого населения, причём
доля пенсионеров среди женщин равна 15 %. Для социологического опроса выбран
случайным образом мужчина, проживающий в этом городе. Найдите вероятность
события «выбранный мужчина является пенсионером».
Ответ:
0,1
118. В коробке 8 синих, 6
красных и 11 зелёных фломастеров. Случайным образом выбирают два фломастера.
Какова вероятность того, что окажутся выбраны один синий и один красный
фломастер?
Ответ:
0,16
119. Платежный терминал в
течение рабочего дня может выйти из строя. Вероятность этого события 0,07. В
торговом центре независимо друг от друга работают два таких платёжных
терминала. Найдите вероятность того, что хотя бы один из них в течение рабочего
дня будет исправен.
Ответ:
0,9951
120. Симметричную монету
бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов»
больше вероятности события «выпадет ровно 4 орла»?
Ответ:
1,2
121. В одном ресторане в г.
Тамбове администратор предлагает гостям сыграть в «Шеш-беш»: гость бросает
одновременно две игральные кости. Если он выбросит комбинацию 5 и 6 очков хотя
бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или
десерт бесплатно. Какова вероятность получить комплимент? Результат округлите
до сотых.
Ответ:
0,11
122. Игральную кость бросали
до тех пор, пока сумма всех выпавших очков не превысила число 3. Какова
вероятность того, что для этого потребовалось два броска? Ответ округлите до
сотых.
Ответ:
0,42
123. Телефон передаёт
SMS-сообщение. В случае неудачи телефон делает следующую попытку. Вероятность
того, что сообщение удастся передать без ошибок в каждой отдельной попытке,
равна 0,4. Найдите вероятность того, что для передачи сообщения потребуется не
больше двух попыток.
Ответ:
0,64
124. При подозрении на наличие
некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно
есть, то тест подтверждает его в 86% случаев. Если заболевания нет, то тест
выявляет отсутствие заболевания в среднем в 94% случаев. Известно, что в
среднем тест оказывается положительным у 10% пациентов, направленных на
тестирование. При обследовании некоторого пациента врач направил его на
ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент
действительно имеет это заболевание?
Ответ:
0,43
125. Стрелок в тире стреляет
по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с
вероятностью 0,2 при каждом отдельном выстреле. Какое наименьшее количество
патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,6?
Ответ: 5
126. В ящике четыре красных и
два синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке.
Какова вероятность того, что первый раз синий фломастер появится третьим по
счету?
Ответ:
0,2
127. Стрелок стреляет по пяти
одинаковым мишеням. На каждую мишень даётся не более двух выстрелов, и
известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6.
Во сколько раз вероятность события «стрелок поразит ровно пять мишеней» больше
вероятности события «стрелок поразит ровно четыре мишени»?
Ответ:
1,05
128. В викторине участвуют 6
команд. Все команды разной силы, и в каждой встрече выигрывает та команда,
которая сильнее. В первом раунде встречаются две случайно выбранные команды.
Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая
команда играет со следующим случайно выбранным соперником. Известно, что в
первых трёх играх победила команда А. Какова вероятность того, что
эта команда выиграет четвёртый раунд?
Ответ:
0,8
129. Турнир по настольному
теннису проводится по олимпийской системе: игроки случайным образом разбиваются
на игровые пары; проигравший в каждой паре выбывает из турнира, а победитель
выходит в следующий тур, где встречается со следующим противником, который определён
жребием. Всего в турнире участвует 16 игроков, все они играют одинаково хорошо,
поэтому в каждой встрече вероятность выигрыша и поражения у каждого игрока
равна 0,5. Среди игроков два друга – Иван и Алексей. Какова вероятность того,
что этим двоим в каком-то туре, придётся сыграть друг с другом?
Ответ:
0,125