Арены химия егэ теория

Арены (ароматические углеводороды)это непредельные (ненасыщенные) циклические углеводороды, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Общая формула: CnH2n–6 при n ≥ 6.

Строение, номенклатура и изомерия ароматических углеводородов

Способы получения ароматических углеводородов

Химические свойства ароматических углеводородов

Строение аренов

Рассмотрим подробно строение молекулы бензола. В ней присутствуют три двойные связи С=С, три одинарные связи С–C и шесть одинарных связей С–Н.

Структурная формула бензола:

Сокращенная структурная формула бензола:

Каждый из шести атомов углерода в молекуле бензола находится в состоянии sp2-гибридизации.

Каждый атом углерода в молекуле бензола связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. Валентные углы равны 1200:

Атомы углерода и водорода в молекуле бензола, соединенные σ-связями, образуют правильный шестиугольник, в котором все атомы углерода и все σ-связи С–С и С–Н лежат в одной плоскости.  

Негибридные р-орбитали атомов углерода образуют единую циклическую (ароматическую) π-систему – единое электронное облако над и под плоскостью кольца.

Соответственно, на самом деле все связи между атомами углерода в молекуле бензола одинаковой длины (0,140 нм), что соответствует промежуточному значению между одинарной и двойной (полуторная связь)

Соответственно, в молекуле бензола между углеродными атомами нет обычных одинарных и двойных связей, а все они выравнены (делокализованы).

Поэтому структурную формулу бензола изображают в виде правильного шестиугольника и кружка внутри него, который обозначает делокализованные π-связи:

Гомологический ряд аренов

Простейший представитель гомологического ряда аренов — бензол:

Ближайший гомолог бензола – толуол (метилбензол):

Еще один представитель гомологического ряда бензола – этилбензол:

Изопропилбензол (кумол):

Номенклатура аренов

Первый представитель гомологического ряда аренов — бензол:

Ближайший гомолог бензола – толуол (метилбензол):

При составлении названия ароматического соединения за главную цепь принимают молекулу бензола. Если в ароматическом кольце несколько заместителей, то атомы углерода бензольного кольца нумеруются: в направлении, где больше заместителей, от самого главного заместителя (чем больше атомов углерода в радикале, тем он старше).

Например, 1,2-диметилбензол

Если в молекуле бензола присутствуют два заместителя, то также используют систему специальных приставок:

  • орто— (о-) если заместители расположены у соседних атомов углерода в бензольном кольце (1,2-положения);
  • мета— (м-) заместители расположены через один атом углерода (1,3-положения);
  • пара— (п-) заместители расположены на противоположных сторонах кольца (1,4-положения).

Для названия многих производных бензола используют тривиальные названия:

Структурная формула Системное название  Тривиальное название
Метилбензол Толуол
1,2-Диметилбензол орто-Ксилол
Изопропилбензол Кумол

Названия радикалов, содержащих ароматическое кольцо:

Изомерия аренов

Структурная изомерия

Для  гомологов бензола характерна структурная изомерия .

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

  • Изомерия углеродного скелета в боковой цепи характерна для ароматических углеводородов, которые содержат три и более атомов углерода в боковой цепи.
Например.

Формуле С9Н12 соответствуют изомеры изопропилбензол и пропилбензол

  • Изомерия положения заместителей характерна для аренов, которые содержат два и более заместителей в бензольном кольце.
Например.

Формуле С8Н10 соответствуют изомеры 1,3-диметилбензол, 1,2-диметилбензол и др.

Химические свойства аренов

Арены – непредельные углеводороды, молекулы которых содержат три двойных связи и цикл. Но из-за эффекта сопряжения свойства аренов отличаются от свойств других непредельных углеводородов.

Для ароматических углеводородов характерны реакции:

  • присоединения,
  • замещения,
  • окисления (для гомологов бензола).

Из-за наличия сопряженной π-электронной системы молекулы ароматических углеводородов вступают в реакции присоединения очень тяжело, только в жестких условиях — на свету или при сильном нагревании, как правило, по радикальному механизму

Бензольное кольцо представляет из себя скопление π-электронов, которое притягивает электрофилы. Поэтому для ароматических углеводородов характерны реакции электрофильного замещения атома водорода у бензольного кольца.

Ароматическая система бензола устойчива к действию окислителей. Однако гомологи бензола окисляются под действием перманганата калия и других окислителей.

1. Реакции присоединения

Бензол присоединяет хлор на свету и водород при нагревании в присутствии катализатора.

1.1. Гидрирование

Бензол присоединяет водород при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt и др.). 

При гидрировании бензола образуется циклогексан:

При гидрировании гомологов образуются производные циклоалканы. При нагревании толуола с водородом под давлением и в присутствии катализатора образуется метилциклогексан:

1.2. Хлорирование аренов

Присоединение хлора к бензолу протекает по радикальному механизму при высокой температуре, под действием ультрафиолетового излучения.

При хлорировании бензола на свету образуется 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран).

Гексахлоран – пестицид, использовался для борьбы с вредными насекомыми. В настоящее время использование гексахлорана запрещено.

Гомологи бензола не присоединяют хлор. Если гомолог бензола реагирует с хлором или бромом на свету или при высокой температуре (300°C), то происходит замещение атомов  водорода в боковом алкильном заместителе, а не в ароматическом кольце.

Например, при хлорировании толуола на свету образуется бензилхлорид

Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).

Например, этилбензол реагирует с хлором на свету

2. Реакции замещения

Реакции замещения у ароматических углеводородов протекают по ионному механизму (электрофильное замещение). При этом атом водорода замещается на другую группу (галоген, нитро, алкил и др.).

2.1. Галогенирование

Бензол и его гомологи вступают в реакции замещения с галогенами (хлор, бром) в присутствии катализаторов (AlCl3, FeBr3).

При взаимодействии с хлором на катализаторе AlCl3 образуется хлорбензол:

Ароматические углеводороды взаимодействуют с бромом при нагревании и в присутствии катализатора – FeBr3 . Также в качестве катализатора можно использовать металлическое железо.

Бром реагирует с железом с образованием бромида железа (III), который катализирует процесс бромирования бензола:

Гомологи бензола содержат алкильные заместители, которые обладают электронодонорным эффектом: из-за того, что электроотрицательность водорода меньше, чем углерода, электронная плотность связи С-Н смещена к углероду.

На нём возникает избыток электронной плотности, который далее передается на бензольное кольцо.

Поэтому гомологи бензола легче вступают в реакции замещения в бензольном кольце. При этом гомологи бензола вступают в реакции замещения преимущественно в орто— и пара-положения

Например, при взаимодействии толуола с хлором  образуется смесь продуктов, которая преимущественно состоит из орто-хлортолуола и пара-хлортолуола

Мета-хлортолуол образуется в незначительном количестве.

При взаимодействии гомологов бензола с галогенами на свету или при высокой температуре (300оС) происходит замещение водорода не в бензольном кольце, а в боковом углеводородном радикале.

Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).

Например, при хлорировании этилбензола:

2.2. Нитрование

 Бензол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты (нитрующая смесь).

При этом образуется нитробензол:

Серная кислота способствует образованию электрофила NO2+:

Толуол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты.

В продуктах реакции мы указываем либо о-нитротолуол:

либо п-нитротолуол:

Нитрование толуола может протекать и с замещением трех атомов водорода. При этом образуется 2,4,6-тринитротолуол (тротил, тол):

2.3. Алкилирование ароматических углеводородов

  • Арены взаимодействуют с галогеналканами в присутствии катализаторов (AlCl3, FeBr3 и др.) с образованием гомологов бензола.

Например, бензол реагирует с хлорэтаном с образованием этилбензола

  • Ароматические углеводороды взаимодействуют с алкенами в присутствии хлорида алюминия, бромида железа (III), фосфорной кислоты и др.

Например, бензол реагирует с этиленом с образованием этилбензола

Например, бензол реагирует с пропиленом с образованием изопропилбензола (кумола)

  • Алкилирование спиртами протекает в присутствии концентрированной серной кислоты.

Например, бензол реагирует с этанолом с образованием этилбензола и воды

2.4. Сульфирование ароматических углеводородов

Бензол реагирует при нагревании с концентрированной серной кислотой или раствором SO3 в серной кислоте (олеум) с образованием бензолсульфокислоты:

3. Окисление аренов

Бензол устойчив к действию даже сильных окислителей. Но гомологи бензола окисляются под действием сильных окислителей. Бензол и его гомологи горят.

3.1. Полное окисление – горение

При горении бензола и его гомологов образуются углекислый газ и вода. Реакция горения аренов сопровождается выделением большого количества теплоты.

2C6H6 + 15O2  → 12CO2 + 6H2O + Q

Уравнение сгорания аренов в общем виде:

 CnH2n–6 + (3n – 3)/2 O2 → nCO2 + (n – 3)H2O + Q

При горении ароматических углеводородов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Бензол и его гомологи горят на воздухе коптящим пламенем. Бензол и его гомологи образуют с воздухом и кислородом взрывоопасные смеси.

3.2. Окисление гомологов бензола

Гомологи бензола легко окисляются перманганатом и дихроматом калия в кислой или нейтральной среде при нагревании.

При этом происходит окисление всех связей у атома углерода, соседнего с бензольным кольцом, кроме связи этого атома углерода с бензольным кольцом.

Толуол окисляется перманганатом калия в серной кислоте с образованием бензойной кислоты:

Если окисление толуола идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты – бензоат калия:

Таким образом, толуол обесцвечивает подкисленный раствор перманганата калия при нагревании.

При окислении других гомологов бензола всегда остаётся только один атом С в виде карбоксильной группы (одной или нескольких, если заместителей несколько), а все остальные атомы углерода радикала окисляются до углекислого газа или карбоновой кислоты.

Например, при окислении этилбензола перманганатом калия в серной кислоте образуются бензойная кислота и углекислый газ

Например, при окислении этилбензола перманганатом калия в нейтральной кислоте образуются соль бензойной кислоты и карбонат

Более длинные радикалы окисляются до бензойной кислоты и карбоновой кислоты:

При окислении пропилбензола образуются бензойная и уксусная кислоты:

Изопропилбензол окисляется перманганатом калия в кислой среде до бензойной кислоты и углекислого газа:

4. Ориентирующее действие заместителей в бензольном кольце

Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

Заместители подразделяют на две группы в зависимости от их влияния на электронную плотность ароматической системы: электронодонорные (первого рода) и электроноакцепторные (второго рода).

Типы заместителей в бензольном кольце

Заместители первого рода Заместители второго рода
Дальнейшее замещение происходит  преимущественно в орто— и пара-положение Дальнейшее замещение происходит преимущественно в мета-положение
Электронодонорные, повышают электронную плотность в бензольном кольце Электроноакцепторные,  снижают электронную плотность в сопряженной системе.
  • алкильные заместители: СН3 –, С2Н5 и др.;
  • гидроксил, амин: –ОН , –NН2;
  • галогены: –Cl, –Br
  • нитро-группа:– NO2, – SO3Н;
  • карбонил – СНО;
  • карбоксил: – СООН, нитрил: – СN;
  • – CF3 

Например, толуол реагирует с хлором в присутствии катализатора с образованием смеси продуктов, в которой преимущественно содержатся орто-хлортолуол и пара-хлортолуол. Метильный радикал — заместитель первого рода.

В уравнении реакции в качестве продукта записывается либо орто-хлортолуол, либо пара-хлортолуол.

Например, при бромировании нитробензола в присутствии катализатора  преимущественно образуется мета-бромнитробензол. Нитро-группа — заместитель второго рода


5. Особенности свойств стирола

Стирол (винилбензол, фенилэтилен) – это производное бензола, которое имеет в своем составе двойную связь в боковом заместителе.

Общая формула гомологического ряда стирола: CnH2n-8.

Молекула стирола содержит заместитель с кратной связью у бензольного кольца, поэтому стирол проявляет все свойства, характерные для алкенов – вступает в реакции присоединения, окисления, полимеризации.

Стирол присоединяет водород, кислород, галогены, галогеноводороды и воду в соответствии с правилом Марковникова.

Например, при гидратации стирола образуется спирт:

Стирол присоединяет бром при обычных условиях, то есть обесцвечивает бромную воду

При полимеризации стирола образуется полистирол:

Как и алкены, стирол окисляется водным раствором перманганата калия при обычных условиях. Обесцвечивание водного раствора перманганата калия — качественная реакция на стирол:

При жестком окислении стирола перманганатом калия в кислой среде (серная кислота) разрывается двойная связь и образуется бензойная кислота и углекислый газ:

При окислении стирола перманганатом калия в нейтральной среде при нагревании также разрывается двойная связь и образуется соль бензойной кислоты и карбонат:

Получение аренов

1. Реакция Вюрца-Фиттига

Хлорбензол реагирует с хлорметаном и натрием. При этом образуется смесь продуктов, одним из которых является толуол:

2. Дегидроциклизация алканов

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:

Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:

3. Дегидрирование циклоалканов

При дегидрировании циклогексана и его гомологов при нагревании в присутствии катализатора образуется бензол или соответствующие гомологи бензола.

Например, при нагревании циклогексана в присутствии палладия образуется бензол и водород

Например, при нагревании метилциклогексана в присутствии палладия образуется толуол и водород

4. Декарбоксилирование солей бензойной кислоты

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH  R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe)  соли органической кислоты.

Взаимодействие бензоата натрия с гидроксидом натрия в расплаве протекает аналогично реакции получения алканов по реакции Дюма с образованием бензола и карбоната натрия:

5. Алкилирование бензола и его гомологов

  • Арены взаимодействуют с галогеналканами в присутствии катализаторов (AlCl3, FeBr3 и др.) с образованием гомологов бензола.

Например, бензол реагирует с хлорэтаном с образованием этилбензола

  • Ароматические углеводороды взаимодействуют с алкенами в присутствии хлорида алюминия, бромида железа (III), фосфорной кислоты и др.

Например, бензол реагирует с этиленом с образованием этилбензола

Например, бензол реагирует с пропиленом с образованием изопропилбензола (кумола)

  • Алкилирование спиртами протекает в присутствии концентрированной серной кислоты.

Например, бензол реагирует с этанолом с образованием этилбензола и воды

6. Тримеризация ацетилена

При нагревании ацетилена под давлением над активированным углем молекулы ацетилена соединяются, образуя бензол. 

При тримеризации пропина образуется 1,3,5-триметилбензол.

7. Получение стирола

Стирол можно получить дегидрированием этилбензола:

Стирол можно также получить действием спиртового раствора щелочи на продукт галогенирования этилбензола (1-хлор-1-фенилэтан):

Арены — ароматические углеводороды, содержащие одно или несколько бензольных колец.
Бензольное кольцо составляют 6 атомов углерода, между которыми чередуются двойные и одинарные связи.

Важно заметить, что двойные связи в молекуле бензола не фиксированы, а постоянно перемещаются по кругу.

Арены также называют ароматическими углеводородами. Первый член гомологического ряда — бензол — C6H6.
Общая формула их гомологического ряда — CnH2n-6.

Формула бензола

Долгое время структурная формула бензола оставалась тайной. Предложенная Кекуле формула с тремя двойными связями не могла
объяснить то, что бензол не вступает в реакции присоединения. Как уже было сказано выше, по современным представлениям
двойные связи в молекуле бензола постоянно перемещаются, поэтому более верно рисовать их в виде кольца.

За счет чередования двойных связей в молекуле бензола формируется сопряжение. Все атомы углерода находятся в состоянии sp2
гибридизации. Валентный угол — 120°.

Номенклатура и изомерия аренов

Названия аренов формируются путем добавления названий заместителей к главной цепи — бензольному кольцу: бензол, метилбензол (толуол),
этилбензол, пропилбензол и т.д. Заместители, как обычно, перечисляются в алфавитном порядке. Если в бензольном кольце несколько заместителей,
то выбирают кратчайший путь между ними.

Номенклатура аренов

Для аренов характерна структурная изомерия, связанная с положением заместителей. Например, два заместителя в бензольном
кольце могут располагаться в разных положениях.

Название положения заместителей в бензольном кольце формируется на основе их расположения относительно друг друга. Оно обозначается
приставками орто-, мета- и пара. Ниже вы найдете мнемонические подсказки для их успешного запоминания ;)

Орто-, пара- и мета- положения в бензольном кольце

Получение аренов

Арены получают несколькими способами:

  • Реакция Зелинского (тримеризация ацетилена)
  • Данная реакция протекает при пропускании ацетилена над активированным углем при t = 400°C. В результате образуется ароматический
    углеводород — бензол.

    Реакция Зелинского

    В случае, если к ацетилену добавить пропин, то становится возможным получение толуола. Увеличивая долю пропина, в конечном итоге
    можно добиться образования 1,3,5-триметилбензола.

    Тримеризация пропина

  • Дегидроциклизация алканов
  • В ходе таких реакций, протекающих при повышенной температуре и в присутствии катализатора — Cr2O3, линейная
    структура алкана замыкается в цикл, отщепляется водород.

    Дегидроциклизация гексана

    При дегидроциклизации гептана получается толуол.

    Дегидроциклизация гептана

  • Дегидрирование циклоалканов
  • В результате дегидрирования уже «готовых» циклов — циклоалканов, отщепляются 3 моль водорода, и образуется соответствующий арен,
    с теми же заместителями, которые были у циклоалкана.

    Дегидрирование циклоалканов

  • Синтез Дюма
  • Синтез Дюма заключается в сплавлении солей карбоновых кислот с щелочами. В результате такой реакции возможно образование различных органических веществ, в том числе аренов.

    Синтез Дюма, получение аренов

Химические свойства аренов

Арены — ароматические углеводороды, которые содержат бензольное кольцо с сопряженными двойными связями. Эта особенность
делает реакции присоединения тяжело протекающими (и тем не менее возможными!)

Запомните, что, в отличие от других непредельных соединений, бензол и его гомологи не обесцвечивают бромную воду и
раствор перманганата калия.

  • Гидрирование
  • При повышенной температуре и наличии катализатора, водород способен разорвать двойные связи в бензольном кольце
    и превратить арен в циклоалкан.

    Гидрирование бензола

  • Галогенирование
  • Реакция бензола с хлором на свету приводит к образованию гексахлорциклогексана, если же использовать только катализатор,
    то образуется хлорбензол.

    Хлорирование бензола

    Реакции с толуолом протекают иначе: при УФ-свете хлор направляется в радикал метил и замещает атом водорода в нем, при действии катализатора хлор замещает один атом водорода в бензольном кольце (в орто- или пара-положении).

    Хлорирование толуола

    Почему хлор направляется именно в орто- и пара-положения относительно метильной группы? Здесь самое время
    коснуться темы ориентантов I (орто-, пара-ориентантов) и II порядков (мета-ориентанты).

    К ориентантам первого порядка относятся группы: NH2, OH, OR, CR3, CHR2,
    CH2R, галогены. К ориентантам второго: NO2, CN, SO3H, CCl3,
    CHO, COOH, COOR.

    Ориентанты I и II порядка

    Например, ориентант I порядка, гидроксогруппа OH, обеспечивает протекание хлорирования в орто- и пара-положениях.
    А карбоксильная группа COOH, ориентант II порядка, обуславливает хлорирование в мета-положениях.

    Ориентанты I и II порядка

  • Нитрование
  • Арены вступают в реакции нитрования, протекающие при повышенной температуре и в присутствии серной кислоты,
    обладающей водоотнимающими свойствами.

    Нитрование бензола, толуола и нитробензола

  • Алкилирование
  • Алкилирование аренов осуществляется путем введения алкильного радикала в молекулу бензола. Алкильным радикалом чаще
    всего выступает алкен или галогеналкан. В подобных реакциях используют катализатор AlCl3.

    В случае если для алкилирования используется алкен, то с молекулой бензола соединяется наименее гидрированный атом
    углерода алкена, прилежащий к двойной связи. Один атом водорода переходит из бензольного кольца к радикалу.

    Алкилирование аренов

  • Окисление
  • Арены, как и все органические вещества, сгорают с образованием углекислого газа и воды.

    2C6H6 + 15O2 → 12CO2 + 6H2O

    При неполном окислении гомологи бензола способны окисляться до бензойной кислоты (при подкислении раствора серной
    кислотой). Сам бензол не вступает в реакцию окисления с KMnO4, не обесцвечивает его раствор.

    Окисление аренов

  • Полимеризация
  • В реакцию полимеризации способен вступать стирол (винилбензол), в радикале которого содержится двойная связь.

    Полимеризация стирола

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ. 

Это циклические углеводороды с тремя двойными сопряженными связями в цикле.

      Бензол С6Н6 – родоначальник ароматических углеводородов. Впервые выделен Фарадеем в 1825г из светильного газа.  

      Каждый из шести атомов углерода в его молекуле находится в состоянии sp2-гибридизации  и связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. Валентные углы между каждой парой π-связей равны 1200. 

       Таким образом, скелет σ-связей представляет собой правильный шестиугольник, в котором все атомы углерода и все σ-связи С–С и С–Н лежат в одной плоскости.      

    р-Электроны  всех атомов углерода образуют единое циклическое π-электронное облако, сосредоточенное над и под плоскостью кольца.

       Все связи С–С в бензоле равноценны, их длина равна 0,140 нм, что соответствует промежуточному значению между одинарной и двойной.

      Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф.Кекуле), а все они выровнены (делокализованы).

  Общая формула гомологического ряда бензола CnH2n-6 (n ≥ 6). 

Вещество

Название по номенклатуре

Историческое название

С6Н5-СН3

метилбензол

Толуол

С6Н5-СН2-СН3

этилбензол

СН36Н4-СН3

диметилбензол

ксилол

С6Н5-СН(СН3)2

изопропилбензол

кумол

       Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Кольцо нумерют так, чтобы номера радикалов были наименьшими.

    Для дизамещенных бензолов

   R-C6H4-R’ 

   используется также другой способ построения названий:


 
орто— (о-) заместители у соседних атомов углерода кольца, 1,2-;
 
мета— (м-) заместители через один атом углерода (1,3-);
пара-(п-) заместители на противоположных сторонах кольца(1,4-).

Изомерия у аренов.

   Определяется числом заместителей, их расположением в бензольном кольце и возможностью изомерии углеродного скелета в заместителях, содержащих более трёх атомов углерода.

    Для ароматического углеводорода С8Н10  существуют 4 изомера: орто-, мета- и пара-ксилолы и этилбензол.

ПОЛУЧЕНИЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ

1. Дегидрирование циклоалканов

(3300 байт)

2. Дегидроциклизация (дегидрирование и циклизация) алканов в присутствии катализатора

(2338 байт)

3.Тримеризация ацетилена над активированным углем (реакция Зелинского):

Тримеризация ацетилена (2939 байт)

4.Алкилирование бензола галогеналканами в присутствии безводного хлорида алюминия или алкенами:

(2 601 байт)

clip_image002

ФИЗИЧЕСКИЕ СВОЙСТВА.  

Бензол и его ближайшие гомологи – бесцветные жидкости с характерным запахом, с плотностью менее 1 г/мл. Огнеопасны. Нерастворимы в воде, но хорошо растворимы в неполярных растворителях. Бензол и толуол ядовиты (поражают почки, печень, костный мозг, кровь).

Высшие арены – твердые вещества.

ХИМИЧЕСКИЕ СВОЙСТВА.  

          Из-за наличия делокализованой -системы арены мало характерны  реакции присоединения или окисления, которые ведут к нарушению ароматичности. Для них наиболее характерны реакции электрофильного замещения атомов водорода, связанных с циклом — SЕ.

1. РЕАКЦИИ ПРИСОЕДИНЕНИЯ К АРЕНАМ 

В реакции присоединения, приводящие к разрушению ароматической структуры бензольного кольца, арены могут вступать с большим трудом.

а. Гидрирование. Присоединение водорода к бензолу и его гомологам происходит при повышенной температуре и давлении в присутствии металлических катализаторов.

Гидрирование аренов

б. Радикальное хлорирование. При радикальном хлорировании бензола получается гексахлорциклогексан —  «гексахлоран» (средство борьбы с вредными насекомыми).

Гексахлоран

2. РЕАКЦИИ РАДИКАЛЬНОГО ЗАМЕЩЕНИЯ АТОМОВ ВОДОРОДА В БОКОВОЙ ЦЕПИ:

В случае гомологов бензола при действии хлора на свету или при нагревании происходит реакция радикального замещения в боковой цепи:

Замещение в боковой цепи

 3. Реакции окисления аренов 

Бензол не окисляется даже под действием сильных окислителей (KMnO4, K2Cr2O7 и т.п.). Поэтому он часто используется как инертный растворитель при проведении реакций окисления других органических соединений.

        В отличие от бензола его гомологи окисляются довольно легко.  При действии раствора KMnO4 в кислой среде и нагревании в гомологах бензола окислению подвергаются только боковые цепи, при этом от боковой цепи остаётся карбоксильная группа, а остальное – переходит в углекислый газ:

6Н5СН3 +6КМnO4+9H2SO4 🡪5C6H5COOH +6MnSO4+3K2SO4+14H2O

6Н5CH2CH3 +12КМnO4+18H2SO4🡪5C6H5COOH +5СО2+12MnSO4+6K2SO4+28H2O

Если окисление идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты и карбонат калия:    

С6Н5СН2СН3+4KMnO4🡪C6H5 – COOK+K2CO3+4MnO2+KOH+2H2O

4.РЕАКЦИИ ЗАМЕЩЕНИЯ В БЕНЗОЛЬНОМ КОЛЬЦЕ

1. Галогенирование

Замещение атома водорода в бензольном кольце на галоген происходит в присутствии катализаторов AlCl3, AlBr3, FeCl3 и т.п.:

u731_1

2. Нитрование

Бензол реагирует с нитрующей смесью (смесью концентрированных азотной и серной кислот):

u731_2

3. Алкилирование

Замещение атома водорода в бензольном кольце на алкильную группу(алкилирование) происходит под действием алкилгалогенидов в присутствии катализаторов AlCl3, FeBr3или алкенов в присутствии фосфорной кислоты:

 u731_3

Алкирование бензола алкенами

ЗАМЕЩЕНИЕ В АЛКИЛБЕНЗОЛАХ

          Гомологи бензола (алкилбензолы) более активно вступают в реакции замещения по сравнению с бензолом.  Например, при нитровании толуола С6Н5-CH3 может происходить замещение не одного, а трех атомов водорода с образованием 2,4,6-тринитротолуола, причём в орто- и пара- положениях:

Нитрование толуола

ОРИЕНТИРУЮЩЕЕ ДЕЙСТВИЕ ЗАМЕСТИТЕЛЕЙ

В БЕНЗОЛЬНОМ КОЛЬЦЕ.

       Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

       Заместители подразделяют на две группы в зависимости от проявляемого ими эффекта (мезомерного или индуктивного): электронодонорные (первого рода) и электроноакцепторные (второго рода).

    ЭЛЕКТРОНОДОНОРНЫЕ ЗАМЕСТИТЕЛИ проявляют  повышают электронную плотность в сопряженной системе.

        К ним относятся гидроксильная группа —ОН и аминогруппа —NН2. Неподеленная пара электронов в этих группах вступает в общее сопряжение с p -электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредоточивается в орто- и пара-положениях: 

      Алкильные группы не могут участвовать в сопряжении, но они проявляют +I-эффект, под действием которого происходит аналогичное перераспределение p -электронной плотности.

          Заместители, обладающие +I-эффектом или +М-эффектом, способствуют электрофильному замещению в орто- и пара— положениях бензольного кольца и называются заместителями (ориентантами) первого рода:

Так, толуол, содержащий заместитель первого рода, нитруется и бромируется в пара- и орто-положения:

ЭЛЕКТРОНОАКЦЕПТОРНЫЕ ЗАМЕСТИТЕЛИ снижают электронную плотность в сопряженной системе.

          К ним относятся нитрогрупла —NO2, сульфогруппа —SO3Н, альдегидная —СНО и карбоксильная —СООН группы. Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая электронная плотность в кольце уменьшается, но меньше всего она уменьшается в мета-положениях:

      Полностью галогенизированные алкильные радикалы (например, —ССl3) проявляют -I-эффект и также способствуют понижению электронной плотности кольца.

       Заместители, обладающие -I-эффектом или -М-эффектом, направляют электрофильное замещение в мета-положения бензольного кольца и называются заместителями (ориентантами) второго рода:

      Нитробензол, содержащий заместитель второго рода, нитруется и бромируется в мета-положение:

   

СТИРОЛ (винилбензол) С8Н8

clip_imag002

– производное бензола, которое имеет в своём составе двойную связь в боковом заместителе, поэтому он НЕ относится к гомологическому ряду аренов.      

Получение стирола:

  1. Дегидрирование этилбензола:    С6Н5-СН2-СН3  -(t,кат)🡪 C6H5-CH=CH2 + H2
  2. Дегидрогалогенирование фенилбромэтана:

      C6H5-CH-CH3 +KOH –(спирт) 🡪 C6H5-CH=CH2 +KBr +H2O

              │

              Br

Свойства стирола:  

     Стирол проявляет свойства, характерные для алкенов – реакции присоединения, окисления, полимеризации.

Реакции присоединения к стиролу: протекают в соответствии с правилом Марковникова.

С6Н5-СН=СН2  +Н2О 🡪 С6Н5-СН-СН3

                                          │

                                          ОН

Мягкое окисление стирола:

6Н5-СН=СН2  +2 KMnO4 + 4Н2О 🡪3 С6Н5-СН-СН2  + 2MnO2 + 2KOH

                                                                  │    │

                                                                  OH OH фенилэтиленгликоль

Жесткое окисление стирола:

С6Н5-СН=СН2 + 2KMnO4 + 3Н2SO4 🡪 С6Н5-СOOН  + CO2 + 2MnSO4 + K2SO4 + 4H2O                                                

                                                   бензойная кислота

6Н5-СН=СН2  + 10KMnO4 -to🡪 3С6Н5-СOOК + 3К2CO3 + 10MnO2 + KOH+ 4Н2О                                  

                                              бензоат калия                              

Полимеризация стирола:  в результате получают полистирол. 

Арены (ароматические у/в)

СnH2n-6  c>6    
C6H5-фенил

1. Строение: sp2 гибридизация, единая П-система

<120 C,     l |CC| =
0,14 нм, короче одинарных |
CC| = 0,154 нм, но длиннее двойных |CC| =0,132нм

              
Или                  не обеспечивает р-р 
KMnO4, Br2,
воду

2. Изомерия –положение нескольких заместителей

                                                                                 
С-СН3                     С-СН3                     С-СН3    

             С-СН3                  
С-СН2-СН3                      С-СН3    

                                                                                                                       
С-СН3     

                                                          
                                                                                       С-СН3    

Метилбензол         
этилбензол             1,2-диметилбензол    1,3- диметилбензол       1,4-диме-

    
Толуол                                                        орто-ксилол                
мета-ксилол          тилбензол

                                                                                                                                          
пара-ксилол

Атомы в ароматическом
кольце номеруют,начиная от старшего заместителя к младшему (
1-метил-2-этилбензол, номерация по короткому пути.

3. Физические
свойства
– Ж, с 3 плохо р в Н2О,но хорошо в органических р-лях

4. Способы
получения
:

    -в
промышленности  из нефти и каменноугольной смолы

    — синтетический – 2 группы : получение
ароматического кольца и введение в кольцо
у/заместителя                                                   
Pt,300

   
1. дегидрирование циклогексана                 
à                 
+3
H2

    2. ароматизация
(дегидроцклоризация) алканов

СН3-СН2-СН2-СН2-СН2-СН3
 
t,Pt
à                 +4Н2

                                                
       Бензол       С-СН3

СН3-СН2-СН2-СН2-СН2-СН2-СН3
 
t, Pt
à                     
 +4Н2

                                                              
Толуол

    3. тримеризация
ацетилена

    
2Н2  
t, C

     4. Синтез Вюрца — введение у/заместителя
в ароматическое кольцо

         -Br                                             
-CH2-CH3

                +  Br-CH2-CH3+2Na à                           +2NaBr

   5. Алкилирование

                                   H3PO4

             +СН2=
СН2    
à                 С-СН2-СН3

 

                            АlCl3            

            + СН3Сl    à                 —CH3    +HCl

                                       H3PO4                                  CH3

            
+
СН3-CH= СН2    à                  C-CH

                                                                              
CH3

      5. Химические свойства аренов.

1. Реакции замещения
(электрофильный механизм)

    1) галогенирование Br2(кат. FeBr3), Cl2(кат
FeCl3)

           -CH3      FeBr3
             C-CH3                                 
C-CH3

            +Br2       à                       —Br          
+

                                      
Орто-бромтолуол                   
Br        Пара-бромтолуол

                                       CCl

             l2    à                    +HCl        
хлорбензол

  2). Нитрование 

       

                          H2SO4                 CNO2

         + HNO3       à                     + H2O   нитробензол

       

        С-NO2                            NH2

             + HNO3   à                     
анилин

                                                                                CCH3

     С-СН3                       CCH3                                      Пара-нитротолуол

          + HNO3   à              —NO2            +                      

                                    
                                       С-
NO2

                                       
Орто-нитротолуол

 3) Ацилирование

                                                  CCCH3

         +CH3C =O   à                
||              +
HCl

                       |                              
O

                     
Cl

Место вступления
нового заместителя определяется природой уже имеющегося в ароматическом ядре
заместителя

   -заместители 1
рода – группы атомов, способных отдавать электроны –
R (-CH3, —C2H5 и т.д) OH,-NH2, ориентируют новый заместитель в орто- и пара- положение
(2,4,6),повышают скорость реакции, облегчают реакции замещения.

  — заместители 2 рода – оттягивают электроны от
бензольного кольца –
CF3 (трифторометилбензол) –С=О
(бензойная к-та) –NO2(нитробензол) –С=О (бензальдегид)

                 
R                            ОН                                                                     
Н

SO3H, —C=O
ориентируют новый заместитель  в мета- положение.

C-CH3            H2SO4              C-СН3                     

         + 3HNO3
à О2N          
-NO2     + 3H2

                                        
С-NO2

                                 
тринитротолуол

2. Реакции
присоединения 

 1) присоединение к
бензольному кольцу, образуется циклогексан или его производные

     А. гидрирование

 

              +3H2  à              
циклогексан

   Б. хлорирование

                  

                     3Cl2 =                          гексахлоргексан

2) Реакции по алкильному заместителю

          C-CH2-CH3                    C-CHCl –CH3

                        
+Cl2
свет                                   +HCl

            C-CH3                                                  
C-COOH

5                     +6KMnO4
+ 9H2SO4
à 5                     + 3K2SO4
+ 6KMnSO4 + 14H2O

                                                                                       
Бензойная кислота

                         6.Применение

1. анилин (красители)

2. полимеры (стирол –C6H5CH=CH2)

3.фенол (C6H5OH)

4. взрывчатые
вещества (2,4,6-тринитротолуол, тол, тротил)

5. бензойная кислота
(
C6H5COOH)

   Входит в  состав
брусники, клюквы

6. терефталевая
кислота для получения полиэфирного волокна-лавсана

                       
    
7.Окисление

 5C6H5-CH3+KMnO4+9H2SO4à 6MnSO4+3K2SO4+ 5C6H5-C-OH
+H2O

                                                                                                   
||

                +5e                                                            
          
                         OH

5    Mn+7  à Mn+2

      Окислитель -6e

6    С-3       à  C+3

      Восстановитель

Like this post? Please share to your friends:
  • Арены задачи егэ
  • Арены задания егэ по химии
  • Арены егэ химия 2022
  • Арены егэ практика
  • Арены для егэ теория