Арифметический корень натуральной степени егэ

Геометрия

  • Треугольник
  • Четырехугольники
  • Окружность и круг
  • Призма
  • Пирамида
  • Усеченная пирамида
  • Цилиндр
  • Конус
  • Усеченный конус
  • Сфера и шар

1. Формулы сокращённого умножения

 левая круглая скобка a плюс b правая круглая скобка в квадрате =a в квадрате плюс 2ab плюс b в квадрате

 левая круглая скобка a минус b правая круглая скобка в квадрате =a в квадрате минус 2ab плюс b в квадрате

 левая круглая скобка a плюс b правая круглая скобка в кубе =a в кубе плюс 3a в квадрате b плюс 3ab в квадрате плюс b в кубе

 левая круглая скобка a минус b правая круглая скобка в кубе =a в кубе минус 3a в квадрате b плюс 3ab в квадрате минус b в кубе

a в квадрате минус b в квадрате = левая круглая скобка a минус b правая круглая скобка левая круглая скобка a плюс b правая круглая скобка

a в кубе плюс b в кубе = левая круглая скобка a плюс b правая круглая скобка левая круглая скобка a в квадрате минус ab плюс b в квадрате правая круглая скобка

a в кубе минус b в кубе = левая круглая скобка a минус b правая круглая скобка левая круглая скобка a в квадрате плюс ab плюс b в квадрате правая круглая скобка

Наверх

2. Модуль числа

Определение: left| a |= система выражений новая строка a,a больше или равно 0, новая строка минус a,a меньше 0. конец системы .

Основные свойства модуля:

|a| больше или равно 0;

|a|=| минус a|;

 система выражений новая строка |a| больше или равно a, новая строка |a| больше или равно минус a; конец системы .

|a|=a равносильно a больше или равно 0;

|a|= минус a равносильно a меньше или равно 0.

Наверх

3. Степень с действительным показателем

Свойства степени с действительным показателем

Пусть a больше 0,b больше 0,x принадлежит R ,y принадлежит R . Тогда верны следующие соотношения:

Наверх

4. Корень n-ой степени из числа

Корнем n-ой степени  левая круглая скобка n принадлежит N ,n больше или равно 2 правая круглая скобка из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n  левая круглая скобка n=2k,k принадлежит N правая круглая скобка из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.

Основные свойства арифметического корня:

a больше или равно 0: левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка в степени левая круглая скобка n правая круглая скобка =a, корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка =a, корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка m правая круглая скобка = левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка в степени левая круглая скобка m правая круглая скобка , корень m степени из левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка = корень mn степени из левая круглая скобка a правая круглая скобка ;

a принадлежит R : корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка = |a|;

a больше или равно 0,b больше или равно 0: корень n степени из левая круглая скобка ab правая круглая скобка = корень n степени из левая круглая скобка a правая круглая скобка умножить на корень n степени из левая круглая скобка b правая круглая скобка , корень n степени из левая круглая скобка дробь: числитель: a, знаменатель: b конец дроби правая круглая скобка = дробь: числитель: корень n степени из левая круглая скобка a правая круглая скобка , знаменатель: корень n степени из левая круглая скобка b правая круглая скобка конец дроби  левая круглая скобка b не равно 0 правая круглая скобка ;

a меньше 0,b меньше 0: корень n степени из левая круглая скобка ab правая круглая скобка = корень n степени из левая круглая скобка минус a правая круглая скобка умножить на корень n степени из левая круглая скобка минус b правая круглая скобка , корень n степени из левая круглая скобка дробь: числитель: a, знаменатель: b конец дроби правая круглая скобка = дробь: числитель: корень n степени из левая круглая скобка минус a правая круглая скобка , знаменатель: корень n степени из левая круглая скобка минус b правая круглая скобка конец дроби ;

a больше или равно 0,b больше или равно 0:a корень n степени из левая круглая скобка b правая круглая скобка = корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка b;

a меньше 0,b больше или равно 0:a корень n степени из левая круглая скобка b правая круглая скобка = минус корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка b.

Наверх

5. Логарифмы

Определение логарифма: log _ab=cunderseta больше 0,a не равно 1mathop равносильно a в степени левая круглая скобка c правая круглая скобка =b.

Основное логарифмическое тождество: a в степени левая круглая скобка log правая круглая скобка _ab=b.

Основные свойства логарифмов

Пусть a больше 0, a не равно 1, b больше 0, b не равно 1, x больше 0, y больше 0, p принадлежит R . Тогда верны следующие соотношения:

Наверх

6. Арифметическая прогрессия

Формула n-го члена арифметической прогрессии: a_n=a_1 плюс d левая круглая скобка n минус 1 правая круглая скобка .

Характеристическое свойство арифметической прогрессии: a_n= дробь: числитель: a_n минус 1 плюс a_n плюс 1, знаменатель: 2 конец дроби ,n больше или равно 2.

Сумма n первых членов арифметической прогрессии: S_n= дробь: числитель: a_1 плюс a, знаменатель: 2 конец дроби n.

При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: 2a_1 плюс d левая круглая скобка n минус 1 правая круглая скобка , знаменатель: 2 конец дроби n;

S_n= дробь: числитель: 2a_n минус d левая круглая скобка n минус 1 правая круглая скобка , знаменатель: 2 конец дроби n;

a_n= дробь: числитель: a_n минус k плюс a_n плюс k, знаменатель: 2 конец дроби ,k меньше n;

a_k плюс a_n=a_k минус m плюс a_n плюс m,m меньше k;

d= дробь: числитель: a_n минус a_k, знаменатель: n минус k конец дроби .

Наверх

7. Геометрическая прогрессия

Формула n-го члена геометрической прогрессии: a_n=a_1q в степени левая круглая скобка n минус 1 правая круглая скобка .

Характеристическое свойство геометрической прогрессии: a_n в квадрате =a_n минус 1a_n плюс 1,n больше или равно 2.

Сумма n первых членов геометрической прогрессии: S_n= дробь: числитель: a_1 минус a_nq, знаменатель: 1 минус q конец дроби , q не равно 1.

При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: a_1 левая круглая скобка 1 минус q в степени левая круглая скобка n правая круглая скобка правая круглая скобка , знаменатель: 1 минус q конец дроби ;

a_n в квадрате =a_n минус ka_n плюс k,k меньше n;

a_ka_n=a_k минус ma_n плюс m,m меньше k;

|q|= корень n минус k степени из левая круглая скобка дробь: числитель: a правая круглая скобка _n, знаменатель: a_k конец дроби .

Наверх

8. Бесконечно убывающая геометрическая прогрессия

Сумма бесконечно убывающей геометрической прогрессии: S= дробь: числитель: a_1, знаменатель: 1 минус q конец дроби .

Наверх

9. Основные формулы тригонометрии

Зависимость между тригонометрическими функциями одного аргумента:

 синус в квадрате альфа плюс косинус в квадрате альфа =1;

 тангенс альфа = дробь: числитель: синус альфа , знаменатель: косинус альфа конец дроби ;

ctg альфа = дробь: числитель: косинус альфа , знаменатель: синус альфа конец дроби ;

 тангенс альфа ctg альфа =1;

1 плюс тангенс в квадрате альфа = дробь: числитель: 1, знаменатель: косинус в квадрате альфа конец дроби ;

1 плюс ctg в квадрате альфа = дробь: числитель: 1, знаменатель: синус в квадрате альфа конец дроби .

Формулы сложения:

 косинус левая круглая скобка альфа плюс бета правая круглая скобка = косинус альфа косинус бета минус синус альфа синус бета ;

 косинус левая круглая скобка альфа минус бета правая круглая скобка = косинус альфа косинус бета плюс синус альфа синус бета ;

 синус левая круглая скобка альфа плюс бета правая круглая скобка = синус альфа косинус бета плюс косинус альфа синус бета ;

 синус левая круглая скобка альфа минус бета правая круглая скобка = синус альфа косинус бета минус косинус альфа синус бета ;

 тангенс левая круглая скобка альфа плюс бета правая круглая скобка = дробь: числитель: тангенс альфа плюс тангенс бета , знаменатель: 1 минус тангенс альфа тангенс бета конец дроби ;

 тангенс левая круглая скобка альфа минус бета правая круглая скобка = дробь: числитель: тангенс альфа минус тангенс бета , знаменатель: 1 плюс тангенс альфа тангенс бета конец дроби ;

ctg левая круглая скобка альфа плюс бета правая круглая скобка = дробь: числитель: ctg альфа ctg бета минус 1, знаменатель: ctg бета плюс ctg альфа конец дроби ;

ctg левая круглая скобка альфа минус бета правая круглая скобка = дробь: числитель: ctg альфа ctg бета плюс 1, знаменатель: ctg бета минус ctg альфа конец дроби .

Формулы тригонометрических функций двойного аргумента: синус 2 альфа =2 синус альфа косинус альфа ;

 синус 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 косинус 2 альфа = косинус в квадрате альфа минус синус в квадрате альфа ;

 косинус 2 альфа =2 косинус в квадрате альфа минус 1;

 косинус 2 альфа =1 минус 2 синус в квадрате альфа ;

 косинус 2 альфа = дробь: числитель: 1 минус тангенс в квадрате альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 тангенс 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 минус тангенс в квадрате альфа конец дроби ;

ctg2 альфа = дробь: числитель: ctg в квадрате альфа минус 1, знаменатель: 2ctg альфа конец дроби .

Формулы понижения степени:

 синус в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 2 конец дроби ;

 косинус в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 2 конец дроби ;

 тангенс в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 1 плюс косинус 2 альфа конец дроби ;

ctg в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 1 минус косинус 2 альфа конец дроби .

Формулы приведения

Все формулы приведения получаются из соответствующих формул сложения. Например:

 косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = косинус дробь: числитель: Пи , знаменатель: 2 конец дроби косинус альфа минус синус дробь: числитель: Пи , знаменатель: 2 конец дроби синус альфа = минус синус альфа .

Применение формул приведения укладывается в следующую схему:

— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что  альфа принадлежит левая круглая скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка ;

— определяется знак приводимой функции;

— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид  левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка или  левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка , то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид  левая круглая скобка Пи pm альфа правая круглая скобка , то функция названия не меняет.

Например, получим формулу  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка :

 дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа принадлежит левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби ;2 Пи правая круглая скобка — IV четверть;

— в IV четверти тангенс отрицательный;

— аргумент приводимой функции имеет вид  дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа , следовательно, название функции меняется. Таким образом,  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = минус ctg альфа .

Формулы преобразования суммы тригонометрических функций в произведение:

 синус альфа плюс синус бета =2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 синус альфа минус синус бета =2 синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби ;

 косинус альфа плюс косинус бета =2 косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 косинус альфа минус косинус бета = минус 2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 тангенс альфа плюс тангенс бета = дробь: числитель: синус левая круглая скобка альфа плюс бета правая круглая скобка , знаменатель: косинус альфа косинус бета конец дроби ;

 тангенс альфа минус тангенс бета = дробь: числитель: синус левая круглая скобка альфа минус бета правая круглая скобка , знаменатель: косинус альфа косинус бета конец дроби ;

ctg альфа плюс ctg бета = дробь: числитель: синус левая круглая скобка альфа плюс бета правая круглая скобка , знаменатель: синус альфа синус бета конец дроби ;

ctg альфа минус ctg бета = дробь: числитель: синус левая круглая скобка бета минус альфа правая круглая скобка , знаменатель: синус альфа синус бета конец дроби .

Формулы преобразования произведения тригонометрических функций в сумму:

 косинус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка косинус левая круглая скобка альфа минус бета правая круглая скобка плюс косинус левая круглая скобка альфа плюс бета правая круглая скобка правая круглая скобка ;

 синус альфа синус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка косинус левая круглая скобка альфа минус бета правая круглая скобка минус косинус левая круглая скобка альфа плюс бета правая круглая скобка правая круглая скобка ;

 синус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка синус левая круглая скобка альфа плюс бета правая круглая скобка плюс синус левая круглая скобка альфа минус бета правая круглая скобка правая круглая скобка .

Наверх

10. Производная и интеграл

Таблица производных некоторых элементарных функций

Правила дифференцирования:

1.  левая круглая скобка f левая круглая скобка x правая круглая скобка плюс g левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка x правая круглая скобка плюс g' левая круглая скобка x правая круглая скобка ;

2.  левая круглая скобка cf левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =cf' левая круглая скобка x правая круглая скобка ;

3.  левая круглая скобка f левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка плюс f левая круглая скобка x правая круглая скобка g' левая круглая скобка x правая круглая скобка ;

4.  левая круглая скобка дробь: числитель: f левая круглая скобка x правая круглая скобка , знаменатель: g левая круглая скобка x правая круглая скобка конец дроби правая круглая скобка в степени левая круглая скобка prime правая круглая скобка = дробь: числитель: f' левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка минус f левая круглая скобка x правая круглая скобка g' левая круглая скобка x правая круглая скобка , знаменатель: g в квадрате левая круглая скобка x правая круглая скобка конец дроби ;

5.  левая квадратная скобка f левая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка правая квадратная скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка g' левая круглая скобка x правая круглая скобка .

Уравнение касательной к графику функции y=f левая круглая скобка x правая круглая скобка в его точке  левая круглая скобка x_0;f левая круглая скобка x_0 правая круглая скобка правая круглая скобка :

y=f' левая круглая скобка x_0 правая круглая скобка левая круглая скобка x минус x_0 правая круглая скобка плюс f левая круглая скобка x_0 правая круглая скобка .

Таблица первообразных для некоторых элементарных функций

Правила нахождения первообразных

Пусть F левая круглая скобка x правая круглая скобка ,G левая круглая скобка x правая круглая скобка ― первообразные для функций f левая круглая скобка x правая круглая скобка и g левая круглая скобка x правая круглая скобка соответственно, a, b, k ― постоянные, k не равно 0. Тогда:

F левая круглая скобка x правая круглая скобка плюс G левая круглая скобка x правая круглая скобка ― первообразная для функции f левая круглая скобка x правая круглая скобка плюс g левая круглая скобка x правая круглая скобка ;

aF левая круглая скобка x правая круглая скобка ― первообразная для функции af левая круглая скобка x правая круглая скобка ;

 дробь: числитель: 1, знаменатель: k конец дроби F левая круглая скобка kx плюс b правая круглая скобка ― первообразная для функции f левая круглая скобка kx плюс b правая круглая скобка ;

— Формула Ньютона-Лейбница:  принадлежит t пределы: от a до b, f левая круглая скобка x правая круглая скобка dx=F левая круглая скобка b правая круглая скобка минус F левая круглая скобка a правая круглая скобка .

1. Треугольник

Пусть a,b,c ― длины сторон BC, AC, AB треугольника ABC соответственно; p= дробь: числитель: a плюс b плюс c, знаменатель: 2 конец дроби ― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно; h_a,h_b,h_c ― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC; S_vartriangle ABC ― площадь треугольника ABC. Тогда имеют место следующие соотношения:

 дробь: числитель: a, знаменатель: синус A конец дроби = дробь: числитель: b, знаменатель: синус B конец дроби = дробь: числитель: c, знаменатель: синус C конец дроби =2R (теорема синусов);

c в квадрате =a в квадрате плюс b в квадрате минус 2ab косинус C (теорема косинусов);

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ah_a;

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ab синус C;

S_vartriangle ABC= дробь: числитель: abc, знаменатель: 4R конец дроби ;

S_vartriangle ABC=pr;

S_vartriangle ABC= корень из p левая круглая скобка p минус a правая круглая скобка левая круглая скобка p минус b правая круглая скобка левая круглая скобка p минус c правая круглая скобка .

Наверх
2. Четырёхугольники

Параллелограмм

Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.

Прямоугольником называется параллелограмм, у которого все углы прямые.

Ромбом называется параллелограмм, все стороны которого равны.

Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.

Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.

Площадь четырехугольника

Площадь параллелограмма равна произведению его основания на высоту.

Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.

Площадь трапеции равна произведению полусуммы ее оснований на высоту.

Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.

Наверх

3. Окружность и круг

Соотношения между элементами окружности и круга

Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, l_n градусов  — длина дуги в n градусов, l_ альфа  — длина дуги в  альфа радиан, S_n градусов  — площадь сектора, ограниченного дугой в n градусов, S_ альфа  — площадь сектора, ограниченного дугой в  альфа радиан. Тогда имеют место следующие соотношения:

Вписанный угол

Вписанный угол измеряется половиной дуги, на которую он опирается.

Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на полуокружность, — прямой.

Вписанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.

Описанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.

Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны 180 градусов.

Наверх

4. Призма

Пусть H ― высота призмы, AA1 ― боковое ребро призмы, P_осн ― периметр основания призмы, S_осн ― площадь основания призмы, S_бок ― площадь боковой поверхности призмы, S_полн ― площадь полной поверхности призмы, V ― объем призмы, P_bot  ― периметр перпендикулярного сечения призмы, S_bot  ― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

S_бок=P_bot AA_1;

S_полн=2S_осн плюс S_бок;

V=S_bot AA_1;

V=S_оснH.

Свойства параллелепипеда:

— противоположные грани параллелепипеда равны и параллельны;

— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;

— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Наверх

5. Пирамида

Пусть H ― высота пирамиды, P_осн ― периметр основания пирамиды, S_осн ― площадь основания пирамиды, S_бок ― площадь боковой поверхности пирамиды, S_полн ― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:

S_полн=S_осн плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби S_оснH .


Замечание.
Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби P_оснh_бок= дробь: числитель: S_осн, знаменатель: косинус бета конец дроби .

Наверх

6. Усечённая пирамида

Пусть H ― высота усеченной пирамиды, P_1 и P_2 ― периметры оснований усеченной пирамиды, S_1 и S_2 ― площади оснований усеченной пирамиды, S_бок ― площадь боковой поверхности усеченной пирамиды, S_полн ― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.

Тогда имеют место следующие соотношения:

S_полн=S_1 плюс S_2 плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби H левая круглая скобка S_1 плюс S_2 плюс корень из S_1S_2 правая круглая скобка .

Замечание. Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то: S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка P_1 плюс P_2 правая круглая скобка h_бок= дробь: числитель: |S_1 минус S_2|, знаменатель: косинус бета конец дроби .

Наверх

7. Цилиндр

Пусть h ― высота цилиндра, r ― радиус цилиндра, S_бок ― площадь боковой поверхности цилиндра, S_полн ― площадь полной поверхности цилиндра, V ― объем цилиндра.

Тогда имеют место следующие соотношения:

S_бок=2 Пи rh;

S_полн=2 Пи r левая круглая скобка r плюс h правая круглая скобка ;

V= Пи r в квадрате h.

Наверх

8. Конус

Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, S_бок ― площадь боковой поверхности конуса, S_полн ― площадь полной поверхности конуса, V ― объем конуса.

Тогда имеют место следующие соотношения:

S_бок= Пи rl;

S_полн= Пи r левая круглая скобка r плюс l правая круглая скобка ;

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи r в квадрате h.

Наверх

9. Усечённый конус

Пусть h ― высота усеченного конуса, r и r_1 ― радиусы основания усеченного конуса, l ― образующая усеченного конуса, S_бок ― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:

S_бок= Пи левая круглая скобка r плюс r_1 правая круглая скобка l;

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи h левая круглая скобка r в квадрате плюс rr_1 плюс r_1 в квадрате правая круглая скобка .

Наверх

10. Сфера и шар

Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, S_h ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара, V_сегм ― объем сегмента, высота которого равна h, V_сект ― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:

Наверх

Материалы, выдаваемые на экзамене, смотрите здесь

  • Полный краткий справочник
    • Формулы сокращенного умножения
    • Модуль числа, модуль выражения
    • Степень с действительным показателем
    • Корень n-ой степени из числа
    • Логарифмы
    • Арифметическая прогрессия
    • Геометрическая прогрессия
    • Бесконечно убывающая геометрическая прогрессия
    • Основные формулы тригонометрии
    • Производная и интеграл
    • Треугольник
    • Четырехугольники
    • Окружность и круг
    • Призма
    • Пирамида
    • Усеченная пирамида
    • Цилиндр
    • Конус
    • Усеченный конус
    • Сфера и шар
    • Векторы и координаты
  • Особенности экзаменационных заданий профильной математики
    • Задания 1: округление величин, проценты
      • Особенности экзаменационных заданий на округление
      • Округление величин с избытком и недостатком
      • Проценты
      • Особенности экзаменационных заданий на проценты
    • Задания 2: анализ графических зависимостей
      • Анализ графических зависимостей
      • Особенности экзаменационных заданий на чтение графиков и диаграмм
    • Задания 3 и 6: планиметрия
      • Треугольник
        • Равносторонний треугольник
        • Равнобедренный треугольник
        • Прямоугольный треугольник
        • Тригонометрические функции дополнительных углов
        • Основное тригонометрическое тождество и следствия из него
        • Смежные углы
        • Средняя линия треугольника
        • Медиана треугольника
        • Биссектриса треугольника
        • Высота треугольника
        • Серединный перпендикуляр
        • Теорема косинусов
      • Параллелограмм
        • Прямоугольник
        • Ромб
        • Параллелограмм Вариньона
        • Трапеция
      • Правильный шестиугольник
      • Теоремы о площадях многоугольников
      • Окружность
        • Вписанный угол
        • Хорда
        • Касательная к окружности
        • Секущая
        • Круг и его элементы
        • Соотношения между элементами окружности и круга
        • Вписанная окружность
        • Описанная окружность
      • Вектор
        • Сумма и разность векторов
        • Координаты вектора
        • Скалярное произведение векторов
        • Расстояния от точки до координатных осей
        • Расстояние между точками
    • Задания 4: вероятности событий
      • Определение вероятности
      • Теоремы о вероятностях событий
      • Особенности экзаменационных заданий на начала теории вероятности
    • Задания 5: простейшие уравнения
      • Простейшие уравнения
      • Линейные уравнения
      • Квадратные уравнения
      • Рациональные уравнения
      • Иррациональные уравнения
      • Показательные уравнения
      • Логарифмические уравнения
      • Особенности решения экзаменационных заданий на простейшие уравнения
    • Задания 7: производные, первообразные
      • Правила дифференцирования
      • Производная числа, линейной и степенной функции
      • Производная многочлена
      • Уравнение прямой
      • Уравнение касательной
      • Физический смысл производной
      • Монотонность и экстремумы функции
      • Первообразная
      • Криволинейная трапеция и ее площадь
    • Задания 8: стереометрия
      • Особенности экзаменационных заданий по стереометрии
      • Куб
      • Призма. Прямоугольный параллелепипед
        • Прямая призма
        • Прямоугольный параллелепипед и его свойства
        • Особенности правильной шестиугольной призмы
      • Пирамида
      • Сечения
      • Цилиндр и его соотношения
      • Конус и его соотношения
      • Сфера и шар
        • Комбинации круглых тел. Вписанные сферы
        • Комбинации круглых тел. Описанные сферы
        • Комбинации конуса и цилиндра
        • Комбинации многогранников и круглых тел. Описанные сферы
        • Комбинации многогранников и круглых тел. Вписанные сферы
        • Комбинации конуса, цилиндра и многогранников
    • Задания 9: тождественные преобразования выражений
      • Действия с дробями
      • Формулы сокращенного умножения
      • Степень и её свойства
        • Свойства степени
        • Степень с дробным показателем
      • Арифметический корень
        • Свойства арифметического корня
      • Определение логарифма и его свойства
      • Основные тригонометрические формулы
      • Правило для запоминания формул приведения
      • Свойства четности и нечетности функций
    • Задания 10: задачи с прикладным содержанием
      • Задачи с прикладным содержанием
    • Задания 11: текстовые задачи
      • Определение процента
      • Правило креста для решения задач на смеси
      • Движение по прямой
      • Движение по окружности
      • Алгоритм решения задач на совместную работу
    • Задания 12: исследование функций при помощи производной
      • Производная некоторых элементарных функций
      • Правила дифференцирования
      • Монотонность и экстремумы функции
      • Наибольшее и наименьшее значение функции

Выражения, содержащие знак радикала (корень), называются иррациональными.

Арифметическим корнем натуральной степени $n$ из неотрицательного числа а называется некоторое неотрицательное число, при возведении которого в степень $n$ получается число $а$.

$(√^n{a})^n=a$

В записи $√^n{a}$, «а» называется подкоренным числом, $n$ — показателем корня или радикала.

Свойства корней $n$-ой степени при $а≥0$ и $b≥0$:

1. Корень произведения равен произведению корней

$√^n{a∙b}=√^n{a}∙√^n{b}$

Пример:

Вычислить $√^5{5}∙√^5{625}$

Решение:

Корень произведения равен произведению корней и наоборот: произведение корней с одинаковым показателем корня равно корню из произведения подкоренных выражений

$√^n{a}∙√^n{b}=√^n{a∙b}$

$√^5{5}∙√^5{625}=√^5{5∙625}=√^5{5∙5^4}=√^5{5^5}=5$

Ответ: $5$

2. Корень из дроби – это отдельно корень из числителя, отдельно из знаменателя

$√^n{{a}/{b}}={√^n{a}}/{√^n{b}}$, при $b≠0$

3. При возведении корня в степень, в эту степень возводится подкоренное выражение

$(√^n{a})^k=√^n{a^k}$

4. Если $а≥0$ и $n,k$ — натуральные числа, больше $1$, то справедливо равенство.

$√^n{√^k{a}}=√^{n∙k}a$

5. Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится.

$√^{n∙m}a^{k∙m}=√^n{a^k}$

6. Корень нечетной степени можно извлекать из положительных и отрицательных чисел, а корень четной степени – только из положительных.

7. Любой корень можно представить в виде степени с дробным (рациональным) показателем.

$√^n{a^k}=a^{{k}/{n}}$

Пример:

Найдите значение выражения ${√{9∙√^11{с}}}/{√^11{2048∙√с}}$ при $с>0$

Решение:

Корень произведения равен произведению корней

${√{9∙√^11{с}}}/{√^11{2048∙√с}}={√9∙√{√^11{с}}}/{√^11{2048}∙√^11{√с}}$

Корни из чисел мы можем извлечь сразу

${√9∙√{√^11{с}}}/{√^11{2048}∙√^11{√с}}={3∙√{√^11{с}}}/{2∙√^11{√с}}$

Далее применим формулу

$√^n{√^k{a}}=√^{n∙k}a$

${3∙√{√^11{с}}}/{2∙√^11{√с}}={3∙√^22{с}}/{2∙√^22{с}}$

Корни $22$ степени из $с$ мы сокращаем и получаем ${3}/{2}=1,5$

Ответ: $1,5$

Если у радикала с четным показателем степени мы не знаем знак подкоренного выражения, то при извлечении корня выходит модуль подкоренного выражения.

Пример:

Найдите значение выражения $√{(с-7)^2}+√{(с-9)^2}$ при $7 < c < 9$

Решение:

Если над корнем не стоит показатель, то это означает, что мы работаем с квадратным корнем. Его показатель равен двум, т.е. четный. Если у радикала с четным показателем степени мы не знаем знак подкоренного выражения, то при извлечении корня выходит модуль подкоренного выражения.

$√{(с-7)^2}+√{(с-9)^2}=|c-7|+|c-9|$

Определим знак выражения, стоящего под знаком модуля, исходя из условия $7 < c < 9$

Для проверки возьмем любое число из заданного промежутка, например, $8$

Проверим знак каждого модуля

$8-7>0$

$8-9<0$, при раскрытии модуля пользуемся правилом: модуль положительного числа равен самому себе, отрицательного числа — равен противоположному значению. Так как у второго модуля знак отрицательный, при раскрытии меняем знак перед модулем на противоположный.

$|c-7|+|c-9|=(с-7)-(с-9)=с-7-с+9=2$

Ответ: $2$

Свойства степеней с рациональным показателем:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

$a^n∙a^m=a^{n+m}$

2. При возведении степени в степень основание остается прежним, а показатели перемножаются

$(a^n)^m=a^{n∙m}$

3. При возведении в степень произведения в эту степень возводится каждый множитель

$(a∙b)^n=a^n∙b^n$

4. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

$({a}/{b})^n={a^n}/{b^n}$

Дроби


Практика: решай 6 задание и тренировочные варианты ЕГЭ по математике (профиль)

Арифметический корень натуральной степени

Предлагаю систему заданий, предназначенных для подготовки к ЕГЭ на уроках математики по теме «Арифметический корень натуральной степени»

Свойства арифметического корня натуральной степени:

1) = ; 2) ( = ; 3) = ;

4) = ; 5) = ; 6) = .

гдеa ≥ 0, b ≥ 0, m ≥ 2, n ≥ 2, m N, n N.

Реши самостоятельно.

  1. 2) ;

3) ; 4) ;

5) 6) ;

7) ; 8) ;

9) ; 10) ) ;

11) ; 12) ;

13) ( )( + ); 14) ( )( + 4 ).

Банк заданий ЕГЭ.

Найти значение выражения:

  1.   ; 2)  ; 3)  ; 4) ;

5) ; 6) ; 7) ) ; 8) ; 9) ; 10) ;

11) ; 12) ; 13) ; 14) ; 15) ;

16) ; 17) ;

18) ; 19) ;

20)

21) ( ): ; 22)( ): ;

23)( ): ; 24)( ): ;

25);( ): ;

26) ; 27) ; 28) ; 29) ; 30) ;

31) ; 32) ; 33) ; 34) ; 35) ;

36) 9 ; 37)3 ; 38)8 ;

39) 7 ; 40) 8 ;

41) 42) 43) 44)

45) ; 46) ; 47) ;

48) ; 49) ; 50) .



Скачать материал

Выражения: степени, корни. Яковлева Татьяна Петровна, доцент кафедры математи...



Скачать материал

  • Сейчас обучается 76 человек из 33 регионов

  • Сейчас обучается 28 человек из 12 регионов

  • Сейчас обучается 1079 человек из 83 регионов

Описание презентации по отдельным слайдам:

  • Выражения: степени, корни. Яковлева Татьяна Петровна, доцент кафедры математи...

    1 слайд

    Выражения: степени, корни. Яковлева Татьяна Петровна, доцент кафедры математики и физики Камчатского государственного университета имени Витуса Беринга, кандидат педагогических наук, доцент, г. Петропавловск — Камчатский

  • Теоретические сведения

    2 слайд

    Теоретические сведения

  • Формулы сокращенного умножения

    3 слайд

    Формулы сокращенного умножения

  • Преобразование степеней и корней

    4 слайд

    Преобразование степеней и корней

  • Примеры вычислений со степенями и корнями

    5 слайд

    Примеры вычислений со степенями и корнями

  •  4 3 2 1

  • 8 7 6 5

  • 10 9

  • 13 14 15 12 11

  • 16 17 18 19

  • 20 21 22 23 24 25

    11 слайд

    20 21 22 23 24 25

  • 26 27

  • 28 29

  • 31 32 30

  • 33 34 35

  • 36 37 38 39

  • 40 41 42 43

  • 44 45 46

  • 47 48 49 50 51

  • 52 53 54

  • 55 56 57 58

  • Различные виды заданий со степенями и корнями

    22 слайд

    Различные виды заданий со степенями и корнями

  • Решите самостоятельно!

    32 слайд

    Решите самостоятельно!

  • 35 36

  • 37 38

  • 39 40

  • 42 41

  • 43

  • Благодарим за внимание!

    56 слайд

    Благодарим за внимание!

  • Список используемой литературы: Андреева А.О. ЕГЭ по математике. Практическа...

    57 слайд

    Список используемой литературы: Андреева А.О. ЕГЭ по математике. Практическая подготовка. – СПб.: БХВ-Петербург, 2014. – 256 с. Гайкова И.И. ЕГЭ по математике. Оптимальный результат. – СПб.: БХВ-Петербург, 2054. – 304 с. Глазков Ю.А. ОГЭ. Математика. Задачник. Сборник заданий и методических рекомендаций/ Ю.А. Глазков, М.Я. Гаиашвили. – М.: Издательство «Экзамен», 2017. – 376 с. ГИА по математике. 9 класс: учебное пособие / Л.О. Денищева (и др.). – М.: БИНОМ. Лаборатория знаний, 2011. – 246 с. Математика: ЕГЭ: учебно-справочные материалы (Серия «Итоговый контроль: ЕГЭ») / Ю.М. Нейман, Т.М. Королева, Е.Г. Маркарян. – М., СПб: «Просвещение», 2011. – 287 с. Математика. ЕГЭ-2016. Тематический тренинг. 10-11 классы: учебно-методическое пособие / Под ред. Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов-на-Дону: Легион, 2015. – 400 с. Мордкович А.Г. Математика: Полный справочник / А.Г. Мордкович, В.И. Глизбург, Н.Ю. Лаврентьева. – М.: АСТ: Астрель, 2016. – 351 с. Семенов А.В. Основной государственный экзамен. Математика. Комплекс материалов для подготовки учащихся. Учебное пособие. / А.В. Семенов, А.С. Трепалин, И.В. Ященко, П.И. Захарова, И.Р. Высоцкий; под ред. И.В. Ященко; Московский Центр непрерывного образования. – М.: Интеллект-Центр, 2017. – 248 с. Третьяк И.В. ОГЭ. Математика : универсальный справочник / И.В. Третьяк. — Москва : Эксмо, 2016. — 352 с. Шестаков С.А. ЕГЭ 2017. Математика. Значения выражений. Задача 9 (профильный уровень). Задачи 2 и 5 (базовый уровень). Рабочая тетрадь / Под ред. И.В. Ященко. – М.: МЦНМО, 2017. – 64 с. Ященко И.В. ОГЭ: 3000 задач с ответами по математике / Под ред. И.В. Ященко. – М. Издательство «Экзамен». МЦНМО, 2017. – 479 с.

Краткое описание документа:

Презентация предназначена для систематизации и обобщения знаний по нахождению значений выражений, содержащих степени и корни. Материал полезен для подготовки к ЕГЭ по математике. Рассматриваются теоретические сведения, образцы выполнения заданий (58 заданий), различные задания со степенями и корнями (18 зданий), задания для самостоятельного решения (43 заданий).

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 153 185 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углублённый уровень)», Муравин Г.К., Муравина О.В.

  • «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др.

    «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др.

    Больше материалов по этому УМК

  • «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.

    «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.

    Больше материалов по этому УМК

  • «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углублённый уровень)», Пратусевич М.Я., Столбов К.М., Головин А.Н.

    «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углублённый уровень)», Пратусевич М.Я., Столбов К.М., Головин А.Н.

    Больше материалов по этому УМК

  • «Алгебра и начала математического анализа. Углубленный уровень», Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И.

  • «Алгебра и начала математического анализа. Учебник (базовый и углублённый уровни)», Мордкович А.Г., Семенов П.В.

  • «Алгебра и начала математического анализа», Колягин Ю.М., Ткачёва М.В. и др.

  • «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.

    «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.

    Больше материалов по этому УМК

  • «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углублённый уровень)», Пратусевич М.Я., Столбов К.М., Головин А.Н.

    «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углублённый уровень)», Пратусевич М.Я., Столбов К.М., Головин А.Н.

    Больше материалов по этому УМК

  • «Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

  • «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.

Другие материалы

Контрольная работа по теме «Степени»

  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.
  • Тема: § 35. Свойства корня n-й степени
  • 10.05.2018
  • 1124
  • 2

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.

Электив Подготовка к ЕГЭ

  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.
  • 07.05.2018
  • 410
  • 1

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.

Рабочая программа по алгебре 10 класс

  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.
  • 07.05.2018
  • 376
  • 0

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.

Презентация по алгебре для 11 класса по теме «Площадь криволинейной трапеции»

  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.
  • Тема: Глава 8. Первообразная и интеграл

Рейтинг:
5 из 5

  • 05.05.2018
  • 875
  • 7

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»

  • Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Маркетинг: теория и методика обучения в образовательной организации»

  • Курс повышения квалификации «Организация практики студентов в соответствии с требованиями ФГОС педагогических направлений подготовки»

  • Курс повышения квалификации «Организация практики студентов в соответствии с требованиями ФГОС юридических направлений подготовки»

  • Курс повышения квалификации «Организация практики студентов в соответствии с требованиями ФГОС медицинских направлений подготовки»

  • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»

  • Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

  • Курс профессиональной переподготовки «Разработка эффективной стратегии развития современного вуза»

  • Курс профессиональной переподготовки «Корпоративная культура как фактор эффективности современной организации»

  • Курс профессиональной переподготовки «Уголовно-правовые дисциплины: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Теория и методика музейного дела и охраны исторических памятников»

  • Курс профессиональной переподготовки «Технический контроль и техническая подготовка сварочного процесса»

Алгебра и начала математического анализа, 10 класс

Урок №16 Название темы: Арифметический корень натуральной степени.

Перечень тем, рассматриваемых на уроке:

  • преобразование и вычисление арифметических корней,
  • свойства арифметического корня натуральной степени,
  • корень нечетной степени из отрицательного числа,
  • какими свойствами обладает арифметический корень натуральной степени.

Глоссарий

  1. Квадратным корнем из числа a называют такое число, квадрат которого будет равен a.
  2. Арифметическим квадратным корнем из числа а называют неотрицательное число, квадрат которого равен а.
  3. Кубический корень из а— это такое число, которое при возведении в третью степень дает число а.
  4. Корнем n-ой степени из числа a называют такое число, n-ая степень которого будет равна a.
  5. Арифметическим корнем натуральной степени, где n ≥ 2, из неотрицательного числа a называется неотрицательное число, n-я степень которого равна a.

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Учебно-методический комплект: Алгебра и начала математического анализа (базовый и профильный уровни). 10 кл.– М.: Просвещение, 2014.

  1. Сканави М. И., Зайцев В. В., Рыжков В. В. «Элементарная математика». – Книга по требованию, 2012.
  2. Семенова А.Л., Ященко И.В. ЕГЭ 3000 задач с ответами, математика под редакцией Москва, 2017.
  3. Ященко И. В. ЕГЭ 3300 задач с ответами, математика профильный уровень под редакцией Москва, 2017.

Объяснение темы «Арифметический корень натуральной степени»

Решим задачу.

Площадь квадрата S=16 м².

Обозначим сторону квадрата а, м.

Тогда, а² = 16.

Решим данное уравнение:

a=4 и а= –4.

Проверим решение:

4² = 16;

(–4)² = 16.

Ответ: длина стороны квадрата равна 4 м.

Определение:

Квадратным корнем из числа a называют такое число, квадрат которого будет равен a.

Определение:

Арифметическим квадратным корнем из числа а называют неотрицательное число, квадрат которого равен а.

Обозначение: .

Определение:

Кубический корень из а— это такое число, которое при возведении в третью степень дает число а.

Обозначение: .

Например:

.

.

.

На основании определений квадратного и кубического корней, можно сформулировать определения корня n-ой степени и арифметического корня n-ой степени.

Определение:

Корнем n-ой степени из числа a называют такое число, n-ая степень которого будет равна a.

Определение:

Арифметическим корнем натуральной степени, где n≥2, из неотрицательного числа a называется неотрицательное число, n-я степень которого равна a.

Обозначение: – корень n-й степени, где

n–степень арифметического корня;

а– подкоренное выражение.

Давайте рассмотрим такой пример: .

Мы знаем, что (–4)³ = –64, следовательно, .

Еще один пример: .

Мы знаем, что (–3)5 = –243, следовательно, .

На основании этих примеров, можно сделать вывод:

, при условии, что n –нечетное число.

Свойства арифметического корня натуральной степени:

Если а ≥ 0, b ≥ 0 и n, m – натуральные числа, причем n ≥ 2, m ≥ 2, то справедливо следующее:

  1. .

Примеры:

.

.

  1. .

Примеры:

.

.

  1. .

Пример:

.

  1. .

Пример:

.

  1. Для любогоа справедливо равенство:

Пример:

Найдите значение выражения , при 3 <x< 6.

Степени заданных арифметических корней 4 и 2, четные числа, следовательно, мы можем применить свойство №5:

=|x – 3| = х – 3, т.к. х>3;

=|x – 6|=6 – x, т.к. х<6.

Получаем: х – 3 + 6 – х= 3.

Примеры заданий.

Первый пример.

Задача:

Выберите верные утверждения:

Разбор задания.

Применим определение арифметического корня: Арифметическим корнем натуральной степени из неотрицательного числа a называется неотрицательное число, n-я степень которого равна a. Следовательно, верными могут быть только неотрицательные выражения.

Ответ: ; ;

Второй пример.

Задача:

Выделите самое маленькое число:

Разбор задания:

Корень из отрицательного числа будет отрицательным числом, следовательно, наименьшее число –

Ответ: 4.

Like this post? Please share to your friends:
  • Аристотель сочинения в четырех томах т 1 ред в ф асмус м мысль 1976
  • Аристотель сочинения в 4 томах том 1
  • Аристотель собрание сочинений в 4 томах скачать
  • Аристотель собрание сочинений в 4 томах купить
  • Аристотель полное собрание сочинений