Алкины конспект егэ

Алкины — непредельные (ненасыщенные) углеводороды, имеющие в молекуле одну тройную связь С≡С.
Каждая такая связь содержит одну сигма-связь (σ-связь) и две пи-связи (π-связи).

Алкины также называют ацетиленовыми углеводородами. Первый член гомологического ряда — этин — CH≡CH (ацетилен).
Общая формула их гомологического ряда — CnH2n-2.

Номенклатура и изомерия алкинов

Названия алкинов формируются путем добавления суффикса «ин» к названию алкана с соответствующим числом: этин, пропин, бутин и т.д.

При составлении названия алкина важно учесть, что главная цепь атомов углерода должна обязательно содержать тройную связь. Нумерация
атомов углерода в ней начинается с того края, к которому ближе тройная связь. В конце названия указывают атом углерода у которых
начинается тройная связь.

Номенклатура алкинов

Для алкинов характерна изомерия углеродного скелета, положения тройной связи, межклассовая изомерия с алкадиенами.

Пространственная геометрическая изомерия для них невозможна, ввиду того, что каждый атом углерода, прилежащий к тройной связи,
соединен только с одним единственным заместителем.

Изомерия алкинов

Некоторые данные, касающиеся алкинов, надо выучить:

  • В молекулах алкинов присутствуют тройные связи, длина которых составляет 0,121 нм
  • Тип гибридизации атомов углерода — sp
  • Валентный угол (между химическими связями) составляет 180°
Получение алкинов

Ацетилен получают несколькими способами:

  • Пиролиз метана
  • При нагревании метана до 1200-1500 °C происходит димеризация молекул метана, в ходе чего отщепляется водород.

    2CH4 → (t) CH≡CH + 3H2

  • Синтез Бертло
  • Осуществляется напрямую, из простых веществ. Протекает на вольтовой (электрической) дуге, в атмосфере водорода.

    2C + H2 → (t, вольтова дуга) CH≡CH

  • Разложение карбида кальция
  • В результате разложения карбида кальция образуется ацетилен и гидроксид кальция II.

    CaC2 + 2H2O → CH≡CH + Ca(OH)2

Получение гомологов ацетилена возможно в реакциях дегидрогалогенирования дигалогеналканов, в которых атомы галогена
расположены у одного атома углерода или у двух соседних атомов.

Получение алкинов

Химические свойства алкинов

Алкины — ненасыщенные углеводороды, легко вступающие в реакции присоединения. Реакции замещения для них не характерны.

  • Гидрирование
  • Водород присоединяется к атомам углерода, образующим тройную связь. Пи-связи (π-связи) рвутся, остается единичная сигма-связь (σ-связь).

    CH≡C-CH3 + H2 → (t, Ni) CH2=CH-CH3 (в реакции участвует 1 моль водорода)

    CH2=CH-CH3 + H2 → (t, Ni) CH3-CH2-CH3 (в реакции участвует 1 моль водорода)

    CH≡CH + 2H2 → (t, Ni) CH3-CH3 (в реакции участвует 2 моль водорода)

  • Галогенирование
  • Реакция с бромной водой является качественной для непредельных соединений, содержащих двойные (и тройные) связи. В ходе такой реакции бромная
    вода обесцвечивается, что указывает на присоединение его по кратным связям к органическому веществу.

    Галогенирование алкинов

  • Гидрогалогенирование
  • Алкины вступают в реакции гидрогалогенирования, протекающие по типу присоединения.

    Гидрогалогенирование протекает по правилу Марковникова, в соответствии с которым атом водорода присоединяется к наиболее гидрированному, а
    атом галогена — к наименее гидрированному атому углерода.

    Гидрогалогенирование алкинов

  • Реакция Кучерова
  • Реакцией Кучерова называют гидратацию ацетиленовых соединений с образованием карбонильных соединений. Открыта русским
    химиком М.Г. Кучеровым в 1881 году. Катализатор — соли ртути Hg2+.

    Только в реакции с ацетиленом образуется уксусный альдегид. Во всех остальных реакциях (с гомологами ацетилена) образуются
    кетоны.

    Реакция Кучерова

  • Окисление
  • При горении алкины, как и все органические соединения, сгорают с образование углекислого газа и воды — полное окисление.

    2CH≡CH + 5O2 → 4CO2 + 2H2O

    Сильные окислители (особенно в подкисленной среде) способны разрывать молекулы алкинов в самом слабом месте — в месте тройной связи.

    Так, при окислении пропина, образуется уксусная кислота и муравьиная кислота, окисляющаяся до угольной кислоты, которая распадается на
    углекислый газ и воду.

    Окисление алкинов

  • Реакция Н.Д. Зелинского (тримеризация ацетилена)
  • Данная реакция протекает при пропускании ацетилена над активированным углем при t = 400°C. В результате образуется ароматический
    углеводород — бензол.

    Реакция Зелинского

  • Димеризация ацетилена
  • Димеризация ацетилена происходит при наличии катализатора — солей меди I. В результате реакции две молекулы ацетилена соединяются,
    образуя винилацетилен.

    Димеризация ацетилена

  • Образование солей алкинов
  • В случае если тройная связь прилежит к краевому атому углерода, то имеющийся у данного атома водород может быть замещен атомом металла.
    Если тройная связь спрятана внутри молекулы, то образование солей невозможно.

    Реакция аммиачного раствора серебра и ацетилена — качественная реакция, в ходе которой выпадает осадок ацетиленида серебра.

    Соли аминов, ацетилениды

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Алкины – это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна тройная связь между атомами углерода С≡С.

Остановимся на свойствах, способах получения и особенностях строения алкинов.

Строение, изомерия и гомологический ряд алкинов

Химические свойства алкинов

Получение алкинов

Гомологический ряд алкинов

Все алкины имеют общие или похожие физические и химические свойства. Схожие по строению алкины, которые отличаются на одну или несколько групп –СН2–, называют гомологами. Такие алкины образуют гомологический ряд.

Первый представитель гомологического ряда алкенов – этин (ацетилен) C2H2, или СH≡СH.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь.

Название алкина Формула алкина
Этин (ацетилен) C2H2
Пропин  C3H4
Бутин  C4H6
Пентин C5H8
Гексин C6H10
Гептин C7H12

Общая формула гомологического ряда алкинов CnH2n-2.

Первые три члена гомологического ряда алкинов – газы, начиная с C5Н8 по С16Н30 – жидкости, начиная с С17Н32 — твердые вещества. 

Алкины плохо растворимы в воде и хорошо растворимы в органических растворителях.

Строение алкинов

Рассмотрим особенности строения алкинов на примере ацетилена.

В молекуле ацетилена присутствуют химические связи C–H и С≡С.

Связь C–H ковалентная слабополярная одинарная σ-связь. Связь С≡С – тройная, ковалентная неполярная, одна из связей σ, еще две: π-связи. Атомы углерода при тройной связи образуют по две σ-связи и две π-связи. Следовательно, гибридизация атомов углерода при тройной связи в молекулах алкинов – sp:

При образовании σ-связи между атомами углерода происходит перекрывание sp-гибридных орбиталей атомов углерода:

При образовании π-связи между атомами углерода происходит перекрывание негибридных орбиталей атомов углерода:

Две sp-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому две гибридные орбитали атомов углерода при тройной связи в алкинах направлены в пространстве под углом 180о  друг к другу:

Изображение с сайта orgchem.ru

Это соответствует линейному строению молекулы.

Например, молекуле ацетилена C2H2 соответствует линейное строение.

Изображение с сайта orgchem.ru

Молекулам алкинов с большим числом атомов углерода соответствует пространственное строение.

Например, в молекуле пропина присутствует атом углерода в sp3-гибридном состоянии, в составе метильного фрагмента СН3. Такой фрагмент имеет тетраэдрическое строение.

Изомерия алкинов

Для  алкинов характерна структурная и пространственная изомерия.

Структурная изомерия

Для  алкинов характерна изомерия углеродного скелета, изомерия положения кратной связи и межклассовая изомерия.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета отличаются строением углеродного скелета.

Например.

Изомеры с различным углеродным скелетом и с формулой С4Н6 — бутин-1 и бутадиен-1,3

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Алкины являются межклассовыми изомерами с алкадиенами. Общая формула алкинов и алкадиенов — CnH2n-2.

Например.

Межклассовые изомеры с общей формулой  С4Н6 — бутин-1 и бутадиен

Изомеры с различным положением тройной связи отличаются положением тройной связи в углеродном скелете.

Например.

Изомеры положения тройной связи, которые соответствуют формуле С5Н8 — пентин-1 и пентин-2

Пространственная изомерия

Для алкенов также характерна оптическая изомерия.

Алкины, которые обладают достаточно большим углеродным скелетом, могут существовать в виде оптических изомеров. В молекуле алкина должен присутствовать асимметрический атом углерода (атом углерода, связанный с четырьмя различными заместителями).

Цис-транс-изомерия для алкинов не характерна, так как по тройной связи вращение возможно.

Номенклатура алкинов

В названиях алкинов для обозначения тройной связи используется суффикс -ИН.

Например, алкин на рисунке называется бутин-2

Для простейших алкинов применяются также исторически сложившиеся (тривиальные) названия:

Название алкина Формула алкина
Ацетилен CH≡CH
Пропин CH≡C−CH3
Бутин-1 CH≡C−СH2−CH3

Радикалы, содержащие тройную связь, также носят тривиальные названия:

Формула радикала Тривиальное название
CHC этинил
CHCCH2 пропаргил

Химические свойства алкинов

Алкины – непредельные углеводороды, в молекулах которых есть одна тройная связь. Строение и свойства тройной связи определяют характерные химические свойства алкинов. Химические свойства алкинов схожи с химическими свойствами алкенов из-за наличия кратной связи в молекуле.

Для алкинов характерны реакции окисления. Окисление алкинов протекает преимущественно по тройной связи, хотя возможно и жесткое окисление (горение).  

1. Реакции присоединения

Тройная связь состоит из σ-связи и двух π-связей. Сравним характеристики одинарной связи С–С, тройной связи СС и связи С–Н:

Энергия связи, кДж/моль Длина связи, нм
СС 348 0,154
СС 814 0,120
СН 435 0,107

Таким образом, тройная связь С≡С короче, чем одинарная связь С–С, поэтому π-электроны тройной связи прочнее удерживаются ядрами атомов углерода и обладают меньшей поляризуемостью и подвижностью. Реакции присоединения по тройной связи к алкинам протекают сложнее, чем реакции присоединения по двойной связи к алкенам.

Для алкинов характерны реакции присоединения по тройной связи СС с разрывом π-связей. 

1.1. Гидрирование

Гидрирование алкинов протекает в присутствии катализаторов (Ni, Pt) с образованием алкенов, а затем сразу алканов.

Например, при гидрировании бутина-2 в присутствии никеля образуется сначала бутен-2, а затем бутан.

При использовании менее активного катализатора (Pd, СaCO3, Pb(CH3COO)2) гидрирование останавливается на этапе образования алкенов.

Например, при гидрировании бутина-1 в присутствии палладия преимущественно образуется бутен-1.

1.2. Галогенирование алкинов

Присоединение галогенов к алкинам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).

При взаимодействии с алкинами  красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на тройную связь.

Например, при бромировании пропина сначала образуется 1,2-дибромпропен, а затем — 1,1,2,2-тетрабромпропан.

Аналогично алкины реагируют с хлором, но обесцвечивания хлорной воды при этом не происходит, потому что хлорная вода и так бесцветная)

Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.

1.3. Гидрогалогенирование алкинов

Алкины присоединяют галогеноводороды. Реакция протекает по механизму электрофильного присоединения с образованием галогенопроизводного алкена или дигалогеналкана.

Например, при взаимодействии ацетилена с хлороводородом образуется хлорэтен, а затем 1,1-дихлорэтан.

При присоединении галогеноводородов и других полярных молекул к симметричным алкинам образуется, как правило, один продукт реакции, где оба галогена находятся у одного атома С.

При присоединении полярных молекул к несимметричным алкинам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкинам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.

Например, при присоединении хлороводорода HCl к пропину преимущественно образуется 2-хлорпропен.

1.4. Гидратация алкинов

Гидратация (присоединение воды) алкинов протекает в присутствии кислоты и катализатора (соли ртути II). 

Сначала образуется неустойчивый алкеновый спирт, который затем изомеризуется в альдегид или кетон.

Например, при взаимодействии ацетилена с водой в присутствии сульфата ртути образуется уксусный альдегид.

Гидратация алкинов  протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов присоединение воды преимущественно по правилу Марковникова. 

Например, при гидратации пропина  образуется  пропанон (ацентон).

1.5. Димеризация, тримеризация и полимеризация

Присоединение одной молекулы ацетилена к другой (димеризация) протекает под действием аммиачного раствора хлорида меди (I). При этом образуется винилацетилен:

Тримеризация ацетилена (присоединение трех молекул друг к другу) протекает под действием температуры, давления и в присутствии активированного угля с образованием бензола (реакция Зелинского):

Алкины также вступают в реакции полимеризации — процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

nM → Mn   (M – это молекула мономера)

Например, при полимеризации ацетилена образуется полимер линейного или циклического строения.

… –CH=CH–CH=CH–CH=CH–…

2. Окисление алкинов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

2.1. Горение алкинов

Алкины, как и прочие углеводороды, горят с образованием углекислого газа и воды.

Уравнение сгорания алкинов в общем виде:

CnH2n-2 + (3n-1)/2O2 → nCO2 + (n-1)H2O + Q

Например, уравнение сгорания пропина:

C3H4 + 4O2 → 3CO2 + 2H2O

2.2. Окисление алкинов сильными окислителями 

Алкины реагируют с сильными окислителями (перманганаты или соединения хрома (VI)). При этом происходит окисление тройной связи С≡С и связей С-Н у атомов углерода при тройной связи. При этом образуются связи с кислородом.

При окислении трех связей у атома углерода в кислой среде образуется карбоксильная группа СООН, четырех — углекислый газ СО2. В нейтральной среде — соль карбоновой кислоты и карбонат (гидрокарбонат) соответственно.

Таблица соответствия окисляемого фрагмента молекулы и продукта:

Окисляемый фрагмент KMnO4, кислая среда KMnO4, H2O, t
R-C R-COOH -COOMe
CH CO2 Me2CO3 (MeHCO3)

При окислении бутина-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента СН3–C, поэтому образуется уксусная кислота:

При окислении 3-метилпентина-1  перманганатом калия в серной кислоте окислению подвергаются фрагменты R–C и H–C , поэтому образуются карбоновая кислота и углекислый газ:

При окислении алкинов сильными окислителями в нейтральной среде углеродсодержащие продукты реакции жесткого окисления (кислота, углекислый газ) могут реагировать с образующейся в растворе щелочью в соотношении, которое определяется электронным балансом с образованием соответствующих солей.

Например, при окислении бутина-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента R–C, поэтому образуется соль уксусной кислоты – ацетат калия

Аналогичные органические продукты образуются при взаимодействии алкинов с хроматами или дихроматами.

Окисление ацетилена протекает немного иначе, σ-связь С–С не разрывается, поэтому в кислой среде образуется щавелевая кислота:

В нейтральной среде образуется соль щавелевой кислоты – оксалат калия:

Обесцвечивание раствора перманганата калия — качественная реакция на тройную связь.

3. Кислотные свойства алкинов

Связь атома углерода при тройной связи (атома углерода в sp-гибридизованном состоянии) с водородом значительно более полярная. чем связь С–Н атома углерода при двойной или одинарной связи (в sp2 и sp3-гибридном состоянии соответственно). Это обусловлено большим вкладом s-орбитали в гибридизованное состояние.

Гибридизация: sp sp2 sp3
Число s-орбиталей 1 1 1
Число p-орбиталей 1 2 3
Доля s-орбитали 50% 33% 25%

Повышенная полярность связи С–Н у атомов углерода при тройной связи в алкинах приводит к возможности отщепления протона Н+, т.е. приводит к появлению у алкинов с тройной связью на конце молекулы (алкинов-1) кислотных свойств 

Ацетилен и его гомологи с тройной связью на конце молекулы R–CC–H проявляют слабые кислотные свойства, атомы водорода на конце молекулы могут легко замещаться на атомы металлов.

Алкины с тройной связью на конце молекулы взаимодействуют с активными металлами, гидридами, амидами металлов и т.д.

Например, ацетилен взаимодействует с натрием с образованием ацетиленида натрия.

Например, пропин взаимодействует с амидом натрия с образованием пропинида натрия.

Алкины с тройной связью на конце молекулы взаимодействуют с аммиачным раствором оксида серебра (I) или аммиачным раствором хлорида меди (I).

При этом образуются нерастворимые в воде ацетилениды серебра или меди (I):

Алкины с тройной связью на конце молекулы взаимодействуют с аммиачным раствором оксида серебра или аммиачным раствором хлорида меди (I) с образованием белого или красно-коричневого осадка соответственно. Это качественная реакция на алкины с тройной связью на конце молекулы.

Соответственно, алкины, в которых тройная связь расположена не на конце молекулы, не реагируют с аммиачными растворами оксида серебра или хлорида меди (I).

Получение алкинов

1. Дегидрирование алканов

При дегидрировании алканов, содержащих от двух до трех атомов углерода в молекуле, образуются двойные и тройные связи.

Например, при дегидрировании этана может образоваться этилен или ацетилен:

2. Пиролиз метана

Пиролиз метана – это промышленный способ получения ацетилена.

Реакцию проводят, очень быстро пропуская метан между электродами (электродуговой способ) — примерно 0,1-0,01 секунды при температуре 1500оС.

Если процесс проводить дольше, то метан разлагается на углерод и водород:

3. Гидролиз карбида кальция

Лабораторный способ получения ацетилена – водный или кислотный гидролиз карбида кальция CaC2.

СаС2 + 2Н2О = Са(ОН)2 + С2Н2

В кислой среде образуется ацетилен и соответствующая соль:

CaC2 + 2HCl = CaCl2 + C2H2

Карбид кальция можно получить, нагревая оксид кальция с углеродом:

      СаО + 3С (изб) →  СаС2 + СО

4. Дегидрогалогенирование дигалогеналканов

Дигалогеналканы, в молекулах которых два атома галогена расположены у одного, либо у соседних атомов углерода, реагируют с избытком спиртового раствора щелочей с образованием алкинов.

Например, 1,2-дихлорпропан реагирует со спиртовым раствором гидроксида натрия

1,1-дихлорпропан реагирует со спиртовым раствором щелочи с образованием пропина.

5. Алкилирование соединений алкинов с металлами

Ацетилениды, пропиниды и прочие соединения алкинов с металлами реагируют с галогеналканами с образованием гомологов алкинов. При этом происходит удлиннение исходной молекулы алкина.

Например, пропинид натрия реагирует с бромэтаном с образованием пентина-2

Алкины- СnH2n-2,
одна тройная связь. ИН.

                   
С-С-С= С бутин-1. <180
o

 

1.Строение
:  
sp3  sp-гибридизация;
линейная форма
размер IC=CI=0,12
Нм, короче двойной, энергия больше, т.е. она более прочная, реакции
присоединения (электрофильный механизм)

2. Изомерия 1) у/в
цепи; 2) положение 3-й связи 3) межклассовая- алкадиены (циклоалкены)
С-С-С-С-С=С; С=С-С=С-С-С

                                                
Гексин-1      гексадиен-1,3

Циклоалкен        1500о С

3.Получение. Метановый 2 СН4                 
С
2Н2+3H2

Карбидный  Са С2+2Н2О                 
С
2Н2  +Са (ОН)2

                                                                                                                                 
t

                                                                             получение  СаСО3               СаО+СО2

                                                                       
СаО+3С          СаС
2+СО

                                                                       
  спирт
t

3.Дегидрогалогенирование 
С-С-С-С+2 КОН            
CC=CC+2КВr+2H2O

        Br                                        
I   I                              
бутин-2

         I                     спирт           
Br Br

CН3— С-СН3+2КОН       
       СН
3-С=СН+2К
Br+2Н2О

         I                                   
пропин

        Br

4. Физические свойства 
С
24— газы 
С17>Тв, имеют 3,
лучше                                                                                                         
                                                                                                                            

                                                 
растворяются в воде, чем алканы и алкены

С516-Ж; >Мr             
t
Кип увеличивается

5. Химические свойства

 1. реакции
приесоединения ( электронный механизм)

I.
галогенирование
(Cl2, Br2)          
sp3          
sp2           
sp

 СН=СН+Br2           
СНВ
r=СНBr  
1,2-дибромэтен

 

СНВr=CHBr + Br2                      CHBr2CHBr2    
1,1,2,2-тетрабромэтан

II. гидрогалогенирование
( по правилу Марковникова )

СН3-С=СН + НВr           
CH3CBr=CH2   
2-бромпропен

CH3CBr=CH2 + HBr           
CH3CBr2CH3    
2,2-дибромпропан

III. гидратация
( реакция Кучерова )

Только при гидратации этина
образуется альдегид, а другие

алкиныкетоны.

                                                        
O

CH=CH + H2O    Hg2+, H2SO4     CH3-C

                                         
этаналь H

CH3-C=CH + H2O   HgSO4, H2SO4         CH3-C-CH3

                                                                                        
O

                                     
Пропанон-2

IV. гидрирование

R-C=C-R + H2         Pt         R-CH=CH-R

R-CH=CH-R + H2        Pt          R-CH2-CH2-R

2. тримеризация
этина

3C2H2   C, 400˚C                    бензол

  димеризация
этина
– для получения хлоропрелового каучука

2CH = CH  CuCl, NH4Cl      HC= C-CH=CH2 бутен-1 ин-3

                                 
(
винилацетилен)

HC = C-CH=CH2 + HCl   CuCl     H2C=CCl-CH=CH2    хлоропрен

n(H2C=CCl-CH=CH2)          ( -H2C-CCl=CH-CH2— )n

                                             
хлоропреновый каучук

3. Реакция
окисления

C2H2 + 5O2          4CO2 + 2H2O +
2600 кДж

При
окислении разрушается кратная связь

 HC=CH + [O] + H2O            
HOOCCOOH

(качественная реакция)      Щавелевая кислота

4. Взаимодействие
с основаниями

(
амид натрия
NaNH2 проявляет кислотные свойства )

 HC=CH +
Na-NH
2              HC = CNa +
NH
3

                                   Ацетиленид Na

CH3-C=CH + [Ag(NH3)2]OH           CH3-C=CAg + 2NH3 + H2O

                                                      
Взрываются соли Ag и Cu

CH3C= CCH3 + Ag(NH3)2]OH

CH3-C=CAg + HCl         CH3-C=CH + AgCl

CH3-C= CNa + CH3-CH2Br           CH3-C=C-CH2-CH3 + NaBr

АЛКИНЫ углеводороды, содержащие в молекуле одну ТРОЙНУЮ связь.

       Общая формула алкинов: CnH2n-2

Тройная связь является комбинацией из одной σ- и двух π-связей, образуемых двумя sp-гибридизованными атомами углерода. σ-Cвязи, образуемые sp-гибридными орбиталями углерода, располагаются на одной прямой (под углом 1800 друг к другу).

    Поэтому молекула ацетилена имеет линейное строение:

Образование тройной связи

Номенклатура алкинов.

    Первый член гомологического ряда – этин имеет историческое название:

                  НС≡СН  ацетилен. 

    По систематической номенклатуре названия ацетиленовых углеводородов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса –ан на –ин:

             H-C≡C-H  — этИН         СН3-С≡С-Н – пропИН и т.д.

    Главная цепь выбирается таким образом, чтобы она обязательно включала в себя тройную связь (т.е. она может быть не самой длинной).

Виды изомерии алкинов.

1.Изомерия положения тройной связи (начиная с С4Н6):

HC≡C-CH2-CH3               H3C-C≡C-CH3

бутин-1                            бутин-2

2.Изомерия углеродного скелета (начиная с С5Н8):

НС≡С-СН2-СН2-СН3     НС≡С-СН-СН3

                                           

                                           СН3

3.Межклассовая изомерия с алкадиенами  ( начиная с С3Н4)  и циклоалкенами (начиная с С4Н6):

HC≡C-CH2-CH3    СН2=СН-СН=СН2     СН=СН

     бутин-1           бутадиен                          циклобутен

                                                       СН2-СН2  

ПОЛУЧЕНИЕ АЛКИНОВ.

1.Пиролиз метана: 

      2СН4 (1500ºС)🡪 C2H2 + 3H2

Реакцию проводят электродуговым способом, пропуская метан между электродами с временем контакта 0,1-0,01 секунды. Столь малое время нагревания обусловлено тем, что ацетилен при такой температуре может разлагаться на углерод и водород.

2.Гидролиз карбида кальция: 

СаО + С -(t)🡪  СаС2 + СО

СаС2 + Н2О 🡪  Са(ОН)2 + С2Н2

Карбид кальция образуется при нагревании оксида кальция СаО (жженой извести) и кокса до 2500ºС. При дальнейшем гидролизе выделяется ацетилен.

3. Дегидрогалогенирование дигалогеналканов спиртовым раствором щелочи (щелочь и спирт берутся в избытке).

R-CH2-CBr2-R + 2KOH —(спирт)🡪 R-C≡C-R +  2H2O + 2 KBr 

R-CHBr-CHBr-R + 2KOH —(спирт)🡪 R-C≡C-R + 2H2O + 2 KBr

4. Удлинение цепи (алкилирование ацетиленидов) при действии на ацетилениды алкилгалогенидами.

R-C≡CNa + Br-R’ 🡪 R-C≡C-R’ + NaBr 

СВОЙСТВА АЛКИНОВ

Особенности алкинов:

  1. π-Электроны более короткой тройной связи прочнее удерживаются ядрами атомов углерода и обладают меньшей поляризуемостью (подвижностью).
  2.  Поэтому реакции ЭЛЕКТРОФИЛЬНОГО ПРИСОЕДИНЕНИЯ к алкинам протекают медленнее, чем к алкенам.
  3. Алкины с концевой тройной связью (алкины-1) проявляют КИСЛОТНЫЕ СВОЙСТВА и способны, вступая в реакции с активными металлами, образовывать соли.

1. Реакции присоединения.

А. Гидрирование: 

В присутствии металлических катализаторов (Pt, Ni) алкины присоединяют водород с образованием алкенов (разрывается первая π-связь), а затем алканов (разрывается вторая π-связь):

Гидрирование алкинов

При использовании менее активного катализатора [Pd/CaCO3/Pb(CH3COO)2] гидрирование останавливается на стадии образования алкенов.

Б. Галогенирование: 

Электрофильное присоединение галогенов к алкинам протекает медленнее, чем для алкенов (первая π-связь разрывается труднее, чем вторая):

Алкины обесцвечивают бромную воду (качественная реакция).

Галогенирование алкинов

В. Гидрогалогенирование. 

Присоединение галогеноводородов также идет по электрофильному механизму. Продукты присоединения к несимметричным алкинам определяются правилом Марковникова:

Гидрогалогенирование алкинов

Г. Гидратация (реакция Кучерова):

   Присоединение воды в присутствии катализатора соли ртути (II) идет через образование неустойчивого енола, который изомеризуется в альдегид или кетон.

Если гидратации подвергается АЦЕТИЛЕН, то образуется уксусный альдегид.

Гидратация ацетилена

Из всех остальных алкинов при гидратации образуются кетоны (так как присоединение протекает по правилу Марковникова).

Гидратация алкинов

2. Димеризация и тримеризация алкинов.

1) Димеризация под действием водно-аммиачного раствора CuCl:

Димеризация ацетилена

2) Тримеризация ацетилена над активированным углем приводит к образованию бензола (реакция Зелинского):

Тримеризация ацетилена (2939 байт)

3. Кислотные свойства алкинов с концевой тройной связью.

     Образование солей:  концевые атомы водорода у ацетилена и алкинов-1 могут замещаться атомами металла. При этом образуются соли – ацетилениды:

            СН3-С≡С-Н + NaNH2   🡪     СН3-С≡С-Na + NH3 

                         амид натрия        ацетиленид натрия

   При взаимодействии ацетилена (или R–C≡C–H) с аммиачными растворами оксида серебра или хлорида меди (I) выпадают осадки нерастворимых ацетиленидов:

Ацетилениды серебра

HC≡CH + 2[Cu(NH3)2]OH 🡪   CuC≡CCu + 4NH3 + 2H2O  

Образование серовато-белого осадка ацетиленида серебра (или красно-коричневого — ацетиленида меди) служит качественной реакцией на концевую тройную связь.

AgC≡CAg + Н2О – реакция не идет

AgC≡CAg + 2НСl 🡪 НC≡CН + 2АgCl

  1. Окисление алкинов:

    Алкины обесцвечивают раствор KMnO4, что используется для их качественного определения.

1) Ацетилен окисляется раствором перманганата калия до соли щавелевой кислоты – оксалата калия (в нейтральной среде) или до щавелевой кислоты (кислая среда):    

3НС≡СН + 8KMnO4 + 4H2O 🡪 3НООС-СООН + 8MnO2↓+ 8KOH

                                           щавелевая кислота

3НС≡СН + 8KMnO4 🡪 2K2C2O4 + 8MnO2 ↓+ 2KOH + 2H2O

                               оксалат калия

2) Алкины окисляются перманганатом калия с расщеплением тройной связи и образованием карбоновых кислот:

2Н2  +  8KMnO4  + 12Н24 🡪 5НООС-СООН + 8MnSO4 + 4K2SO4 + 12H2O

5R-C≡СН + 8KMnO4 + 12Н24 🡪 5R-СООН + 5CO2 + 8MnSO4 + 4K2SO4 + 12H2O

5R-C≡С-R1 + 6KMnO4 + 9Н24 🡪 5R-СООН + 5R1-COOH +6MnSO4 +3K2SO4 + 4H2O

Ацетиленовые углеводороды (алкины)

Ключевые слова конспекта: Ацетиленовые углеводороды (алкины). Межклассовая изомерия. Карбидный и метановый способы получения ацетилена. Винилхлорид. Поливинилхлорид. Реакция Кучерова.



Гомологический ряд алкинов

Как правило, любое научное открытие не только имеет теоретическую ценность, но и находит практическое применение. В химической науке есть немало примеров того, как практическое использование свойств вновь открытых веществ приводило к созданию новых материалов или технологий.

В 1836 г. английский химик Эдмунд Дэви предложил для газовых фонарей, освещавших улицы в те времена, особый «светильный газ», который горел красноватым коптящим пламенем. Четверть века спустя французский химик М. Бертло определил формулу светильного газа — С2Н2. Вскоре это вещество получило своё общепринятое (тривиальное, т. е. исторически сложившееся) название — ацетилен. В конце XIX в. французский химик Анри Ле Шателье сделал важное открытие: при горении ацетилена в чистом кислороде

2Н2 + 5O2    4С02 + 2Н2O + Q

температура пламени достигала 3100 °С, что в 2 раза выше температуры плавления железа! Это свойство кислородно-ацетиленового пламени используют и сейчас при газовой резке и сварке металлов.

В XX в. было установлено строение молекулы ацетилена. Как оказалось, в ней два атома углерода связаны тройной углерод-углеродной связью:
H—C≡C—H

Ацетилен — первый представитель гомологического ряда ацетиленовых углеводородов.

Углеводороды с общей формулой СnН2n-2, в молекулах которых содержится одна тройная углерод-углеродная связь С≡С, называют ацетиленовыми углеводородами или алкинами.

(с) Цитата из справочного издания «ХИМИЯ. Справочник в таблицах / М.: Издательство АЙРИС-пресс»

Номенклатура и изомерия алкинов

Принадлежность углеводорода к алкинам обозначают суффиксом -ин, который указывает на тройную углерод-углеродную связь в молекуле. За основу названия алкина берут корень названия соответствующего алкана. Так, ацетилен в соответствии с номенклатурой ИЮПАК называют этином.

Формулы некоторых алкинов и их названия приведены в таблице.

Для алкинов, как и для алкенов, характерна изомерия положения кратной (тройной) связи. Например, изомерны бутин-1 и бутин-2.

Кроме этого, следует учесть, что гомологический ряд алкинов имеет такую же общую формулу, как и ещё один гомологический ряд уже знакомых вам углеводородов (алкадиенов): CnH2n–2. Такой вид структурной изомерии называют межклассовой изомерией.

Способы получения ацетилена

Рассмотрим способы получения важнейшего представителя класса алкинов — ацетилена.

Карбидный способ основан на взаимодействии карбида кальция с водой: 

В промышленности карбид кальция получают сплавлением оксида кальция (негашёной извести) с коксом (углеродом): 

Оксид кальция получают обжигом известняка по реакции: 

В промышленном масштабе ацетилен получают метановым методом — пропусканием газообразного метана в специальных реакторах через зону с высокой (1500 °С) температурой: 

Химические свойства алкинов

Тройную связь в молекулах алкинов обнаруживают с помощью двух качественных реакций — обесцвечивания бромной воды и раствора перманганата калия.

Непредельный характер алкинов обусловливает и наиболее характерные реакции веществ этого класса — реакции присоединения, которые протекают в две стадии. Например, реакция бромирования ацетилена:

Реакцию присоединения галогеноводородов к алкинам мы рассмотрим на примере важной в практическом отношении реакции хлороводорода с ацетиленом: 

Хлорэтен называют также винилхлоридом, потому что одновалентный радикал этилена СН2=СН— носит название винил. Хлорэтен — исходное вещество для получения ценного полимера поливинилхлорида. Уравнение реакции полимеризации хлорэтена выглядит так:

Как и этилен, ацетилен вступает в реакцию гидратации, т. е. присоединяет воду. Однако отличие тройной углерод-углеродной связи от двойной отражается на строении продукта реакции гидратации. Схематично присоединение воды к ацетилену можно изобразить так: 

или 

Реакция гидратации ацетилена названа в честь русского учёного-химика Михаила Григорьевича Кучерова, предложившего для проведения этого процесса использовать в качестве катализатора соли ртути(II). Продукт реакции Кучерова — органическое вещество уксусный альдегид. До середины XX в. реакция Кучерова лежала в основе промышленного получения уксусного альдегида, но в настоящее время её не используют из-за токсичности солей ртути. Получение уксусного альдегида по реакции Кучерова было вытеснено так называемым Вакер-процессом — получением ацетальдегида прямым окислением этилена в присутствии катализатора — хлорида палладия(II).

Ацетилен применяют в органическом синтезе. Он является одним из исходных веществ в производстве синтетических каучуков, поливинилхлорида и других полимеров. Из ацетилена получают органические растворители. Ацетилен до сих пор используют для газовой сварки и резки металлов.

Таблица «Ацетиленовые углеводороды (алкины)»

Таблица "Ацетиленовые углеводороды (алкины)"


Конспект урока по химии «Ацетиленовые углеводороды (алкины)». В учебных целях использованы цитаты из пособия «Химия. 10 класс : учеб, для общеобразоват. организаций : базовый уровень / О. С. Габриелян, И. Г. Остроумов, С. А. Сладков. — М. : Просвещение». Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по химии
  • Найти конспект в Кодификаторе ОГЭ по химии
  • Найти конспект в Кодификаторе ЕГЭ по химии

Алкины — ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, одну тройную связь между атомами углерода и соответствующие общей формуле $С_{n}Н_{2n-2}$.

Гомологический ряд этина

Неразветвленные алкины составляют гомологический ряд этина (ацетилена):

$С_2Н_2$ — этин, $С_3Н_4$ — пропин, $С_4Н_6$ — бутин, $С_5Н_8$ — пентин, $С_6Н_{10}$ — гексин и т. д.

Изомерия и номенклатура

Для алкинов, так же как и для алкенов, характерна структурная изомерия: изомерия углеродного скелета и изомерия положения кратной связи. Простейший алкин, для которого характерны структурные изомеры положения кратной связи класса алкинов, — это бутин:

$СН_3—{СН_2}↙{бутин-1}—С≡СН$ $СН_3—{С≡С}↙{бутин-2}—СН_3$

Изомерия углеродного скелета у алкинов возможна, начиная с пентина:

Так как тройная связь предполагает линейное строение углеродной цепи, геометрическая (цис-, транс-) изомерия для алкинов невозможна.

Наличие тройной связи в молекулах углеводородов этого класса отражается суффиксом -ин, а ее положение в цепи — номером атома углерода.

Например:

Алкинам изомерны соединения некоторых других классов. Так, химическую формулу $С_6Н_{10}$ имеют гексин (алкин), гексадиен (алкадиен) и циклогексен (циклоалкен):

Физические и химические свойства алкинов

Физические свойства. Температуры кипения и плавления алкинов, так же, как и алкенов, закономерно повышаются при увеличении молекулярной массы соединений.

Алкины имеют специфический запах. Они лучше растворяются в воде, чем алканы и алкены.

Химические свойства.

Реакции присоединения. Алкины относятся к непредельным соединениям и вступают в реакции присоединения. В основном это реакции электрофильного присоединения.

1. Галогенирование (присоединение молекулы галогена). Алкин способен присоединить две молекулы галогена (хлора, брома):

$CH≡CH+Br_2→{CHBr=CHBr}↙{1,2-дибромэтан},$

$CHBr=CHBr+Br_2→{CHBr_2-CHBr_2}↙{1,1,2,2-тетрабромэтан}$

2. Гидрогалогенирование (присоединение галогеноводорода). Реакция присоединения галогеноводорода, протекающая по электрофильному механизму, также идет в две стадии, причем на обеих стадиях выполняется правило Марковникова:

$CH_3-C≡CH+Br→{CH_3-CBr=CH_2}↙{2-бромпропен},$

$CH_3-CBr=CH_2+HBr→{CH_3-CHBr_2-CH_3}↙{2,2-дибромпропан}$

3. Гидратация (присоединение воды). Боль шое значение для промышленного синтеза кетонов и альдегидов имеет реакция присоединения воды (гидратация), которую называют реакцией Кучерова:

4. Гидрирование алкинов. Алкины присоединяют водород в присутствии металлических катализаторов ($Pt, Pd, Ni$):

$R-C≡C-R+H_2{→}↖{Pt}R-CH=CH-R,$

$R-CH=CH-R+H_2{→}↖{Pt}R-CH_2-CH_2-R$

Так как тройная связь содержит две реакционноспособные $π$-связи, алканы присоединяют водород ступенчато:

1) тримеризация.

При пропускании этина над активированным углем образуется смесь продуктов, одним из которых является бензол:

2) димеризация.

Помимо тримеризации ацетилена, возможна его димеризация. Под действием солей одновалентной меди образуется винилацетилен:

$2HC≡CH→{HC≡C-CH=CH_2}↙{text»бутен-1-ин-3(винилацетилен)»}$

Это вещество используется для получения хлоропрена:

$HC≡C-CH=CH_2+HCl{→}↖{CaCl}H_2C={CCl-CH}↙{хлоропрен}=CH_2$

полимеризацией которого получают хлоропреновый каучук:

$nH_2C=CCl-CH=CH_2→(…-H_2C-CCl=CH-CH_2-…)_n$

Окисление алкинов.

Этин (ацетилен) горит в кислороде с выделением очень большого количества теплоты:

$2C_2H_2+5O_2→4CO_2↑+2H_2O+2600кДж$ На этой реакции основано действие кислородно-ацетиленовой горелки, пламя которой имеет очень высокую температуру (более $3000°С$), что позволяет использовать ее для резки и сварки металлов.

На воздухе ацетилен горит коптящим пламенем, т.к. содержание углерода в его молекуле выше, чем в молекулах этана и этена.

Алкины, как и алкены, обесцвечивают подкисленные растворы перманганата калия; при этом происходит разрушение кратной связи.

АОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ Алкинылкины- СnH2n-2, одна
тройная связь. ИН.

Опорный конспект для подготовки к ЕГЭ АлкиныС-С-С= С бутин-1.
<180o

Опорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ Алкины

1.Строение : sp3 sp-гибридизация; линейная форма
размер IC=CI=0,12 Нм, короче двойной, энергия больше, т.е. она
более прочная, реакции присоединения (электрофильный механизм)

2. Изомерия 1) у/в цепи; 2) положение 3-й связи 3) межклассовая-
алкадиены (циклоалкены) С-С-С-С-С=С; С=С-С=С-С-С

Гексин-1 гексадиен-1,3

Опорный конспект для подготовки к ЕГЭ АлкиныЦиклоалкен
1500о С

3Опорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ Алкины.Получение.
Метановый 2 СН4 С2Н2+3H2

КОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ Алкиныарбидный Са С2+2Н2О
С2Н2 +Са (ОН)2

Опорный конспект для подготовки к ЕГЭ Алкиныt

Опорный конспект для подготовки к ЕГЭ Алкиныполучение СаСО3
СаО+СО2

Опорный конспект для подготовки к ЕГЭ АлкиныСаО+3С СаС2+СО

спирт t

3Опорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ Алкины.Дегидрогалогенирование
С-С-С-С+2 КОН C-C=C-C+2КВr+2H2O

Br I I бутин-2

I спирт Br Br

CОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныН3- С-СН3+2КОН
СН3-С=СН+2К Br+2Н2О

I пропин

Br

4. Физические свойства С2-С4- газы С17>Тв, имеют 3, лучше

растворяются в воде, чем алканы и алкены

СОпорный конспект для подготовки к ЕГЭ Алкины5-С16-Ж; >Мr t
Кип увеличивается

5. Химические свойства

1. реакции приесоединения ( электронный механизм)

IОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ Алкины. галогенирование
(Cl2, Br2) sp3 sp2 sp

Опорный конспект для подготовки к ЕГЭ АлкиныСН=СН+Br2 СНВr=СНBr
1,2-дибромэтен

Опорный конспект для подготовки к ЕГЭ Алкины

СОпорный конспект для подготовки к ЕГЭ АлкиныНВr=CHBr + Br2 CHBr2
— CHBr2 1,1,2,2-тетрабромэтан

II. гидрогалогенирование ( по правилу Марковникова )

СОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныН3-С=СН + НВr
CH3-CBr=CH2 2-бромпропен

CОпорный конспект для подготовки к ЕГЭ АлкиныH3-CBr=CH2 + HBr
CH3-CBr2-CH3 2,2-дибромпропан

III. гидратация ( реакция Кучерова )

Только при гидратации этина образуется альдегид, а другие

алкины — кетоны.

Опорный конспект для подготовки к ЕГЭ АлкиныO

CОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныH=CH + H2O
Hg2+, H2SO4 CH3-C

этаналь H

CОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныH3-C=CH + H2O
HgSO4, H2SO4 CH3-C-CH3

Опорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныO

Пропанон-2

IV. гидрирование

RОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ Алкины-C=C-R + H2
Pt R-CH=CH-R

RОпорный конспект для подготовки к ЕГЭ Алкины-CH=CH-R + H2
Pt R-CH2-CH2-R

2. тримеризация этина

Опорный конспект для подготовки к ЕГЭ Алкины

3Опорный конспект для подготовки к ЕГЭ АлкиныC2H2
C, 400˚C бензол

димеризация этина — для получения хлоропрелового каучука

2Опорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныCH = CH CuCl,
NH
4Cl HC= C-CH=CH2 бутен-1 ин-3

(винилацетилен)

HОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныC = C-CH=CH2 + HCl
CuCl H2C=CCl-CH=CH2 хлоропрен

nОпорный конспект для подготовки к ЕГЭ Алкины(H2C=CCl-CH=CH2) (
-H2C-CCl=CH-CH2- )n

хлоропреновый каучук

3. Реакция окисления

CОпорный конспект для подготовки к ЕГЭ Алкины2H2 + 5O2 4CO2 +
2H2O + 2600 кДж

При окислении разрушается кратная связь

Опорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныHC=CH + [O] + H2O
HOOC-COOH

(качественная реакция) Щавелевая кислота

4. Взаимодействие с основаниями

( амид натрия Na-NH2 проявляет кислотные свойства )

Опорный конспект для подготовки к ЕГЭ Алкины

Опорный конспект для подготовки к ЕГЭ АлкиныHC=CH + Na-NH2 HC =
CNa + NH3

Опорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныАцетиленид Na

CОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныH3-C=CH +
[Ag(NH3)2]OH CH3-C=CAg + 2NH3 + H2O

Взрываются соли Ag и Cu

Опорный конспект для подготовки к ЕГЭ Алкины

CОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныH3-C= C-CH3 +
Ag(NH3)2]OH

CОпорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ АлкиныH3-C=CAg + HCl
CH3-C=CH + AgCl

Опорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ Алкины

CОпорный конспект для подготовки к ЕГЭ АлкиныH3-C= CNa +
CH3-CH2Br CH3-C=C-CH2-CH3 + NaBr

Опорный конспект для подготовки к ЕГЭ АлкиныОпорный конспект для подготовки к ЕГЭ Алкины

Понравилась статья? Поделить с друзьями:
  • Алюминиевый тополиный егэ
  • Алюминиевый однофамилица увеличивать отзывчивый егэ
  • Альфа распад бета распад егэ физика
  • Альфа егэ мытищи
  • Альфа бета гамма распад физика егэ