В 2022 году в вариантах ЕГЭ Профильного уровня появилась задание №10 по теме «Графики функций». Можно считать его подготовительным для освоения задач с параметрами.
Как формулируется задание 10 ЕГЭ по математике? По графику функции, который дается в условии, вам нужно определить неизвестные параметры в ее формуле. Возможно — найти значение функции в некоторой точке или координаты точки пересечения графиков функций.
Чтобы выполнить это задание, надо знать, как выглядят и какими свойствами обладают графики элементарных функций. Надо уметь читать графики, то есть получать из них необходимую информацию. Например, определять формулу функции по ее графику.
Вот необходимая теория для решения задания №10 ЕГЭ.
Что такое функция
Чтение графика функции
Четные и нечетные функции
Периодическая функция
Обратная функция
5 типов элементарных функций и их графики
Преобразование графиков функций
Построение графиков функций
Да, теоретического материала здесь много. Но он необходим — и для решения задания 10 ЕГЭ, и для понимания темы «Задачи с параметрами», а также для дальнейшего изучения математики на первом курсе вуза.
Рекомендации:
Запоминай, как выглядят графики основных элементарных функций. Замечай особенности графиков, чтобы не перепутать параболу с синусоидой : -)
Проверь себя: какие действия нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали, растянуть, перевернуть?
Разбирая решения задач, обращай внимание на то, как мы ищем точки пересечения графиков или неизвестные переменные в формуле функции. Такие элементы оформления встречаются также в задачах с параметрами.
Задание 10 в формате ЕГЭ-2021
Линейная функция
Необходимая теория
1. На рисунке изображён график функции . Найдите значение , при котором
Решение:
Найдем, чему равны k и b. График функции проходит через точки (3; 4) и (-1; -3). Подставив по очереди координаты этих точек в уравнение прямой y = kx + b, получим систему:
Вычтем из первого уравнения второе:
Уравнение прямой имеет вид:
Найдем, при каком значение функции равно -13,5.
Ответ: -7.
2. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.
Решение:
Запишем формулы функций.
Одна из них проходит через точку (0; 1) и ее угловой коэффициент равен -1. Это линейная функция
Другая проходит через точки (-1; -1) и (-2; 4). Подставим по очереди координаты этих точек в формулу линейной функции
Вычтем из первого уравнения второе.
тогда
Прямая задается формулой:
Найдем абсциссу точки пересечения прямых. Эта точка лежит на обеих прямых, поэтому:
Ответ: -1,75.
3. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.
Решение:
Прямая, расположенная на рисунке ниже, задается формулой так как ее угловой коэффициент равен 1 и она проходит через точку (-3; -2).
Для прямой, расположенной выше, угловой коэффициент равен
Эта прямая проходит через точку (-2; 4), поэтому: эта прямая задается формулой
Для точки пересечения прямых:
Ответ: -12.
Квадратичная функция. Необходимая теория
4. На рисунке изображен график функции Найдите b.
Решение:
На рисунке — квадратичная парабола полученная из графика функции сдвигом на 1 вправо, то есть
Получим:
Ответ: -2.
5. На рисунке изображен график функции . Найдите с.
Решение:
На рисунке изображена парабола, ветви которой направлены вверх, значит, коэффициент при положительный. График сдвинут относительно графика функции на 1 единицу вправо вдоль оси Ох. Формула функции имеет вид .
Значит, с = 1.
Ответ: 1
6. На рисунке изображён график функции Найдите
Решение:
График функции проходит через точки с координатами (1; 1) и (-2; -2). Подставляя координаты этих точек в формулу функции, получим:
отсюда
Формула функции имеет вид:
Ответ: 31.
7. На рисунке изображены графики функций и которые пересекаются в точках А и В. Найдите абсциссу точки В.
Решение:
Найдем a, b и c в формуле функции . График этой функции пересекает ось ординат в точке (0; -3), поэтому
График функции проходит через точки (-1; -3) и (2; 3). Подставим по очереди координаты этих точек в формулу функции:
отсюда
Найдем абсциссу точки B. Для точек A и B:
(это абсцисса точки A) или (это абсцисса точки B).
Ответ: 6.
Степенные функции. Необходимая теория
8. На рисунке изображены графики функций и , которые пересекаются в точках А и В. Найдите абсциссу точки В.
Решение:
График функции проходит через точку (2; 1); значит,
График функции проходит через точки (2; 1) и (1; -4), — угловой коэффициент прямой; (находим как тангенс угла наклона прямой и положительному направлению оси X); тогда
Для точек A и B имеем:
Отсюда (абсцисса точки A) или (абсцисса точки B).
Ответ: -0,2.
9. На рисунке изображён график функции . Найдите f (6,76).
Решение:
Функция задана формулой:
Ее график проходит через точку (4; 5); значит,
Тогда
Ответ: 6,5.
10. На рисунке изображен график функции . Найдите .
Решение:
График функции на рисунке симметричен графику функции относительно оси Y. Он проходит через точку (-1; 1). Значит, формула изображенной на рисунке функции: , а = — 1. Тогда = 5.
Ответ: 5.
Показательная функция. Необходимая теория
11. На рисунке изображён график функции Найдите
Решение:
График функции проходит через точки (-3; 1) и (1; 4). Подставив по очереди координаты этих точек в формулу функции получим:
Поделим второе уравнение на первое:
Подставим во второе уравнение:
Ответ: 0,25.
12. На рисунке изображен график функции . Найдите
Решение:
График функции проходит через точку Это значит, что
формула функции имеет вид: .
Ответ: 2.
Логарифмическая функция. Необходимая теория
13. На рисунке изображён график функции Найдите
Решение:
График функции проходит через точки (-3; 1) и (-1; 2). Подставим по очереди эти точки в формулу функции.
Отсюда:
Вычтем из второго уравнения первое:
или — не подходит, так как (как основание логарифма).
Тогда
Ответ: 4.
14. На рисунке изображен график функции .
Найдите f(0,2).
Решение:
График логарифмической функции на рисунке проходит через точки и . Подставив по очереди координаты этих точек в формулу функции, получим систему уравнений:
Формула функции:
Найдем :
Ответ: -7.
Тригонометрические функции. Необходимая теория
15. На рисунке изображён график функции Найдите
Решение:
График функции сдвинут на 1,5 вверх; Значит, Амплитуда (наибольшее отклонение от среднего значения).
Это график функции Он получен из графика функции растяжением в 2 раза по вертикали и сдвигом вверх на .
Ответ:
16. На рисунке изображён график функции
Найдите .
Решение:
На рисунке — график функции Так как
График функции проходит через точку A Подставим и координаты точки А в формулу функции.
Так как получим:
Ответ: 2.
17. На рисунке изображен график периодической функции у = f(x). Найдите значение выражения
Решение:
Функция, график которой изображен на рисунке, не только периодическая, но и нечетная, и если то
Пользуясь периодичностью функции , период которой T = 4, получим:
Ответ: 5.
Друзья, мы надеемся, что на уроках математики в школе вы решаете такие задачи. Для углубленного изучения темы «Функции и графики» (задание 10 ЕГЭ по математике), а также задач с параметрами и других тем ЕГЭ — рекомендуем Онлайн-курс для подготовки к ЕГЭ на 100 баллов.
Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 10 ЕГЭ по математике. Графики функций» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Каталог заданий.
Параболы
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 10 № 509253
На рисунке изображены графики функций и которые пересекаются в точках A и B. Найдите абсциссу точки B.
Аналоги к заданию № 509253: 509254 509255 509259 509262 509263 509264 509268 509256 509257 509258 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график
Решение
·
·
Сообщить об ошибке · Помощь
2
Тип 10 № 562060
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите значение
Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график
Решение
·
·
Сообщить об ошибке · Помощь
3
Тип 10 № 562061
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите значение дискриминанта уравнения
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график
Решение
·
·
1 комментарий · Сообщить об ошибке · Помощь
4
Тип 10 № 562153
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите значение
Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график
Решение
·
·
Сообщить об ошибке · Помощь
5
Тип 10 № 562154
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите значение
Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график
Решение
·
·
Сообщить об ошибке · Помощь
Пройти тестирование по этим заданиям
В ЕГЭ 2022 года добавили новую задачу на графики функций. Для решения этой задачи нужно сначала определить формулу функции, а затем вычислить ответ на вопрос задачи. И если вычисление ответа по известной формуле обычно не составляет труда, то вот определение самой формулы часто ставит школьников в тупик. Поэтому мы разберем три разных подхода к этому вопросу.
Замечание. Про то как определяется формула у прямой и параболы я написала в этой и этой статьях. Поэтому здесь в примерах я буду использовать другие функции – дробные, иррациональные, показательные и логарифмические, но все три описанных здесь способа работают и для линейных, и для квадратичных функций в том числе.
1 способ – находим формулу по точкам
Этот способ подходит вообще для любой девятой задачи, но занимает достаточно много времени и требует хорошего навыка решения систем уравнений.
Давайте разберем алгоритм на примере конкретной 9-ой задачи ЕГЭ:
Алгоритм:
1. Находим 2 точки с целыми координатами. Обычно они выделены жирно, но если это не так, то не проблема найти их самому.
Пример:
2. Подставляем эти координаты в «полуфабрикат» функции. Вместо (f(x))– координату игрек, вместо (x) – икс. Получается система.
3. Решаем эту систему и получаем готовую формулу.
4. Готово, функция найдена, можно переходить ко второму этапу – вычислению (f(-8)). Если вы вдруг не знаете, что это значит – в конце статьи я рассматриваю этот момент более подробно.
Давайте посмотрим метод еще раз на примере с логарифмической функцией.
Пример:
2 способ – преобразование графиков функций
Этот способ сильно быстрее первого, но требует больше знаний. Для использования преобразований функций нужно знать, как выглядят функции без изменения и как преобразования их меняют. Наиболее удобно использовать этот способ для иррациональной функции ((y=sqrt{x}) ) и функции обратной пропорциональности ((y=frac{1}{x})).
Вот как выглядит применение этого способа:
Для использования этого способа надо знать, как выглядят изначальные функции:
И понимать, как меняются функции от преобразований:
Часто даже по «полуфабрикату» функции понятно, какие преобразования сделали с функцией:
Пример:
3 способ – гибридный
Идеально подходит для логарифмических и показательных функций, так как обычно у таких функций неизвестно основание и с помощью преобразований его не найти. С другой стороны, независимо от оснований любая показательная функция должна проходить через точку ((0;1)), а любая логарифмическая — через точку ((1;0)).
По смещению этих точек легко понять, как именно двигали функцию, но только если ее не растягивали, а лишь перемещали вверх-вниз, влево-вправо (как обычно и бывает в задачах на ЕГЭ).
Основание же лучше находить уже следующим действием, используя подстановку координат точки в «полуфабрикат» функции.
Как отвечать на вопросы в задаче, когда уже определили функцию
— Если просят найти (f)(любое число), то нужно это число подставить в готовую функцию вместо икса.
Пример:
— Если просят найти «при каком значении x значение функции равно *любому числу*», то надо решить уравнение, в одной части которого будет функция, а в другой — то самое число. Аналогично надо поступить, если просят «найти корень уравнения (f(x)=) *любое число*».
Пример:
— Если просят найти абсциссу точки пересечения – надо приравнять 2 функции и решить получившееся уравнение. Корень уравнения и будет искомой абсциссой. Аналогично надо делать в задачах, где даны две точки пересечения (A)(*любое число*;*другое число*) и (B(x_0;y_0)) и просят найти (x_0).
Пример:
— Если просят найти ординату точки пересечения – надо приравнять 2 функции, найти иксы и подставить подходящий икс в любую функцию. Точно также решаем если просят найти (y_0) точки пересечения двух функций.
Пример:
— Иногда просят найти просто какой-либо из коэффициентов функции. Тогда надо просто восстановить функцию и записать в ответ то, о чем спросили:
Пример:
- ЕГЭ по математике профиль
Новые задания №9 ЕГЭ 2022 по профильной математике — графики функций.
Для успешного результата необходимо уметь выполнять действия с функциями.
Задание №9 ЕГЭ 2022 математика профильный уровень Прототипы
Скачать задания | Источник |
Новые задания 9 | ФИПИ |
Прототипы задания №9 | vk.com/mathegeexam |
Скачать задания | vk.com/ekaterina_chekmareva |
→ Теория → Задачи → Шпаргалка |
vk.com/abel_mat |
Линейная функция | math100.ru |
Парабола | |
Гипербола | |
Логарифмическая и показательная функции | |
Иррациональные функции | |
Тригонометрические функции |
Из кодификатора 2022 года для выполнения 9 задания нужно изучить основные элементарные функции, их свойства и графики:
3.3.1 Линейная функция, её график
3.3.2 Функция, описывающая обратную пропорциональную зависимость, её график
3.3.3 Квадратичная функция, её график
3.3.4 Степенная функция с натуральным показателем, её график
3.3.5 Тригонометрические функции, их графики
3.3.6 Показательная функция, её график
3.3.7 Логарифмическая функция, её график
Уметь выполнять действия с функциями: определять значение функции по значению аргумента при различных способах задания функции; описывать по графику поведение и свойства функции, находить по графику функции наибольшее и наименьшее значения; строить графики изученных функций:
При отработке данного задания будут полезны книги:
Купить ЕГЭ. Математика. Графики функций, уравнения и неравенства, содержащие переменную под знаком модуля
Купить Задачи с параметрами. Применение свойств функций, преобразование неравенств
Связанные страницы:
Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи в разделе контакты
Слайд 1
«ЗАДАНИЕ № 9 В ЕГЭ 2022 ПРОФИЛЬНОГО УРОВНЯ» Зялалова З.А учитель математики МБОУ ВСОШ №4
Слайд 2
Задание №9 . «Анализ графиков» Прямая Парабола Гипербола Логарифмическая и показательная функции Иррациональные функции Тригонометрические функции
Слайд 3
На рисунке изображён график функции f(x)= kx + b . Найдите f( 12 ) . Задача №1
Слайд 4
На рисунке изображён график функции f(x)= kx + b . Найдите f( 12 ) . Задача №1 Решение:
Слайд 5
На рисунке изображён график функции f(x)= kx + b . Найдите f( 12 ) . Задача №1 Решение:
Слайд 6
На рисунке изображён график функции f(x)= kx + b . Найдите f( 12 ) . Задача №1 Решение:
Слайд 7
На рисунке изображён график функции f(x)= kx + b . Найдите f( 12 ) . Задача №1 Решение:
Слайд 8
На рисунке изображён график функции f(x)= kx + b . Найдите f( 12 ) . Задача №1 Решение:
Слайд 9
На рисунке изображён график функции f(x)= kx + b . Найдите f( 12 ) . Задача №1 Решение:
Слайд 10
На рисунке изображён график функции f(x)= kx + b . Найдите f( 12 ) . Задача №1 Решение:
Слайд 11
На рисунке изображён график функции f(x)= kx + b . Найдите f( 12 ) . Задача №1 Решение: Ответ: 4.
Слайд 12
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2
Слайд 13
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2 Решение:
Слайд 14
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2 Решение:
Слайд 15
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2 Решение:
Слайд 16
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2 Решение:
Слайд 17
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2 Решение:
Слайд 18
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2 Решение:
Слайд 19
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2 Решение:
Слайд 20
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2 Решение:
Слайд 21
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2 Решение:
Слайд 22
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2 Решение:
Слайд 23
По графику функции f(x)= kx + b найдите х, при котором f( х ) = − 13,5. Задача №2 Решение:
Слайд 24
Прототип 1. (Прямая) На рисунке изображены графики двух линейных функций. Найдите ординату точек пересечения. 1 2 Решение: Уравнение прямой у = kx+b . 1) Первая прямая проходит через точки (-4;1) и (-2;4) , Решаем систему = > k=1,5; b=7 у =1,5х+7-уравнение 1 прямой. 2) Вторая прямая проходит через точки (-1;0) и (2;3) . Решаем систему = > k=1; b=1 Тогда у=х+1-уравнение 2 прямой. 3)Решим систему уравнений , х = -12.Тогда у = -11. Ответ:-11
Слайд 25
Прототип 2. (Парабола) На рисунке изображен график функции f(x)= x²+bx+c . Найдите f( -1 ) . Решение. Из рисунка видно, что график проходит через (3;2);(4;5);(5;4) В ычтем из 2 уравнения 1-е , п олучим7 a + b = Вычтем из 3уравнения 2 -е , получим 9 a + b=- Решив систему уравнений находим = -2 , b = 17. Тогда f(x )= — 2 x² + 17 x + c и f( 3 ) = 2, найдем ,что с = -31. f(x )= — 2 x²+ 17 x — 31, f( -1 ) =-2-17-31=-50 Ответ:-50
Слайд 26
Прототип 3 . (Парабола) На рисунке изображен график функции f(x)= ах ² + bx+c ,где числа , b и c -целые. Найдите абсциссу вершины параболы . Решение. Из рисунка видно, что график проходит через (3 ;-2);(2;1);(1;6) Тогда вычтем из 1 уравнения 2-е, получим 5a-b=- вычтем из 2 уравнения 3-е,получим 3 a-b=- Решив систему уравнений находим =1 , b =8. Абсцисса вершины параболы = — =-4 . Ответ:-4
Слайд 27
Прототип 4 . (Парабола) На рисунке изображены графики функций f(x )= 5х+9 и g(x)= ах ² + bx+c , которые пересекаются в точках А и В. Найдите абсциссу точки B Решение. По графику с=-3.График функции g(x) проходит через точки (-2;-1);(-1;-3);(2;3). Подставим координаты точки (-1;-3), получим -3=а- b -3. Отсюда а= b . g(x)= ах ² + а x -3. Подставим координаты точки (2;3 ), получим, что а=1. g(x)= х ² +x -3. Чтобы найти абсциссу точки ,нужно решить уравнение х ² +x -3 = 5х+9, х ² — 4 x — 12=0. По теореме Виета = -12, + = 4 По графику = -2, тогда =6. Ответ:6
Слайд 28
Прототип 5. (Гипербола) На рисунке изображен график функции f(x)= +a . Найдите f (0,25) Решение: График функции имеет горизонтальную асимптоту y = -2 , значит, а = -2 . ( График функции f(x ) = + a получается сдвигом графика функции f(x ) = вдоль оси Оу на величину |а| вверх, если а >0 и вниз если a<0 ) По графику а = -2 и проходит через точку (3;-3). -3 = -2 отсюда k = -3 .Значит, f(x ) = -2, f( 0,25 ) = -2= -14. Ответ:- 14
Слайд 29
Прототип 6 . (Гипербола) На рисунке изображён график функции вида f(x )= +c , где числа a, b и c — целые. Найдите f(13). Решение. График функции имеет горизонтальную асимптоту y = 2, значит, c = 2. График функции имеет вертикальную асимптоту x = 3 , значит, b = — 3. По графику f(2 ) = 1 , тогда +2=1, отсюда a = 1 . Таким образом, f(x ) = +2 Найдём f(13 ) = +2=2,1. f(13)=2,1. Ответ:2,1
Слайд 30
Прототип 7 . (Гипербола) На рисунке изображен график функции f(x)= . Найдите f . Решение. График функции имеет вертикальную асимптоту x = 2, значит, а = — 2. По графику а= -2 и проходит через точку (-3;-1). -1= , отсюда k = 5.Значит , f(x ) = , f = = 5: = -0,75. Ответ: -0,75
Слайд 31
Прототип 8. (Гипербола) На рисунке изображен график функции f(x)= . Найдите k Решение. Преобразуем данную функцию f(x)= f(x ) = Тогда, делаем вывод, что k- горизонтальная асимптота b -вертикальная асимптота График функции имеет горизонтальную асимптоту y=2, значит , k =2. Ответ:2
Слайд 32
Прототип 9 . (Гипербола) На рисунке изображен график функции f(x)= . Найдите a . Решение. График функции имеет горизонтальную асимптоту y=2, значит, k =2 . График функции имеет вертикальную асимптоту x=3, значит, b = — 3. По графику f( 5 )= 3, тогда 3= , отсюда а=-4. Ответ:-4 k-u горизонтальная асимптота b -вертикальная асимптота
Слайд 33
Прототип 10. ( Тригонометрическая функция ) На рисунке изображен график функции вида f(x )= cos(b π x+c )+d, где числа , b, c и d -целые. Найдите . Решение. По графику = -3 d = = = -1. |a|= = =2. По графику =2, c =0, T=2 T= = , то есть =2 , отсюда b=1 f (x)=2cos π x-1, f =f f , f =2cos π· -1 = 2cos π -1 = 2cos -1= -2cos 1= -2. Ответ:-2 Т=2
Слайд 34
Прототип 11.(Тригонометрическая функция) На рисунке изображён график функции вида f(x)= cos(b π x+c )+d, где числа , b, c и d -целые. Найдите . Решение. По графику = -3 d= = = -1. |a|= = =2. По графику = — 2 , c=0, T=2 T= = , то есть =2 , отсюда b=1 f(x )= — 2cos π x-1, f =f f , f = — 2cos π· -1 = — 2cos π -1 = — 2cos -1= 2cos 1= 0 . Ответ:0
Слайд 35
Прототип 12.(Иррациональная функция) На рисунке изображен график функции f(x)=k Найдите f(2,56) Решение. График этой функции проходит через точку (4;-3).Подставив координаты этой точки, получим -3= k , 2 k =-3, k =-1,5. f(2,56 ) =-1,5 Ответ:-2,4
Слайд 36
Прототип 13.(Логарифмическая функция) На рисунке изображен график функции f(x )=b+ x. Найдите значение х при котором f(x )=2. Решение. График функции f(x)= b+ x получается сдвигом графика функции f(x)= x. вдоль оси Оу на величину |b| вверх , если b > 0 и вниз если b <0 . По графику b = -2 и проходит через точку (3;- 1 ). -1= — 2 + , отсюда а =3 .Значит, f(x)= — 2 x , найдем х при котором f(x )= 2. 2=-2 x , x =4, значит, х=81. Ответ:81
Слайд 37
Прототип 14.(Показательная функция) На рисунке изображен график функции f(x )= . Найдите f (-5 ). Решение. График функции f(x)= получается сдвигом графика функции f(x)= вдоль оси Ох на величину | b | влево, если b>0 и вправо если b<0 . По графику b = — 1 и проходит через точку ( 3 ; 2 ). отсюда а = . Значит, f ( -5 )= = = Ответ:0,125
Скачать материал
Скачать материал
- Сейчас обучается 140 человек из 45 регионов
- Сейчас обучается 54 человека из 29 регионов
- Сейчас обучается 28 человек из 12 регионов
Описание презентации по отдельным слайдам:
-
1 слайд
Анализ графиков функций
Задание №9 -
2 слайд
Анализ графиков функций
Линейная функция
Квадратичная функция
Степенная функция
Показательная и логарифмическая функция
Тригонометрические функции
Кусочно-линейная функция
Комбинированные задачи -
3 слайд
Прототипы заданий
Найти аргумент по известному значению функции
Найти значение функции по известному значению аргумента
Найти координаты вершины параболы
Найти точку пересечения графиков двух функций
Найти один из параметров
Найти решение уравнения -
4 слайд
b = f(0)
b = f(0)
Линейная функция. График — прямая
Прямые параллельны тогда, когда их угловые коэффициенты равны
Прямые перпендикулярны тогда, когда произведение их угловых коэффициентов равно -1 -
5 слайд
На рисунке изображены графики двух линейных функций. Найдите ординату точек пересечения.
1
(-1;0)
(2;3)
(-4;1)
1 способ.
Система двух уравнений с двумя неизвестными
𝟏=𝟒𝒌+𝒃, 𝟒=−𝟐𝒌+𝒃
у=1,5х+7𝟎=−𝟏𝒌+𝒃, 𝟑=𝟐𝒌+𝒃
у=х+1Решим систему уравнений у=𝟏,𝟓𝒙+𝟕, 𝒚=𝒙+𝟏 .
х=-12
у=-11.Ответ:-11
(-2;4)
-
6 слайд
На рисунке изображены графики двух линейных функций. Найдите ординату точек пересечения.
1
k= 3 2
(-1;0)
(2;3)
(-4;1)
(-2;4)
2 способ.
Через tg α=k
k= 𝟑 𝟐 k= 𝟏
1=1,5·(-4)+ b 0=1·(-1)+ b,
b=7 b=1Решим систему уравнений у=𝟏,𝟓𝒙+𝟕, 𝒚=𝒙+𝟏 .
х=-12
у=-11.Ответ:-11
-
7 слайд
На рисунке изображены графики двух линейных функций. Найдите ординату точек пересечения.
1
(-1;0)
(2;3)
(-4;1)
(-2;4)
3 способ
Уравнение прямой, проходящей через 2 точки𝒙− 𝒙 𝟏 𝒙 𝟐 − 𝒙 𝟏 = 𝒚− 𝒚 𝟏 𝒚 𝟐 − 𝒚 𝟏
𝒙+𝟒 𝟐 = 𝒚−𝟏 𝟑 𝒙+𝟏 𝟑 = 𝒚 𝟑
Решим систему уравнений у=𝟏,𝟓𝒙+𝟕, 𝒚=𝒙+𝟏 .
х=-12
у=-11.Ответ:-11
-
8 слайд
Квадратичная функция
График — парабола
f(x)=ax2 + bx + c = a(x-x1)(x-x2) = a(x — m) 2+ n
-4
-3
-1
-1
-2 -
9 слайд
Определение коэффициента а в квадратичной функции по графику
f(x)=ax2
1
a==1
1
2
a==2
1
2
a= -= -2
1 -
10 слайд
На рисунке изображен график функции f(x)= 𝒂 x²+bx+c,
где числа a,b и c-целые. Найдите значение f(-12).
Решение.
f(x)= 𝒂(x-m)²+n,где m, n-координаты вершины параболы.
m= -4,n= -3, 𝒂 =1.
f(x)=(x-(-4))²+(-3),
f(x)=(x+4)²-3,
f(-12)=(-12+4)²-3,
f(-12)=61.
Ответ:61 -
11 слайд
𝑦=𝑎 𝑥−1 𝑥−4
с=4, а=1
𝑦= 𝑥 2 −5𝑥+4
𝑦 −12 =208
(1;0)
(4;0) -
12 слайд
На рисунке изображен график функции
f(x)= 𝒂 x²+bx+c. Найдите f(-1).
Решение: (3;2);(4;5);(5;4)9а+3b+c= 2, 16a+4b+c=𝟓, 25a+5b+c=4.
находим 𝒂=-2 ,b=17 с=-31
f(x)=- 2 x²+17x-31,
f(-1)=-2-17-31=-50
Ответ:-50 -
13 слайд
На рисунке изображен график функции f(x)=ах²+bx+c,где числа 𝒂 ,b и c-целые. Найдите абсциссу вершины параболы.
Решение.
Абсцисса вершины параболы найдем по формуле х 𝟎 = — 𝒃 𝟐𝒂
Из рисунка видно, что f(-3)=-2; f(-2)=1; f(-1)=6.Тогда
9а−3b+c= −2, 4a−2b+c=1, a−b+c=6 ;
вычтем из 1 уравнения 2-е, получим5a-b=-𝟑
вычтем из 2 уравнения 3-е,получим 3a-b=-𝟓.
Решив систему уравнений 5a−b=−𝟑, 3a−b=−𝟓; находим 𝒂=1 ,b=8.
Абсцисса вершины параболы х 𝟎 = — 𝒃 𝟐𝒂 =-4.
Ответ:-4 -
14 слайд
На рисунке изображены графики функций f(x)=5х+9 и g(x)= ах²+bx+c, которые пересекаются в точках А и В. Найдите абсциссу точки B
Решение. По графику с=-3.График функции g(x) проходит через точки (-2;-1);(-1;-3);(2;3).
Подставим координаты точки (-1;-3), получим
-3=а- b-3.Отсюда а=b.
g(x)= ах²+аx-3.
Подставим координаты точки (2;3), получим, что а=1.
g(x)= х²+x-3.
Чтобы найти абсциссу точки ,нужно решить уравнение х²+x-3=5х+9,
х²-4x-12=0.
По теореме Виета х 𝟏 ·х 𝟐 =-12, х 𝟏 + х 𝟐 =4
По графику х 𝟏 =-2, тогда х 𝟐 =6.
Ответ:6 -
15 слайд
Степенная функция
-
-
-
-
19 слайд
Другой способ решения
-
20 слайд
На рисунке изображен график функции f(x)= 𝒌𝒙+𝒂 𝒙+𝒃 . Найдите k
Решение.
Преобразуем данную функцию
f(x)= 𝒌𝒙+𝒂 𝒙+𝒃 = 𝒌𝒙+𝒌𝒃−𝒌𝒃+𝒂 𝒙+𝒃 = 𝒌(𝒙+𝒃)−𝒌𝒃+𝒂 𝒙+𝒃 =𝒌+ 𝒂−𝒌𝒃 𝒙+𝒃 .
Илиf(x)=𝒌+ 𝒂−𝒌𝒃 𝒙+𝒃
График функции имеет горизонтальную асимптоту y=2,
значит, k=2.
Ответ:2 -
21 слайд
Логарифмическая и показательная функция
-
-
-
-
25 слайд
Кусочная функция
-
26 слайд
Тригонометрические функции
𝐴 = 𝑓 𝑚𝑎𝑥 −𝑓𝑚𝑖𝑛 2
𝐵= 𝑓 𝑚𝑎𝑥 +𝑓𝑚𝑖𝑛 2 -
-
28 слайд
11 На рисунке изображен график функции вида f(x)= 𝒂 cos(bπx+c)+d, где числа 𝒂,b, c и d-целые. Найдите 𝒇 𝟏𝟎𝟎 𝟑 .
Решение.
По графику 𝒇 𝒎𝒂𝒙 =𝟏,𝒇 𝒎𝒊𝒏 =-3
d= 𝒇 𝒎𝒂𝒙 + 𝒇 𝒎𝒊𝒏 𝟐 = 𝟏−𝟑 𝟐 = -1. |a|= 𝒇 𝒎𝒂𝒙 − 𝒇 𝒎𝒊𝒏 𝟐 = 𝟏+𝟑 𝟐 =2.
По графику 𝒂 =2, c=0, T=2
T= 𝟐𝝅 𝒃𝝅 = 𝟐 𝒃 , то есть 𝟐 𝒃 =2, отсюда b=1
f(x)=2cosπx-1,
f 𝟏𝟎𝟎 𝟑 =f 𝟗𝟔 𝟑 + 𝟒 𝟑 =𝒇 𝟑𝟐+ 𝟒 𝟑 =f 𝟒 𝟑 ,
f 𝟒 𝟑 =2cosπ· 𝟒 𝟑 -1 = 2cos 𝟒 𝟑 π-1 = 2cos π+ π 𝟑 -1= -2cos π 𝟑 −1= -2.
Ответ:-2Т=2
-
29 слайд
Ссылки для задания №9
✅Все НОВЫЕ Задания №9 ЕГЭ 2022 Профиль с сайта.. | ege314.ru | ОГЭ и ЕГЭ по математике 2022 (vk.com)
Задачи 9 ЕГЭ профильная математика, сортировка по темам (mathm.ru)
9. Функции и их свойства (ege314.ru)
Новое ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами. — math100.ru
Задание 9 ЕГЭ по математике. Графики функций (ege-study.ru)
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
6 153 153 материала в базе
- Выберите категорию:
- Выберите учебник и тему
- Выберите класс:
-
Тип материала:
-
Все материалы
-
Статьи
-
Научные работы
-
Видеоуроки
-
Презентации
-
Конспекты
-
Тесты
-
Рабочие программы
-
Другие методич. материалы
-
Найти материалы
Другие материалы
- 09.10.2022
- 205
- 20
Вам будут интересны эти курсы:
-
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
-
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
-
Курс профессиональной переподготовки «Организация логистической деятельности на транспорте»
-
Курс повышения квалификации «Основы построения коммуникаций в организации»
-
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
-
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
-
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
-
Курс профессиональной переподготовки «Разработка эффективной стратегии развития современного вуза»
-
Курс профессиональной переподготовки «Деятельность по хранению музейных предметов и музейных коллекций в музеях всех видов»
-
Курс профессиональной переподготовки «Риск-менеджмент организации: организация эффективной работы системы управления рисками»
-
Курс профессиональной переподготовки «Информационная поддержка бизнес-процессов в организации»
-
Курс профессиональной переподготовки «Управление качеством»
1.
Задание 9 ЕГЭ- 2022
профильного
уровня по
математике
Графики функций
Рубцова Т.Г.
МБОУ Калманская СОШ имени Г.А. Ударцева, Алтайский край
2022 г.
2.
Кодификатор ЕГЭ 2022
3.
4.
Раздел 1
ЭЛЕМЕНТАРНЫЕ
ФУНКЦИИ И ИХ ГРАФИКИ
5.
Степенные функции
6.
Степенные функции
7.
Показательная и логарифмическая
функции
8.
Тригонометрические функции
9.
Обратные тригонометрические функции
10.
Раздел 2
ПРЕОБРАЗОВАНИЯ
ГРАФИКОВ ФУНКЦИЙ
11.
Сдвиг по горизонтали
Пусть функция задана формулой y = f(x) и a>0. Тогда график функции
y = f(x — m) сдвинут относительно исходного на m вправо. График
функции y = f(x + m) сдвинут относительно исходной на m влево.
12.
Сдвиг по вертикали
Пусть функция задана формулой y = f(x) и a>0 и С — некоторое
положительное число. Тогда график функции y = f(x)+n сдвинут
относительно исходного на n вверх. График функции y = f(x)-n сдвинут
относительно исходного на n вниз.
13.
Растяжение (сжатие) по горизонтали
Пусть функция задана формулой y = f(x) и k>0. Тогда график
функции y=(kx) растянут относительно исходного в k раз по
горизонтали, если 0<k<1, и сжат относительно исходного в k раз по
горизонтали, если k>1.
14.
Растяжение (сжатие) по вертикали
Пусть функция задана формулой y = f(x) и M>0. Тогда график
функции y = M∙f(x) растянут относительно исходного в М раз по
вертикали, если M>1 , и сжат относительно исходного в М раз по
вертикали, если 0<M<1.
15.
Отражение по горизонтали
График функции y = f(-x) симметричен графику функции y = f(x)
относительно оси Y.
16.
Отражение по вертикали
График функции y = -f(x) симметричен графику функции y = f(x)
относительно оси Х.
17.
Графики функций y = f(|x|) и y = |f(x)|
18.
Раздел 3
ВИДЫ ЗАДАЧ
И СПОСОБЫ ИХ РЕШЕНИЯ
19.
Виды задач
Используя предложенный график функции,
найти:
значения коэффициентов в уравнении функции;
абсциссу или ординату вершины параболы;
значение функции по данному значению
аргумента или значение аргумента по
заданному значению функции;
абсциссу или ординату точки пересечения
графиков функций;
значение дискриминанта квадратного
уравнения f(x)=т;
корень уравнения ax+d=0 или bx+c=0 (для
кусочно-линейных функций).
20.
Способы решения:
1) Нахождение коэффициентов функции через
решение систем уравнений, используя
целочисленные координаты точек графика ( в том
числе и точек пересечения с осями).
2) Нахождение коэффициентов, используя
вспомогательные формулы. Например, формулу
тангенса угла наклона прямой, абсциссы вершины
параболы, периодичности функции и др.)
3) Преобразование формулы, задающую функцию.
4) Нахождение коэффициентов через
преобразования графиков функций.
21.
1 способ
22.
23.
24.
25.
26.
27.
28.
2 способ
29.
30.
3 способ
31.
32.
4 способ
33.
34.
35.
36.
37.
38.
39.
Кусочно-линейная функция
40.
41.
42.
ИСПОЛЬЗУЕМЫЕ
ИНТЕРНЕТ-РЕСУРСЫ
https://ege-study.ru/ru/ege/materialy/matematika/elementarnyefunkcii-i-ix-grafiki/
https://ege-study.ru/preobrazovanie-grafikov-funkcij/
https://ege-study.ru/ru/ege/podgotovka/matematika/zadanie-9-egepo-matematike-grafiki-funkcij/
https://ege.sdamgia.ru/test?theme=191
https://unikum.rudn.ru/blog/printsipy-resheniya-zadachi-9-ege-pomatematike-2022
https://zen.yandex.ru/media/shevkin/kusochnolineinaia-funkciiazadanie-9-v-ege2022-61894df122ed344ee28e551d