Пути эволюции
В своих работах советский ученый Северцов А.Н. выделил понятия биологического прогресса и регресса.
Биологический прогресс подразумевает победу вида в борьбе за существование. Биологический прогресс характеризуется следующими признаками:
- Численность вида увеличивается
- Ареал расширяется
- Смертность особей уменьшается
- Рождаемость увеличивается
- Происходит процветание вида
Основными направлениями биологического прогресса являются:
- Ароморфоз (греч. airomorphosis — поднимаю форму)
- Идиоадаптация (греч. ídios — свой, своеобразный, особый)
- Общая дегенерация (лат. degenero — вырождаться, перерождаться)
Ароморфоз представляет собой прогрессивное эволюционное преобразование, повышающее уровень организации организмов.
В результате ароморфоза становится возможным освоение новых, ранее недоступных для жизни, территорий. К примеру,
теплокровность птиц позволила им заселить места с холодным климатом.
Идиоадаптация подразумевает незначительные, частные изменения в строении и функциях организма, которые помогают
приспособиться к условиям среды обитания. Идиоадаптации существенно не повышают уровень организации.
Общей дегенерацией называют упрощение организации, которое заключается в утрате отдельных органов и систем органов.
У многих этот пункт вызывает внутреннее противоречие: как общая дегенерация может относиться к биологическому прогрессу?
На самом деле, если орган или система органов не нужна организму в его условиях обитания — то зачем она? Эта система
может исчезнуть и освободить место для других, более полезных в данных условиях, органов.
У многих паразитов отсутствуют различные органы, к примеру, у ленточных червей нет пищеварительной системы. А зачем она
им, когда пища в кишке, где они обитают, уже переварена и расщеплена организмом хозяина?
Биологический регресс характеризуется признаками, противоположными биологическому прогрессу:
- Численность вида уменьшается
- Ареал сужается
- Смертность особей возрастает
- Рождаемость уменьшается
- Происходит вымирание вида
Главная причина биологического регресса в том, что скорость эволюции вида отстает от скорости изменения внешней среды, эволюции других видов: это несоответствие снижает приспособленность организмов. Часто деятельность человека молниеносно
меняет окружающую среду: далеко не все виды могут приспособиться к этому, происходит вымирание.
Сравнительно-анатомические доказательства эволюции
Изучение строения органов и их эволюционных изменений у различных групп организмов является основой выявления сравнительно-анатомических доказательств эволюции. Яркими примерами анатомических доказательств эволюции являются гомологичные
и аналогичные органы.
- Гомологичные органы (гомология, от греч. homo(s) — равный, одинаковый)
- Аналогичные органы (греч. análogos — соответственный)
Такие органы развиваются из одних и тех же зародышевых листков, имеют общий план строения, но выполняют разные функции.
Это связано с тем,
что животные освоили разные среды обитания, из-за чего происходит дивергенция (лат. divergo — отклоняюсь) —
расхождение признаков у первоначально близких животных в ходе эволюции.
Гомологичны между собой скелеты конечностей различных классов позвоночных: рука — ласт — крыло птицы, колючки кактуса
— усики гороха — листья растений.
Аналогичные органы развиваются из разных зародышевых листков, имеют различное строение, но выполняют схожие
функции. Такое сходство возникает в результате приспособления к одним и тем же условиям среды, из-за чего
происходит конвергенция (лат. convergo — сближаю) — схождение признаков у неблизкородственных видов в ходе эволюции.
Аналогичными органами являются крыло птицы — крыло бабочки, глаз человека — глаз кальмара, усики винограда — усики
гороха, жабры рака — жабры рыбы.
В строении нынешних животных можно найти признаки древних предковых форм, которые также свидетельствуют об эволюции. Сейчас
мы обсудим рудименты и атавизмы.
Рудименты (лат. rudimentum — зачаток) — органы, которые в ходе эволюции утратили свое функциональное значение. Они
сохраняются в течение всей жизни и в норме обнаруживаются у человека и животных.
У человека к рудиментарным органам относятся: зубы мудрости, копчик, ушные мышцы, аппендикс (червеобразный отросток),
третье веко.
Атавизмы (лат. atavus — отдалённый предок) — случаи проявления у отдельных особей признаков дальних предков. Атавизмы
сугубо индивидуальны и не являются нормой. Они также являются доказательством эволюции.
У человека атавизмами могут являться хвост, волосатое тело, добавочные молочные железы, незаращение межпредсердной перегородки.
Переходные формы
Переходные формы свидетельствуют о филогенетической преемственности, соединяя в своем строении черты высших и низших классов. Они —
наглядное, живое доказательство эволюции.
Такими формами являются, к примеру, утконос и ехидна из класса млекопитающих. При многих признаках млекопитающих, они откладывают яйца, тем самым подтверждают родство
млекопитающих с пресмыкающимися.
Эмбриологические доказательства
Эмбриология (греч. embryon — зародыш) — раздел биологии, изучающий строение эмбрионов. Только вдумайтесь: на этапе эмбриона,
через который мы с вами успешно прошли, у нас можно было найти закладку жаберных дуг, которые существуют непродолжительное время,
после чего исчезают.
А у рыб, например, жаберные дуги не исчезают — из них развиваются жабры.
Немецкие ученые Ф. Мюллер и Э. Геккель во второй половине XIX века сформулировали биогенетический закон, гласящий, что
онтогенез (индивидуальное развитие) каждой особи есть краткое и быстрое повторение филогенеза (исторического развития вида).
Биогенетический закон Мюллера-Геккеля объясняет повторение этапов (на стадии зародыша), которые были свойственны нашим далеким
предкам. Таким образом, мы проходим их этапы, но, не останавливаясь на них, двигаемся дальше к более совершенным этапам.
У головастиков лягушек развивается плавник, есть жабры — это наглядное повторение признаков, которые характерны для их предков — рыб.
Карл Бэр сформулировал закон зародышевого сходства, который гласит, что на ранних стадиях развития зародыши позвоночных животных
настолько похожи друг на друга, что практически неразличимы между собой. Это также указывает и подтверждает единство происхождения
животного мира.
Палеонтологические доказательства эволюции
Палеонтология (греч. palaios – древний) изучает ископаемые останки вымерших животных, их сходства и различия с ныне живущими
видами. Сопоставляя друг с другом ископаемые останки разных геологических эпох, можно увидеть как происходила эволюция различных
видов животных и растений.
В результате таких исследований иногда удается открыть переходные формы, а иногда — целые филогенетические ряды, то есть совокупность
последовательно сменяющих друг друга форм одного вида. Так, к примеру, был открыт филогенетический ряд лошади.
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Гипотезы возникновения жизни. Ароморфозы
Раздел ЕГЭ: 6.4. Макроэволюция. Направления и пути эволюции (А.Н. Северцов, И.И. Шмальгаузен). Биологический прогресс и регресс, ароморфоз, идиоадаптация, дегенерация. Причины биологического прогресса и регресса. Гипотезы возникновения жизни на Земле. Основные ароморфозы в эволюции растений и животных. Усложнение живых организмов на Земле в процессе эволюции
Гипотезы возникновения жизни на Земле:
- Креационизм (К. Линней): жизнь создана сверхъестественным существом (Богом) в результате акта творения.
- Гипотеза стационарного состояния: жизнь существовала всегда. Эта гипотеза была выдвинута Т. В. Прейером в 1880 г.
- Гипотеза самопроизвольного зарождения жизни (Аристотель): основывается на идее многократного возникновения жизни из неживого вещества.
- Гипотеза панспермии (С. Аррениус): жизнь во Вселенной существует вечно. На Землю «семена» живого были занесены из космоса с метеоритами и космической пылью.
- Гипотеза исторического происхождения жизни путём биохимической эволюции (Опарина — Холдейна).
Этапы биохимической эволюции:
- Геохимическая эволюция планеты Земля, синтез простейших соединений, переход воды в жидкое состояние в результате постепенного охлаждения Земли. Эволюция атмосферы и гидросферы.
- Образование из неорганических соединений органических, их накопление в первичном океане в результате электромагнитного воздействия Солнца, электрических разрядов, космического излучения.
- Усложнение органических соединений, образование и выделение белковых структур из среды, образование водных комплексов и создание вокруг белков водной оболочки. Слияние комплексов и возникновение коацерватов, способных обмениваться веществом и энергией с окружающей средой.
- Поглощение коацерватами металлов.
- Образование гидрофобных липидных границ между коацерватами и внешней средой, что привело к возникновению полупроницаемых мембран, в результате была обеспечена стабильность функционирования коацервата.
- Выработка в ходе эволюции процессов саморегуляции и самовоспроизведения.
Основные ароморфозы в эволюции растений и животных
Ароморфозы у растений:
Появление автотрофного питания;
Способность к фотосинтезу;
Наличие специальных фотосинтетических пигментов;
Появление органоидов — хроматофоров;
Половое размножение;
Появление клеточной стенки из 2-х слоев: целлюлозного и пектинового;
Чередование полового и бесполого поколений;
Появление тканей;
Разделение тела на стебель и листообразные пластинки;
Появление половых органов — мужских (антеридии), женских (архегонии);
Появление корня;;
Возникновение оплодотворения, не связанного с водой;
Возникновение семени;
Появление шишки — видоизмененного побега;
Возникновение семенных зачатков;;
Возникновение хвои;;
Возникновение семенных зачатков, из которых после оплодотворения развиваются семена;
Возникновение двойного оплодотворения у цветковых растений;
Появление цветка;
Способность к опылению насекомыми.
Ароморфозы у животных:
Многоклеточность;
Лучевая симметрия;
Возникновение 2-х зародышевых листков (эктодермы, энтодермы);
Нервная система — диффузного типа;
Двусторонняя симметрия;
Появление 3-го зародышевого листка — мезодермы;
Появление первичной полости тела;
Появление вторичной полости тела (целом);
Дыхательная система — жабры;
Возникновение нервной системы — окологлоточное нервное кольцо и нервные стволы;
Расчленение тела на голову, грудь, брюшко;
Возникновение наружного хитинового скелета;;
Членистые конечности у насекомых;
Развитие с личиночной стадией (полное, неполное);
Возникновение хорды;
Дыхательная система — легкие развиваются как парные выпячивания задней части глотки;
Дифференциация мускулатуры;;
Парные конечности с шарнирными суставами;
Передний мозг четко разделен на 2 полушария;;
Крупные, богатые белком и желтком яйца;;
Внутреннее оплодотворение;
Постоянная температура тела птиц, млекопитающих;
Появление перьев у птиц;
Кровеносная система — полное разделение кругов кровообращения;
Тело покрыто волосяным покровом;
Появление желез в коже;
Появление наружного уха;
Появление коры головного мозга;
Появление четырехкамерного сердца.
Это конспект для 10-11 классов по теме «Гипотезы возникновения жизни. Ароморфозы». Выберите дальнейшее действие:
- Вернуться к Списку конспектов по Биологии.
- Найти конспект в Кодификаторе ЕГЭ по биологии
Гипотезы возникновения жизни на Земле
Из всего спектра гипотез образования Земли наибольшее количество фактов свидетельствует в пользу теории «Большого взрыва». Ввиду того, что данное научное допущение зиждется в основном на теоретических расчетах, подтвердить его экспериментально призван большой адронный коллайдер, сооруженный в Европейском центре ядерных исследований вблизи г. Женева (Швейцария). Согласно теории «Большого взрыва», Земля образовалась свыше 4,5 млрд лет назад вместе с Солнцем и другими планетами Солнечной системы в результате конденсации газопылевого облака. Снижение температуры планеты и миграция химических элементов на ней способствовали ее расслоению на ядро, мантию и кору, а происходившие затем геологические процессы (движение тектонических плит, вулканическая деятельность и т. д.) стали причиной формирования атмосферы и гидросферы.
Жизнь существует на Земле также очень давно, о чем свидетельствуют ископаемые остатки разнообразных организмов в горных породах, однако физические теории не могут дать ответа на вопрос о времени и причинах ее возникновения. Существуют две противоположные точки зрения на возникновение жизни на Земле: теории абиогенеза и биогенеза. Теории абиогенеза утверждают возможность происхождения живого из неживого. К ним относят креационизм, гипотезу самозарождения и теорию биохимической эволюции А. И. Опарина.
Фундаментальным положением креационизма являлось сотворение мира неким сверхъестественным существом (Творцом), что нашло свое отражение в мифах народов мира и религиозных культах, однако возраст планеты и жизни на ней намного превышает указанные в этих источниках сроки, да и несоответствий в них предостаточно.
Основателем теории самозарождения жизни считается древнегреческий ученый Аристотель, который утверждал, что возможно многократное появление новых существ, например, дождевых червей из луж, а червей и мух — из гнилого мяса. Однако эти воззрения были опровергнуты в XVII–XIX веках смелыми опытами Ф. Реди и Л. Пастера.
Итальянский врач Франческо Реди в 1688 году поместил кусочки мяса в горшки и плотно запечатал их, однако никаких червей в них не завелось, тогда как в открытых горшках они появились. Дабы опровергнуть бытовавшее тогда убеждение, что жизненное начало содержится в воздухе, он повторил свои опыты, однако горшки не запечатал, а закрыл несколькими слоями кисеи, и вновь жизнь не появилась. Несмотря на убедительные данные, полученные Ф. Реди, исследования А. ван Левенгука дали новую пищу для дискуссий о «жизненном начале», которые продолжились в течение всего следующего века.
Другой итальянский исследователь — Ладзаро Спалланцани — в 1765 году видоизменил опыты Ф. Реди, прокипятив в течение нескольких часов мясные и овощные отвары и запечатав их. По прошествии нескольких дней он также не обнаружил там никаких признаков жизни и сделал вывод, что живое может возникнуть только от живого.
Последний удар теории спонтанного самозарождения нанес великий французский микробиолог Луи Пастер в 1860 году, поместивший прокипяченный бульон в колбу с S-образным горлышком и не получивший никаких зародышей. Казалось бы, это свидетельствовало в пользу теорий биогенеза, однако оставался открытым вопрос о том, каким же путем возник самый-самый первый организм.
Ответить на него попытался советский биохимик А. И. Опарин, пришедший к выводу о том, что состав атмосферы Земли на первых этапах ее существования был совсем не таким, как в наше время. Скорее всего, она состояла из аммиака, метана, углекислого газа и водяных паров, но не содержала свободного кислорода. Под действием электрических разрядов высокой мощности и при высокой температуре в ней могли синтезироваться простейшие органические соединения, что и было подтверждено экспериментами С. Миллера и Г. Юри в 1953 году, получивших из вышеупомянутых соединений несколько аминокислот, простые углеводы, аденин, мочевину, а также простейшие жирные, муравьиную и уксусную кислоты.
Тем не менее синтез органических веществ еще не означает возникновения жизни, поэтому А. И. Опарин выдвинул гипотезу биохимической эволюции, согласно которой разнообразные органические вещества возникали и объединялись в более крупные молекулы на мелководьях морей и океанов, где условия для химического синтеза и полимеризации являются наиболее благоприятными. Первыми носителями жизни в настоящее время считаются молекулы РНК.
Некоторые из этих веществ постепенно образовывали в воде устойчивые комплексы — коацерваты, или коацерватные капли, напоминающие капли жира в бульоне. В эти коацерваты поступали разнообразные вещества из окружающего раствора, которые подвергались химическим превращениям, происходящим в каплях. Как и органические вещества, коацерваты сами по себе не являлись живыми существами, а были очередной ступенью в их возникновении.
Те из коацерватов, которые имели удачное соотношение веществ в своем составе, в особенности белки и нуклеиновые кислоты, благодаря каталитическим свойствам белков-ферментов со временем приобрели способность воспроизводить себе подобных и осуществлять реакции обмена веществ, при этом структуру белков кодировали нуклеиновые кислоты.
Однако, помимо размножения, для живых систем характерна зависимость от поступления энергии извне. Эта проблема первоначально решалась за счет бескислородного расщепления органических веществ из окружающей среды (кислорода в атмосфере на тот момент не было), т. е.
гетеротрофного питания. Некоторые из поглощаемых органических веществ оказались способными аккумулировать энергию солнечного света, как, например, хлорофилл, что дало возможность ряду организмов перейти к автотрофному питанию. Выделение кислорода в атмосферу в процессе фотосинтеза привело к появлению более эффективного кислородного дыхания, возникновению озонового слоя и, в конечном итоге, выходу организмов на сушу.
Таким образом, результатом химической эволюции явилось появление протобионтов — первичных живых организмов, от которых в результате биологической эволюции произошли все существующие в настоящее время виды.
Теория биохимической эволюции в наше время является наиболее подтвержденной, однако представление о конкретных механизмах возникновения жизни изменились. Например, выяснилось, что образование органических веществ начинается еще в космосе, а органические вещества играют важную роль даже в самом образовании планет, обеспечивая слипание мелких частей. Также формирование органических веществ происходит и в недрах планеты: при одном извержении вулкан выбрасывает до 15 т органики. Существуют и другие гипотезы относительно механизмов концентрирования органических веществ: замораживания раствора, абсорбции (связывания) на поверхности определенных минеральных соединений, действия природных катализаторов и т. п. Возникновение жизни на Земле в настоящее время невозможно, поскольку любые органические вещества, спонтанно образовавшиеся в любой точке планеты, тотчас же были бы окислены свободным кислородом атмосферы или использованы гетротрофными организмами. Это понимал еще в 1871 году Ч. Дарвин.
Теории биогенеза отрицают самопроизвольное зарождение жизни. Основными из них являются гипотеза стационарного состояния и гипотеза панспермии. Первая из них базируется на том, что жизнь существует вечно, тем не менее, на нашей планете есть очень древние породы, в которых следы деятельности органического мира отсутствуют.
Гипотеза панспермии утверждает, что зародыши жизни были занесены на Землю из космоса некими пришельцами либо божественным провидением. В пользу этой гипотезы свидетельствуют два факта: необходимость для всего живого достаточно редкого на планете, но часто встречающегося в метеоритах молибдена, а также находка организмов, похожих на бактерии, на метеоритах с Марса. Однако каким образом жизнь возникла на других планетах, остается невыясненным.
Основные ароморфозы в эволюции растений и животных
Вид, его критерии
Основатель современной систематики К. Линней рассматривал вид как группу сходных по морфологическим признакам организмов, которые свободно скрещиваются между собой. По мере развития биологии были получены свидетельства того, что различия между видами намного глубже, и затрагивают химический состав и концентрацию веществ в тканях, направление и скорость химических реакций, характер и интенсивность процессов жизнедеятельности, число и форму хромосом, т. е. вид является наименьшей группой организмов, отражающей их близкое родство. К тому же виды не существуют вечно — они возникают, развиваются, дают начало новым видам и исчезают.
Вид — это совокупность особей, сходных по строению и особенностям процессов жизнедеятельности, имеющих общее происхождение, свободно скрещивающихся между собой в природе и дающих плодовитое потомство.
Все особи одного вида имеют одинаковый кариотип и занимают в природе определенную географическую область — ареал.
Признаки сходства особей одного вида называют критериями вида. Так как ни один из критериев не является абсолютным, для правильного определения вида необходимо использовать совокупность критериев.
Основными критериями вида являются морфологический, физиологический, биохимический, экологический, географический, этологический (поведенческий) и генетический.
- Морфологический — совокупность внешних и внутренних признаков организмов одного вида. Несмотря на то, что у некоторых видов существуют уникальные признаки, с помощью одних только морфологических черт часто очень трудно различить близкородственные виды. Так, в последнее время открыт ряд видов-двойников, обитающих на одной территории, например домовая и курганчиковая мыши, поэтому использовать исключительно морфологический критерий для определения вида недопустимо.
- Физиологический — сходство процессов жизнедеятельности у организмов, в первую очередь, размножения. Он также не является универсальным, поскольку некоторые виды в природе скрещиваются и дают плодовитое потомство.
- Биохимический — сходство химического состава и протекания процессов обмена веществ. Несмотря на то, что данные показатели могут значительно варьировать у разных особей одного вида, в настоящее время им уделяется большое внимание, поскольку особенности строения и состава биополимеров помогают идентифицировать виды даже на молекулярном уровне и устанавливать степень их родства.
- Экологический — различие видов по их принадлежности к определенным экосистемам и экологическим нишам, которые они занимают. Однако многие неродственные виды занимают сходные экологические ниши, поэтому данный критерий может быть использован для выделения вида только в совокупности с другими признаками.
- Географический — существование популяции каждого вида в определенной части биосферы — ареале, который отличается от ареалов всех остальных видов. В связи с тем, что у множества видов границы ареалов совпадают, а также имеется ряд видов-космополитов, ареал которых охватывает огромные пространства, географический критерий также не может служить маркерным «видовым» признаком.
- Генетический — постоянство признаков хромосомного набора — кариотипа — и нуклеотидного состава ДНК у особей одного вида. В связи с тем, что негомологичные хромосомы не могут конъюгировать во время мейоза, потомство от скрещивания особей разных видов с неодинаковым набором хромосом либо не появляется вовсе, либо не плодовито. Это создает репродуктивную изоляцию вида, поддерживает его целостность и обеспечивает реальность существования в природе. Данное правило может нарушаться в случае скрещивания близких по происхождению видов с одинаковым кариотипом или возникновения различных мутаций, однако исключение лишь подтверждает общее правило, и виды следует рассматривать как устойчивые генетические системы. Генетический критерий является основным в системе критериев вида, но также не исчерпывающим.
При всей сложности системы критериев вид нельзя представить как группу абсолютно идентичных по всем параметрам организмов, то есть клонов. Наоборот, для многих видов характерно значительное разнообразие даже внешних признаков, как, например, для одних популяций божьих коровок характерно преобладание в окраске красного цвета, а для других — черного.
Популяция — структурная единица вида и элементарная единица эволюции
Трудно представить, чтобы в реальности особи одного вида были равномерно распределены по земной поверхности в пределах ареала, поскольку, например, лягушка озерная обитает в основном в достаточно редких стоячих пресных водоемах, и вряд ли ее можно встретить на полях и в лесах. Виды в природе чаще всего распадаются на отдельные группы, в зависимости от подходящих по совокупности условий местам обитания — популяции.
Популяция — группа особей одного вида, занимающих часть его ареала, свободно скрещивающихся между собой и относительно обособленных от других совокупностей особей того же вида в течение более или менее длительного времени.
Популяции могут быть разделены не только пространственно, они могут обитать даже на одной территории, но иметь различия в пищевых предпочтениях, сроках размножения и т. д..
Таким образом, вид — это совокупность популяций особей, обладающих рядом общих морфологических, физиологических, биохимических признаков и типов взаимоотношений с окружающей средой, населяющих определенный ареал, а также способных скрещиваться между собой с образованием плодовитого потомства, но почти или совсем не скрещивающихся с другими группами особей того же вида.
Внутри видов с большими ареалами, охватывающими территории с разными условиями жизни, иногда различают и подвиды — большие популяции или группы соседних популяций, имеющих стойкие морфологические отличия от других популяций.
Популяции разбросаны по земной поверхности не случайным образом, они привязаны к конкретным ее участкам. Совокупность всех факторов неживой природы, необходимых для проживания особей данного вида, называется местообитанием. Однако только этих факторов может быть недостаточно для занятия этого участка популяцией, поскольку она должна быть еще вовлечена в тесное взаимодействие с популяциями других видов, то есть занять определенное место в сообществе живых организмов — экологическую нишу. Так, австралийский сумчатый медведь коала при всех прочих равных условиях не может существовать без своего основного источника питания — эвкалипта.
Образующие неразрывное единство в одних и тех же местообитаниях популяции различных видов обыкновенно обеспечивают более или менее замкнутый круговорот веществ и являются элементарными экологическими системами (экосистемами) — биогеоценозами.
При всей своей требовательности к условиям окружающей среды популяции одного вида неоднородны по занимаемой площади, численности, плотности и пространственному размещению особей, часто образующих более мелкие группы (семьи, стаи, стада и др.), полу, возрасту, генофонду и т. д., поэтому различают их размерную, возрастную, половую, пространственную, генетическую, этологическую и другие структуры, а также динамику.
Важными характирестиками популяции являются генофонд — совокупность генов, характерных для особей данной популяции или вида, а также частоты определенных аллелей и генотипов. Разные популяции одного и того же вида изначально имеют неодинаковый генофонд, так как новые территории осваивают особи со случайными, а не специально подобранными генами. Под действием внутренних и внешних факторов генофонд подвергается еще более существенным изменениям: обогащается за счет возникновения мутаций и нового сочетания признаков и обедняется в результате выпадения отдельных аллелей при гибели или миграции некоторого числа особей.
Новые признаки и их сочетания могут быть полезными, нейтральными или вредными, поэтому в популяции выживают и успешно размножаются только приспособленные к данным условиям окружающей среды особи. Однако в двух различных точках земной поверхности условия окружающей среды никогда не бывают полностью идентичными, поэтому и направление изменений даже в двух соседних популяциях может быть совершенно противоположным или они будут протекать с различной скоростью. Результатом изменений генофонда является расхождение популяций по морфологическим, физиологическим, биохимическим и другим признакам. Если популяции при этом еще и изолированы друг от друга, то они могут давать начало новым видам.
Так, возникновение каких-либо препятствий в скрещивании особей различных популяций одного вида, например, вследствие образования горных массивов, изменения русел рек, различий в сроках размножения и т. д., приводит к тому, что популяции постепенно приобретают все больше различий и, в конце концов, становятся различными видами. Некоторое время на границах этих популяций происходит скрещивание особей и возникают гибриды, однако со временем и эти контакты исчезают, т. е. популяции из открытых генетических систем становятся закрытыми.
Несмотря на то, что действию факторов окружающей среды подвергаются в первую очередь отдельные особи, изменение генетического состава у единичного организма является незначительным и проявится в лучшем случае только у его потомков. Подвиды, виды и более крупные таксоны также не подходят на роль элементарных единиц эволюции, поскольку они не отличаются морфологическим, физиологическим, биохимическим, экологическим, географическим и генетическим единством, тогда как популяции как наименьшие структурные единицы вида, накапливающие разнообразие случайных изменений, худшие из которых будут отсеяны, соответствуют этому условию и являются элементарными единицами эволюции.
Микроэволюция
Изменение генетической структуры популяций не всегда приводит к образованию нового вида, а может лишь улучшать приспособление популяции к конкретным условиям среды, однако виды не являются вечными и неизменными — они способны развиваться. Этот процесс необратимого исторического изменения живого называется эволюцией. Первично эволюционные преобразования происходят внутри вида на уровне популяций. В их основе лежат, прежде всего, мутационный процесс и естественный отбор, приводящие к изменению генофонда популяций и вида в целом, или даже к образованию новых видов. Совокупность этих элементарных эволюционных событий называется микроэволюцией.
Популяции характеризуются огромным генетическим разнообразием, которое часто не проявляется фенотипически. Генетическое разнообразие возникает вследствие спонтанного мутагенеза, который происходит непрерывно. Большинство мутаций неблагоприятны для организма и снижают жизнеспособность популяции в целом, но, если они рецессивны, то могут сохраняться в гетерозиготе в течение продолжительного времени. Некоторые мутации, не имеющие приспособительной ценности в данных условиях существования, способны приобрести такую ценность в будущем или при освоении новых экологических ниш, создавая, таким образом, резерв наследственной изменчивости.
Значительное влияние на микроэволюционные процессы оказывают колебания численности особей в популяциях, миграции и катастрофы, а также изоляция популяций и видов.
Новый вид является промежуточным результатом эволюции, но никак не ее итогом, поскольку на этом микроэволюция не прерывается — она продолжается далее. Возникающие новые виды в случае удачного сочетания признаков заселяют новые местообитания, и, в свою очередь, дают начало новым видам. Такие группы близкородственных видов объединяются в роды, семейства и т. д. Эволюционные процессы, происходящие в надвидовых группах, называются уже макроэволюцией. В отличие от макроэволюции, микроэволюция протекает в гораздо более сжатые сроки, тогда как первой требуются десятки и сотни тысяч и миллионов лет, как, например, эволюция человека.
В результате микроэволюции формируется все многообразие видов живых организмов, когдалибо существовавших и ныне живущих на Земле.
Вместе с тем эволюция необратима, и уже исчезнувшие виды никогда не возникают вновь. Появляющиеся виды закрепляют все достигнутое в процессе эволюции, однако это не гарантирует того, что в будущем не появятся новые виды, которые будут иметь более совершенные приспособления к условиям окружающей среды.
Образование новых видов
В широком смысле под образованием новых видов понимается не только отщепление от основного ствола вида нового или распад материнского вида на несколько дочерних, а и общее развитие вида как целостной системы, приводящее к существенным изменениям его морфоструктурной организации. Однако чаще все же видообразование рассматривают как процесс формирования новых видов посредством разветвления «родословного древа» вида.
Принципиальное решение проблемы видообразования было предложено Ч. Дарвином. Согласно его теории расселение особей одного вида приводит к образованию популяций, которые вследствие различий условий окружающей среды вынуждены адаптироваться к ним. Это, в свою очередь, влечет за собой обострение внутривидовой борьбы за существование, направляемой естественным отбором. В настоящее время считается, что борьба за существование вовсе не является обязательным фактором видообразования, наоборот, давление отбора в ряде популяций может снижаться. Различие условий существования способствует возникновению неодинаковых приспособительных изменений в популяциях вида, следствием которого является расхождение признаков и свойств популяций — дивергенция.
Однако накопления различий, даже на генетическом уровне, отнюдь не достаточно для появления нового вида. До тех пор, пока различающиеся по каким-либо признакам популяции не только контактируют, но и способны к скрещиванию с образованием плодовитого потомства, они относятся к одному виду. Лишь невозможность перетока генов из одной группы особей в другую, даже в случае разрушения разделяющих их преград, т. е. скрещивания, означает завершение сложнейшего эволюционного процесса формирования нового вида.
Видообразование является продолжением микроэволюционных процессов. Существует точка зрения, что видообразование не может быть сведено к микроэволюции, оно представляет качественный этап эволюции и осуществляется благодаря другим механизмам.
Способы видообразования
Выделяют два основных способа видообразования: аллопатрическое и симпатрическое.
Аллопатрическое, или географическое видообразование является следствием пространственного разделения популяций физическими преградами (горные хребты, моря и реки) вследствие их возникновения или расселения в новые места обитания (географическая изоляция). Поскольку в данном случае генофонд отделившейся популяции существенно отличается от материнской, да и условия в месте ее обитания не будут совпадать с исходными, со временем это приведет к дивергенции и формированию нового вида. Ярким примером географического видообразования является обнаруженное Ч. Дарвином во время путешествия на корабле «Бигль» разнообразие видов вьюрков на Галапагосских островах вблизи побережья Эквадора. По-видимому, отдельные особи единственного обитающего на южноамериканском континенте вьюрка каким-то образом попали на острова, и, вследствие различия условий (в первую очередь доступности пищи) и географической изоляции, они постепенно эволюционировали, образовав группу родственных видов.
В основе симпатрического, или биологического видообразования лежит какая-либо из форм репродуктивной изоляции, при этом новые виды возникают внутри ареала исходного вида. Обязательным условием симпатрического видообразования является быстрая изоляция образовавшихся форм. Это более быстрый процесс, чем аллопатрическое видообразование, а новые формы похожи на исходные предковые.
Симпатрическое видообразование может быть вызвано быстрыми изменениями хромосомного набора (полиплоидизация) или хромосомными перестройками. Иногда новые виды возникают вследствие гибридизации двух исходных видов, как, например, у домашней сливы, являющейся гибридом терна и алычи. В некоторых случаях симпатрическое видообразование связано с разделением экологических ниш у популяций одного вида в пределах единого ареала или сезонной изоляции — расхождения сроков репродукции у растений (разные виды сосны в Калифорнии пылят в феврале и апреле) и сроков размножения у животных.
Из всего многообразия вновь возникающих видов только немногие, наиболее приспособленные, могут существовать длительное время и дать начало новым видам. Причины гибели большинства видов до сих пор неизвестны, скорее всего это обусловлено резкими изменениями климата, геологическими процессами и вытеснением их более приспособленными организмами. В настоящее время одной из причин гибели значительного числа видов является человек, который истребляет наиболее крупных животных и самые красивые растения, и если в XVII веке этот процесс только начался истреблением последнего тура, то в XXI веке ежечасно исчезает более 10 видов.
Сохранение многообразия видов как основа устойчивости биосферы
Несмотря на то, что на планете, по разным оценкам, обитает 5–10 млн еще не описанных видов организмов, о существовании большинства из них мы никогда не узнаем, поскольку ежечасно с лица Земли исчезает около 50 видов. Исчезновение живых организмов в настоящее время совсем не обязательно связано с их физическим истреблением, чаще это обусловлено разрушением в результате человеческой деятельности их природных мест обитания. Гибель отдельного вида вряд ли способна привести к фатальным последствиям для биосферы, однако уже давно установлено, что вымирание одного вида растений влечет за собой гибель 10–12 видов животных, а это уже представляет угрозу как для существования отдельных биогеоценозов, так и для глобальной экосистемы в целом.
Накопленные за предыдущие десятилетия печальные факты вынудили Международный союз охраны природы и природных ресурсов (МСОП) начать в 1949 году сбор информации о редких и находящихся под угрозой исчезновения видах растений и животных. В 1966 году МСОП издал первую «Красную книгу фактов».
Красная книга — это официальный документ, содержащий регулярно обновляемые данные о состоянии и распространении редких и находящихся под угрозой исчезновения видов растений, животных и грибов.
В этом документе принята пятиступенчатая шкала статуса охраняемого вида, причем к первой ступени охраны относят виды, спасение которых невозможно без осуществления специальных мероприятий, а к пятой — восстановленные виды, состояние которых благодаря принятым мерам не вызывает опасений, но они еще не подлежат промышленному использованию. Разработка такой шкалы позволяет направить первоочередные усилия в области охраны именно на самые редкие виды, такие как амурские тигры.
Помимо международного варианта Красной книги, существуют также национальные и региональные ее варианты. В СССР Красная книга была учреждена в 1974 году, а в Российской Федерации порядок ее ведения регламентируется Федеральными законами «Об охране окружающей среды», «О животном мире» и Постановлением Правительства РФ «О Красной книге Российской Федерации». Сегодня в Красную книгу РФ занесено 610 видов растений, 247 видов животных, 42 вида лишайников и 24 вида грибов. Популяции некоторых из них, в свое время оказавшиеся под угрозой исчезновения (бобр европейский, зубр), уже довольно успешно восстановлены.
Под охрану в России взяты следующие виды животных: русская выхухоль, тарбаган (монгольский сурок), белый медведь, кавказская европейская норка, калан, манул, амурский тигр, леопард, снежный барс, сивуч, морж, тюлени, дельфины, киты, лошадь Пржевальского, кулан, розовый пеликан, фламинго обыкновенный, аист черный, лебедь малый, орел степной, беркут, журавль черный, стерх, дрофа, филин, чайка белая, черепаха средиземноморская, полоз японский, гюрза, жаба камышовая, минога каспийская, все виды осетровых рыб, лосось озерный, жук-олень, шмель необыкновенный, аполлон обыкновенный, рак-богомол, жемчужница обыкновенная и др.
К растениям Красной книги РФ относятся 7 видов подснежников, некоторые виды полыни, женьшень настоящий, 7 видов колокольчиков, дуб зубчатый, пролеска пролесковидная, 11 видов касатиков, рябчик русский, тюльпан Шренка, лотос орехоносный, башмачок венерин настоящий, пион тонколистный, ковыль перистый, первоцвет Юлии, прострел (сон-трава) луговой, красавка белладонна, сосна пицундская, тис ягодный, щитовник китайский, полушник озерный, сфагнум мягкий, филлофора курчавая, хара нитевидная и др.
Редкие грибы представлены трюфелем летним, или русским черным трюфелем, трутовиком лакированным и др.
Охрана редких видов в большинстве случаев связана с запретом их уничтожения, сохранением их самих в искусственно созданной среде обитания (зоопарках), охране их местообитаний и созданием низкотемпературных генетических банков.
Наиболее эффективной мерой охраны редких видов является сохранение их местообитаний, которое достигается организацией сети особо охраняемых заповедных территорий, имеющих, в соответствии с Федеральным законом «Об особо охраняемых природных территориях» (1995), международное, федеральное, региональное или местное значение. К ним относятся государственные природные заповедники, национальные парки, природные парки, государственные природные заказники, памятники природы, дендрологические парки, ботанические сады и др.
Наиболее эффективной мерой охраны редких видов является сохранение их местообитаний, которое достигается организацией сети особо охраняемых заповедных территорий, имеющих, в соответствии с Федеральным законом «Об особо охраняемых природных территориях» (1995), международное, федеральное, региональное или местное значение. К ним относятся государственные природные заповедники, национальные парки, природные парки, государственные природные заказники, памятники природы, дендрологические парки, ботанические сады и др.
Примеры ароморфозов
Ароморфоз—прогрессивное эволюционное изменение строения, приводящее к общему повышению уровня организации организмов.
Ароморфоз — это расширение жизненных условий, связанное с усложнением организации и повышением жизнедеятельности
Во-первых, это эволюционное изменение. Это означает, что это не просто небольшое изменение дочернего организма по отношению к родительскому. Это серьезное изменение в строении, которое привело к появлению абсолютно новых признаков.
Растительный мир:
Примеры ароморфозов растений:
От водорослей к наземным растениям:
1. появление проводящих тканей и частей тела (листьев);
2. переход от ризоидов к корням;
3. размножение в безводной среде;
От простейших наземных к голосеменным:
1. появление органов (в том числе — настоящий корень);
2. размножение семенами;
От голосеменных к покрытосеменным:
1. тройное оплодотворение — т.е. изменение органов размножения;
2. возникновение в клетках хлоропластов с хлорофиллом, фотосинтеза — важный ароморфоз в эволюции органического мира, обеспечивший все живое пищей и энергией, кислородом.
3. Появление от одноклеточных многоклеточных водорослей — ароморфоз, способствующий увеличению размеров организмов. Ароморфные изменения — причина появления от водорослей более сложных растений — псилофитов. Их тело состояло из различных тканей, ветвящегося стебля, ризоидов (выростов от нижней части стебля, укрепляющих растение в почве) 4. Дальнейшее усложнение растений в процессе эволюции: появление корней, листьев, развитого стебля, тканей, позволивших им освоить сушу (папоротники, хвощи, плауны) . 5. Ароморфозы, способствующие усложнению растений в процессе эволюции: возникновение семени, цветка и плода (переход семенных растений от размножения спорами к размножению семенами). Спора — одна специализированная клетка, семя — зачаток нового растения с запасом питательных веществ. Преимущества размножения растений семенами — уменьшение зависимости процесса размножения от окружающих условий и повышение выживаемости.
Примеры ароморфозов у растений:
1. возникновение автотрофного питания,
2. появление побеговых растений, семенного размножения, образование цветков, защита семян околоплодником, двойное оплодотворение и т. д.
Примеры ароморфозов у растений:
1.Возникновение у животных скелета,
2. свободных конечностей,
3. теплокровности,
4. четырехкамерного сердца,
5. живорождение потомства и вскармливание его молоком —
Это крупнейшие ароморфозы, так как они дали возможность освоить животным новые среды обитания и источники питания. Это привело к перестройке общего уровня организации.
Примеры ароморфозов животных:
Топ 10 ароморфозов животного мира:
- Появление клеточного ядра — переход от прокариотических организмов к эукариотическим.
- Переход от одноклеточных организмов к многоклеточным.
- Низшие черви — появление мезодермы — третьего зародышевого листка.
- Переход от первичноротых к вторичноротым— появление отдельного органа выделения.
- Членистоногие — первые, у кого появляются настоящие конечности.
- Переход внешний скелет-хорда-внутренний скелет — от низших к высшим животным — пример ароморфоза опорной системы.
- Дыхание всей поверхностью тела -трахеи- жабры-легкие — пример ароморфозов органов дыхания.
- Мышечный узел — однокамерное — двухкамерное-трехкамерное — четырехкамерное сердце, перегородки, круги кровообращение —ароморфозы кровеносной системы.
- Появление плаценты — пример ароморфозов размножения
10.Увеличение объема головного мозга
в условии
в решении
в тексте к заданию
в атрибутах
Категория:
Атрибут:
Всего: 386 1–20 | 21–40 | 41–60 | 61–80 | 81–100 …
Добавить в вариант
Какие из перечисленных примеров можно отнести к ароморфозам?
1) развитие семян у голосеменных растений
2) развитие большого числа боковых корней у капусты после окучивания
3) образование сочной мякоти в плодах бешеного огурца
4) выделение душистым табаком пахучих веществ
5) двойное оплодотворение у цветковых растений
6) появление у растений механических тканей
Установите соответствие между характером приспособления и направлением органической эволюции.
ПРИСОСОБЛЕНИЕ
А) роющие лапы крота
Б) редукция пальцев на ногах копытных
В) возникновение полового размножения
Г) появление шерсти у млекопитающих
Д) развитие плотной кутикулы на листьях растений, обитающих в пустыне
Е) мимикрия у насекомых
НАПРАВЛЕНИЕ ОРГАНИЧЕСКОЙ ЭВОЛЮЦИИ
1) ароморфоз
2) идиоадаптация
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
A | Б | В | Г | Д | Е |
Источник: Яндекс: Тренировочная работа ЕГЭ по биологии. Вариант 3.
Ароморфозом при возникновении млекопитающих стало
2) возникновение теплокровности
3) внутреннее оплодотворение
4) жизнь вдали от воды
Выберите из приведённых примеров ароморфозы.
1) Возникновение четырехкамерного сердца у млекопитающих.
2) Возникновение кровеносных сосудов мозга у птиц.
3) Возникновение системы кровоснабжения печени у пресмыкающихся.
4) Возникновение двух кругов кровообращения у земноводных.
5) Возникновение кровеносной системы у кольчатых червей.
6) Возникновение капиллярной системы в жабрах рыб.
Установите соответствие между эволюционными изменениями и главными направлениями эволюционного процесса.
ЭВОЛЮЦИОННЫЕ ИЗМЕНЕНИЯ
A) возникновение семени у растений
Б) возникновение четырёхкамерного сердца хордовых
B) выживаемость бактерий в вечной мерзлоте
Г) утрата пищеварительной системы у цепней
Д) приспособленность растений к опылению ветром
Е) появление копыт у лошадей
НАПРАВЛЕНИЯ ЭВОЛЮЦИИ
1) ароморфоз
2) идиоадаптация
3) общая дегенерация
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
A | Б | В | Г | Д | Е |
Какие из перечисленных примеров относят к ароморфозам?
1) листья-иголки у хвойных
2) млечные железы у млекопитающих
3) корнеплоды у свёклы
4) половое размножение
5) ткани у растений
6) стебель соломина у злаков
Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Дальний Восток. Вариант 2.
Верны ли следующие суждения о направлениях эволюции?
А. Упрощение в строении животных, связанные с паразитическим образом жизни, относят к биологическому регрессу.
Б. Возникновение класса Насекомые, сопровождавшееся повышением общего уровня их организации, — пример ароморфоза.
Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Центр, Урал. Вариант 2.
Какой из названных признаков растений относится к ароморфозам?
Установите соответствие между направлениями эволюции и примерами эволюционных изменений.
ИЗМЕНЕНИЕ
А) появление лёгочного дыхания у земноводных
Б) удлинение клюва у насекомоядных птиц
В) редукция пищеварительной системы у цепней
Г) появление перепонок между пальцами у водоплавающих
Д) появление вторичной полости тела
у кольчатых червей
НАПРАВЛЕНИЕ ЭВОЛЮЦИИ
1) ароморфоз
2) идиоадаптация
3) дегенерация
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
A | Б | В | Г | Д |
Установите соответствие между направлениями эволюции и примерами эволюционных изменений.
ИЗМЕНЕНИЕ
А) удлинение ушей у зайцеобразных
Б) редукция пищеварительной системы у бычьего цепня
В) появление третьего слоя клеток в зародыше червей
Г) развитие маскирующей окраски у тигров
Д) формирование хорды у хордовых
НАПРАВЛЕНИЕ ЭВОЛЮЦИИ
1) ароморфоз
2) идиоадаптация
3) дегенерация
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
A | Б | В | Г | Д |
Какое из перечисленных эволюционных событий является ароморфозом?
1) защита семян околоплодником
2) развитие хвоста у человека
3) утрата пятипалых конечностей змеями
4) приспособления цветковых растений к опылителям
Какой из ароморфозов обеспечил расцвет пресмыкающихся на суше?
1) появление лёгочного дыхания
2) развитие кожисто-известковой оболочки яиц
3) появление рычажных конечностей
4) возникновение двух кругов кровообращения
Какие из перечисленных примеров относят к ароморфозам?
1) наличие зацепок у плодов репейника
2) образование плодов у покрытосеменных растений
3) образование клубней у картофеля
4) образование корнеплодов у моркови
5) развитие проводящей ткани у растений
6) возникновение фотосинтеза
Источник: ЕГЭ по биологии 09.04.2016. Досрочная волна
Какие из перечисленных ароморфозов привели к возникновению рептилий? Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны.
1) появление грудной клетки для засасывания воздуха в легкие
2) возникновение покрова из ороговевших чешуй
3) формирование пятипалых конечностей
4) появление оболочек яиц
5) возникновение кожного дыхания
6) появление второго круга кровообращения
Источник: РЕШУ ОГЭ
Выберите из приведённых примеров ароморфозы.
1) Возникновение четырехкамерного сердца у млекопитающих.
2) Возникновение кровеносных сосудов мозга у птиц.
3) Возникновение системы кровоснабжения печени у пресмыкающихся.
4) Возникновение двух кругов кровообращения у земноводных.
5) Возникновение кровеносной системы у кольчатых червей.
6) Возникновение капиллярной системы в жабрах рыб.
Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. Какие из перечисленных примеров относят к ароморфозам?
1) наличие млечных желез у млекопитающих
2) образование корнеплода у моркови
3) возникновение полового процесса у организмов
4) возникновение процесса фотосинтеза
5) отсутствие пищеварительной системы у бычьего цепня
6) наличие плавательных перепонок конечностей у водоплавающих птиц.
Проанализируйте таблицу. Заполните пустые ячейки таблицы, используя понятия и термины, приведённые в списке. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из приложенного списка.
Направление эволюции | Путь эволюции | Пример |
---|---|---|
А | идиоадаптация | приспособление у цветковых растений к опылению ветром |
биологический прогресс | Б | редукция органов чувств у паразитических червей |
биологический прогресс | ароморфоз | В |
Список терминов и понятий:
1) биологический прогресс
2) общая дегенерация
3) появление четырёхкамерного сердца у млекопитающих
4) конвергенция
5) обитание в океане рыбы латимерии
6) биологический регресс
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
Установите соответствие между примерами и направлениями биологической эволюции, которые соответствуют этим примерам: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ПРИМЕР
А) возникновение ласт у дельфина
Б) возникновение трёхкамерного сердца у земноводных
В) исчезновение пищеварительной системы у цепней
Г) ухудшение зрения у крота
Д) возникновение двойного оплодотворения у цветковых растений
Е) отсутствие листьев и настоящих корней
у повилики
НАПРАВЛЕНИЕ
1) ароморфоз
2) идиоадаптация
3) общая дегенерация
Запишите в таблицу выбранные цифры под соответствующими буквами.
А | Б | В | Г | Д | Е |
Установите соответствие между примерами и направлениями эволюции: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ПРИМЕРЫ
А) редукция зрения у крота
Б) появление грудной клетки у рептилий
В) отсутствие хлорофилла у растения петров
крест
Г) редукция нервной системы асцидий до
одного узелка
Д) формирование кровеносной системы у
кольчатых червей
Е) удлинение ушной раковины у зайцев
1) ароморфоз
2) идиоадаптация
3) общая дегенерация
Запишите в таблицу выбранные цифры под соответствующими буквами.
А | Б | В | Г | Д | Е |
Установите соответствие между примерами и направлениями эволюции: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ПРИМЕР
А) отсутствие пищеварительной системы у бычьего цепня
Б) обтекаемая форма тела у китов
В) появление теплокровности у птиц
Г) появление плотной оболочки яйца у рептилий
Д) редукция хорды у асцидий
НАПРАВЛЕНИЕ
1) ароморфоз
2) идиоадаптация
3) общая дегенерация
Запишите в таблицу выбранные цифры под соответствующими буквами.
А | Б | В | Г | Д |
Всего: 386 1–20 | 21–40 | 41–60 | 61–80 | 81–100 …
Ароморфозы, идиоадаптации, общие дегенерации – всё это способы достижения биологического прогресса. Разберем их подробнее.
Ароморфоз — масштабное, значительное эволюционное изменение, приводящее к общему подъему организации, усиливающее интенсивность жизнедеятельности. Нужно понимать, что ароморфоз не является каким-то мелким приспособлением к условиям среды при их резком изменении, это действительно глобальная перемена.
Результаты ароморфозов
1. Повышение организации – крупные, значительные изменения.
2. Развитие приспособлений широкого значения. Следствие – рост выживаемости особей, снижение смертности в популяции.
3. Расширение среды обитания.
4. Образование новых популяций.
5. Ускорение процесса формирования новых видов.
Примеры ароморфозов у животных в целом
1. Живорождение.
2. Поддержание стабильной температуры тела.
3. Формирование замкнутой кровеносной системы.
Примеры ароморфозов у беспозвоночных
1. Половая дифференциация.
2. Билатеральная организация.
3. Появление трахейной системы дыхания.
4. Цефализация ЦНС.
Примеры ароморфозов у птиц
1. Появление крыла в качестве органа полета.
2. Возникновение совершенного четырехкамерного сердца.
3. Развитие отделов мозга, координирующих движения в полете.
Примеры ароморфозов у растений
1. Выход на сушу.
2. Возникновение пыльцевой трубки у голосеменных.
3. Появление цветка.
4. Появление сосудистой системы.
5. Способность к поддержанию и регулированию газообмена в листьях.
Казалось бы, мы перечислили очень разные процессы. Но их, все эти ароморфозы, объединяет то, что в ходе дальнейшей эволюции они не исчезают, а закрепляются и сохраняются, что ведет к появлению больших систематических групп: типов, отделов, классов, некоторых отрядов (у млекопитающих).
Идиоадаптация — способ достижения биологического прогресса, при которых организмы развивают некие частные приспособления, позволяющие им освоить дифференцированные (узкие) условия окружающей среды. Таким образом организмы могут прогрессировать без перехода на более высокий уровень морфофизиологической организации.
Приведем пример. Первые млекопитающие занимали маленькое место на планете – они робко шуршали в подлеске, опасаясь рептилий. Но сейчас, спустя миллионы лет, млекопитающие распространены по всей Земле, они научились жить не только на суше (в холодных снегах и жарких пустынях), но и в почве, и в воде (как пресной, так и соленой). Достигли этого млекопитающие благодаря череде идиоадаптаций – то есть частных изменений в строении и функциях разных органов без изменения уровня общей организации. Идиоадаптации ощутимо снижают уровень конкуренции между видами – им больше не нужно отчаянно бороться за пропитание и территорию (можно отрастить более плотный мех – и ты уже осваиваешь холодное предгорье, оставив конкурентов на равнине; или заполучить длинные, крепкие корни и доставать воду из глубоких слоев почвы).
Здесь есть тонкость. Неверно представлять, что частные приспособления при идиоадаптации – это всегда усложнение. Возможно и упрощение организма, «отбрасывание» органов и умений за ненадобностью. Этот путь называется общей дегенерацией. Если организмы попадают в более простую среду, чем та, в которой они жили до сих пор, у них упрощается строение.
Итак, общая дегенерация приводит к морфофизиологическому регрессу, который связан с сидячим, неподвижным, образом жизни, однородной, простой и скучной, средой обитания, с паразитическим существованием.
1. Например, рыбы, заплывшие в пещеру по ручью и оставшиеся жить в подземном озере, в кромешном мраке, утрачивают глаза и пигментацию чешуи.
2. Кроты, живущие под землей, имеют очень слабое зрение, их маленькие глазки плотно закрыты веками – вероятнее всего, кроты постепенно тоже утрачивают органы зрения.
3. Паразитическая лиана, питающаяся соками своего хозяина, теряет листву, у нее замедляется фотосинтез.
4. Повилика утрачивает хлорофилл.
5. У ленточных червей, паразитирующих в организмах млекопитающих, редуцировался не только кишечник, но и нервная система.
6. У асцидий во взрослом состоянии редуцируется хорда.
Казалось бы, слепые рыбы, лианы без листьев и черви без нервов должны умереть. Но этого не происходит, напротив, организмы процветают – у них время биологического прогресса.