Атф егэ биология теория

Аденозинтрифосфорная кислота (АТФ) — это нуклео­
тид, содержащий, помимо азотистого основания аденина
и остатка рибозы, три остатка фосфорной кислоты. Связи между фосфорными остат­
ками — фосфоангидридные макроэргические (при расщеплении выделяется 42 кДж/моль
энергии), тогда как стандартная химическая связь при расщеплении дает 12 кДж/моль.
При необходимости макроэргическая связь АТФ расщепляется, образуются аденозиндифос­
форная кислота (АДФ), фосфорный остаток и выделяется энергия:
АТФ + Н2О → АДФ + H3PO4 + 42 кДж.

АДФ также может расщепляться с образованием АМФ (аденозинмонофосфорной кисло­
ты) и остатка фосфорной кислоты:
АДФ + Н2О → АМФ + H3PO4 + 42 кДж.
В процессе энергетического обмена (дыхании, брожении), а также в процессе фотосинте­
за АДФ присоединяет фосфорный остаток и превращается в АТФ. Реакция синтеза АТФ на­
зывается фосфорилированием. АТФ является универсальным источником энергии для всех
процессов жизнедеятельности живых
организмов.

Видео YouTube

Видео YouTube

Обмен веществ и превращения энергии — свойства живых организмов. Энергетический
и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение
и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые
и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих
бактерий на Земле

Обмен веществ и превращения энергии — свойства живых организмов

Клетку можно уподобить миниатюрной химической фабрике, на которой происходят сотни и тысячи химических реакций.

Обмен веществ — совокупность химических превращений, направленных на сохранение и самовоспроизведение биологических систем.

Он включает в себя поступление веществ в организм в процессе питания и дыхания, внутриклеточный обмен веществ, или метаболизм, а также выделение конечных продуктов обмена.

Обмен веществ неразрывно связан с процессами превращения одних видов энергии в другие. Например, в процессе фотосинтеза световая энергия запасается в виде энергии химических связей сложных органических молекул, а в процессе дыхания она высвобождается и расходуется на синтез новых молекул, механическую и осмотическую работу, рассеивается в виде тепла и т. д.

Протекание химических реакций в живых организмах обеспечивается благодаря биологическим катализаторам белковой природы — ферментам, или энзимам. Как и другие катализаторы, ферменты ускоряют протекание химических реакций в клетке в десятки и сотни тысяч раз, а иногда и вообще делают их возможными, но не изменяют при этом ни природы, ни свойств конечного продукта (продуктов) реакции и не изменяются сами. Ферменты могут быть как простыми, так и сложными белками, в состав которых, кроме белковой части, входит и небелковая — кофактор (кофермент). Примерами ферментов являются амилаза слюны, расщепляющая полисахариды при длительном пережевывании, и пепсин, обеспечивающий переваривание белков в желудке.

Ферменты отличаются от катализаторов небелковой природы высокой специфичностью действия, значительным увеличением с их помощью скорости реакции, а также возможностью регуляции действия за счет изменения условий протекания реакции либо взаимодействия с ними различных веществ. К тому же и условия, в которых протекает ферментный катализ, существенно отличаются от тех, при которых идет неферментный: оптимальной для функционирования ферментов в организме человека является температура $37°С$, давление должно быть близким к атмосферному, а $рН$ среды может существенно колебаться. Так, для амилазы необходима щелочная среда, а для пепсина — кислая.

Механизм действия ферментов заключается в снижении энергии активации веществ (субстратов), вступающих в реакцию, за счет образования промежуточных фермент-субстратных комплексов.

Энергетический и пластический обмен, их взаимосвязь

Метаболизм складывается из двух одновременно протекающих в клетке процессов: пластического и энергетического обменов.

Пластический обмен (анаболизм, ассимиляция) представляет собой совокупность реакций синтеза, которые идут с затратой энергии АТФ. В процессе пластического обмена синтезируются органические вещества, необходимые клетке. Примером реакций пластического обмена являются фотосинтез, биосинтез белка и репликация (самоудвоение) ДНК.

Энергетический обмен (катаболизм, диссимиляция) — это совокупность реакций расщепления сложных веществ до более простых. В результате энергетического обмена выделяется энергия, запасаемая в виде АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

Пластический и энергетический обмены неразрывно связаны, поскольку в процессе пластического обмена синтезируются органические вещества и для этого необходима энергия АТФ, а в процессе энергетического обмена органические вещества расщепляются и высвобождается энергия, которая затем будет израсходована на процессы синтеза.

Энергию организмы получают в процессе питания, а высвобождают ее и переводят в доступную форму в основном в процессе дыхания. По способу питания все организмы делятся на автотрофов и гетеротрофов. Автотрофы способны самостоятельно синтезировать органические вещества из неорганических, а гетеротрофы используют исключительно готовые органические вещества.

Стадии энергетического обмена

Несмотря на всю сложность реакций энергетического обмена, его условно подразделяют на три этапа: подготовительный, анаэробный (бескислородный) и аэробный (кислородный).

На подготовительном этапе молекулы полисахаридов, липидов, белков, нуклеиновых кислот распадаются на более простые, например, глюкозу, глицерин и жирные кислоты, аминокислоты, нуклеотиды и др. Этот этап может протекать непосредственно в клетках либо в кишечнике, откуда расщепленные вещества доставляются с током крови.

Анаэробный этап энергетического обмена сопровождается дальнейшим расщеплением мономеров органических соединений до еще более простых промежуточных продуктов, например, пировиноградной кислоты, или пирувата. Он не требует присутствия кислорода, и для многих организмов, обитающих в иле болот или в кишечнике человека, является единственным способом получения энергии. Анаэробный этап энергетического обмена протекает в цитоплазме.

Бескислородному расщеплению могут подвергаться различные вещества, однако довольно часто субстратом реакций оказывается глюкоза. Процесс ее бескислородного расщепления называется гликолизом. При гликолизе молекула глюкозы теряет четыре атома водорода, т. е. окисляется, при этом образуются две молекулы пировиноградной кислоты, две молекулы АТФ и две молекулы восстановленного переносчика водорода $НАДН + Н^{+}$:

$С_6Н_{12}О_6 + 2Н_3РО_4 + 2АДФ + 2НАД → 2С_3Н_4О_3 + 2АТФ + 2НАДН + Н^{+} + 2Н_2О$.

Образование АТФ из АДФ происходит вследствие прямого переноса фосфат-аниона с предварительно фосфорилированного сахара и называется субстратным фосфорилированием.

Аэробный этап энергетического обмена может происходить только в присутствии кислорода, при этом промежуточные соединения, образовавшиеся в процессе бескислородного расщепления, окисляются до конечных продуктов (углекислого газа и воды) и выделяется большая часть энергии, запасенной в химических связях органических соединений. Она переходит в энергию макроэргических связей 36 молекул АТФ. Этот этап также называется тканевым дыханием. В случае отсутствия кислорода промежуточные соединения превращаются в другие органические вещества, и этот процесс называется брожением.

Дыхание

Механизм клеточного дыхания схематически изображен на рис.

Аэробное дыхание происходит в митохондриях, при этом пировиноградная кислота сначала утрачивает один атом углерода, что сопровождается синтезом одного восстановительного эквивалента $НАДН + Н^{+}$ и молекулы ацетилкофермента А (ацетил-КоА):

$С_3Н_4О_3 + НАД + Н~КоА → СН_3СО~КоА + НАДН + Н^{+} + СО_2↑$.

Ацетил-КоА в матриксе митохондрий вовлекается в цепь химических реакций, совокупность которых называется циклом Кребса (циклом трикарбоновых кислот, циклом лимонной кислоты). В ходе этих превращений образуется две молекулы АТФ, ацетил-КоА полностью окисляется до углекислого газа, а его ионы водорода и электроны присоединяются к переносчикам водорода $НАДН + Н^{+}$ и $ФАДН_2$. Переносчики транспортируют протоны водорода и электроны к внутренним мембранам митохондрий, образующим кристы. При помощи белков-переносчиков протоны водорода нагнетаются в межмембранное пространство, а электроны передаются по так называемой дыхательной цепи ферментов, расположенной на внутренней мембране митохондрий, и сбрасываются на атомы кислорода:

$O_2+2e^{-}→O_2^-$.

Следует отметить, что некоторые белки дыхательной цепи содержат железо и серу.

Из межмембранного пространства протоны водорода транспортируются обратно в матрикс митохондрий с помощью специальных ферментов — АТФ-синтаз, а выделяющаяся при этом энергия расходуется на синтез 34 молекул АТФ из каждой молекулы глюкозы. Этот процесс называется окислительным фосфорилированием. В матриксе митохондрий протоны водорода реагируют с радикалами кислорода с образованием воды:

$4H^{+}+O_2^-→2H_2O$.

Совокупность реакций кислородного дыхания может быть выражена следующим образом:

$2С_3Н_4О_3 + 6О_2 + 36Н_3РО_4 + 36АДФ → 6СО_2↑ + 38Н_2О + 36АТФ.$

Суммарное уравнение дыхания выглядит таким образом:

$С_6Н_{12}О_6 + 6О_2 + 38Н_3РО_4 + 38АДФ → 6СО_2↑ + 40Н_2О + 38АТФ.$

Брожение

В отсутствие кислорода или при его недостатке происходит брожение. Брожение является эволюционно более ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку в результате брожения образуются органические вещества, все еще богатые энергией. Различают несколько основных видов брожения: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода в ходе брожения пировиноградная кислота восстанавливается до молочной кислоты, при этом образовавшиеся ранее восстановительные эквиваленты расходуются, и остаются всего две молекулы АТФ:

$2С_3Н_4О_3 + 2НАДН + Н^{+} → 2С_3Н_6О_3 + 2НАД$.

При брожении с помощью дрожжевых грибов пировиноградная кислота в присутствии кислорода превращается в этиловый спирт и оксид углерода (IV):

$С_3Н_4О_3 + НАДН + Н^{+} → С_2Н_5ОН + СО_2↑ + НАД^{+}$.

При брожении с помощью микроорганизмов из пировиноградной кислоты могут образоваться также уксусная, масляная, муравьиная кислоты и др.

АТФ, полученная в результате энергетического обмена, расходуется в клетке на различные виды работы: химическую, осмотическую, электрическую, механическую и регуляторную. Химическая работа заключается в биосинтезе белков, липидов, углеводов, нуклеиновых кислот и других жизненно важных соединений. К осмотической работе относят процессы поглощения клеткой и выведения из нее веществ, которые во внеклеточном пространстве находятся в концентрациях, больших, чем в самой клетке. Электрическая работа тесно взаимосвязана с осмотической, поскольку именно в результате перемещения заряженных частиц через мембраны формируется заряд мембраны и приобретаются свойства возбудимости и проводимости. Механическая работа сопряжена с движением веществ и структур внутри клетки, а также клетки в целом. К регуляторной работе относят все процессы, направленные на координацию процессов в клетке.

Энергетический обмен

Энергетический обмен
(катаболизм, диссимиляция) — совокупность реакций расщепления органических
веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при
распаде органических веществ, не сразу используется клеткой, а запасается в
форме АТФ и других высокоэнергетических соединений. АТФ — универсальный
источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех
организмов в процессе фосфорилирования — присоединения неорганического фосфата
к АДФ.

У аэробных
организмов (живущих в кислородной среде) выделяют три этапа энергетического
обмена: подготовительный, бескислородное окисление и кислородное окисление; у
анаэробных
организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода
— два этапа: подготовительный, бескислородное окисление.

Подготовительный этап

Заключается в
ферментативном расщеплении сложных органических веществ до простых: белковые
молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы —
до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных
органических соединений осуществляется или ферментами желудочно-кишечного
тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия
рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут
быть использованы в качестве «строительного материала» или могут подвергаться
дальнейшему расщеплению.

Бескислородное окисление, или гликолиз

Этот этап заключается в
дальнейшем расщеплении органических веществ, образовавшихся во время
подготовительного этапа, происходит в цитоплазме клетки и в присутствии
кислорода не нуждается. Главным источником энергии в клетке является глюкоза.
Процесс бескислородного неполного расщепления глюкозы —
гликолиз.

Потеря электронов
называется окислением, приобретение — восстановлением, при этом донор
электронов окисляется, акцептор восстанавливается.

Следует отметить, что
биологическое окисление в клетках может происходить как с участием кислорода:

А + О2
→ АО2,

так и без его участия,
за счет переноса атомов водорода от одного вещества к другому. Например,
вещество «А» окисляется за счет вещества «В»:

АН2
+ В → А + ВН2

или за счет переноса
электронов, например, двухвалентное железо окисляется до трехвалентного:

Fe2+
→ Fe3+ + e.

Гликолиз — сложный
многоступенчатый процесс, включающий в себя десять реакций. Во время этого
процесса происходит дегидрирование глюкозы, акцептором водорода служит
кофермент НАД+ (никотинамидадениндинуклеотид). Глюкоза в результате
цепочки ферментативных реакций превращается в две молекулы пировиноградной
кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная
форма переносчика водорода НАД·Н2:

С6Н12О6
+ 2АДФ + 2Н3РО4 + 2НАД+ → 2С3Н4О3
+ 2АТФ + 2Н2О + 2НАД·Н2.

Дальнейшая судьба ПВК
зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и
растений происходит спиртовое брожение, при котором сначала происходит
образование уксусного альдегида, а затем этилового спирта:

1.         
С3Н4О3 → СО2 + СН3СОН,

2.         
СН3СОН + НАД·Н2 → С2Н5ОН
+ НАД+.

3.     У
животных и некоторых бактерий при недостатке кислорода происходит молочнокислое
брожение с образованием молочной кислоты:

4.    
С3Н4О3 + НАД·Н2 → С3Н6О3
+ НАД+.

5.     В
результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых
120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.

6.     Кислородное
окисление, или дыхание

7.     Заключается
в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при
обязательном присутствии кислорода.

8.     Пировиноградная
кислота транспортируется в митохондрии (строение и функции митохондрий ). Здесь
происходит дегидрирование (отщепление водорода) и декарбоксилирование
(отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной
группы, которая вступает в цикл реакций, получивших название реакций цикла
Кребса. Идет дальнейшее окисление, связанное с дегидрированием и
декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из
митохондрии удаляется три молекулы СО2; образуется пять пар атомов
водорода, связанных с переносчиками (4НАД·Н2, ФАД·Н2), а
также одна молекула АТФ.

Кислородное окисление

Суммарная реакция
гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа
выглядит следующим образом:

С6Н12О6
+ 6Н2О → 6СО2 + 4АТФ + 12Н2.

Две молекулы АТФ
образуются в результате гликолиза, две — в цикле Кребса; две пары атомов
водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле
Кребса.

Последним этапом
является окисление пар атомов водорода с участием кислорода до воды с
одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим
ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной
цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются
электроны, которые в матриксе митохондрий в конечном итоге соединяются с
кислородом:

О2
+ e → О2.

Протоны закачиваются в
межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя
мембрана непроницаема для ионов водорода, с одной стороны она заряжается
отрицательно (за счет О2), с другой — положительно (за
счет Н+). Когда разность потенциалов на внутренней мембране
достигает 200 мВ, протоны проходят через канал фермента АТФ-синтетазы,
образуется АТФ, а цитохромоксидаза катализирует восстановление кислорода до
воды. Так в результате окисления двенадцати пар атомов водорода образуется 34
молекулы АТФ.

Кислородное окисление

1 —
наружная мембрана; 2 — межмембранное пространство, протонный резервуар;
3 — цитохромы; 4 — АТФ-синтетаза.

При перфорации
внутренних митохондриальных мембран окисление НАД·Н2 продолжается,
но АТФ-синтетаза не работает и образования АТФ в дыхательной цепи не
происходит, энергия рассеивается в форме тепла (клетки «бурого жира»
млекопитающих).

Суммарная реакция
расщепления глюкозы до углекислого газа и воды выглядит следующим образом:

С6Н12О6
+ 6О2 → 6СО2 + 6Н2О + 38АТФ + Qт,

где Qт — тепловая
энергия.

Фотосинтез
— синтез органических веществ из углекислого газа и воды с обязательным
использованием энергии света:

6СО2
+ 6Н2О + Qсвета → С6Н12О6
+ 6О2.

У высших растений
органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты
(строение хлоропластов — лекция
№7). В мембраны тилакоидов хлоропластов встроены фотосинтетические
пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов
хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле
хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и
фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру,
является гидрофильной и поэтому лежит на той поверхности мембраны, которая
обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого
удерживает молекулу хлорофилла в мембране.

Фотосинтез

Хлорофиллы поглощают
красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям
характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов
организованы в
фотосистемы. У
растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у
фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может
разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный
многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы:
реакции
световой фазы и реакции темновой
фазы
.

Световая фаза

Эта фаза происходит
только в присутствии света в мембранах тилакоидов при участии хлорофилла,
белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта
света электроны хлорофилла возбуждаются, покидают молекулу и попадают на
внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно.
Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды,
находящейся во внутритилакоидном пространстве. Это приводит к распаду или
фотолизу воды:

Н2О
+ Qсвета → Н+ + ОН.

Ионы гидроксила отдают
свои электроны, превращаясь в реакционноспособные радикалы •ОН:

ОН
→ •ОН + е.

Радикалы •ОН
объединяются, образуя воду и свободный кислород:

4НО• →
2О + О2.

Кислород при этом
удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в
«протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет
Н+ заряжается положительно, с другой за счет электронов —
отрицательно. Когда разность потенциалов между наружной и внутренней сторонами
мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы
АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет
на восстановление специфического переносчика НАДФ+
(никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

+
+ 2е + НАДФ → НАДФ·Н2.

Таким образом, в
световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими
процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3)
образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2
транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

Световая фаза фотосинтеза

1 —
строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в
строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они
происходят не только на свету, но и в темноте. Реакции темновой фазы
представляют собой цепочку последовательных преобразований углекислого газа
(поступает из воздуха), приводящую к образованию глюкозы и других органических
веществ.

Первая реакция в этой
цепочке — фиксация углекислого газа; акцептором углекислого газа является
пятиуглеродный сахар
рибулозобифосфат
(РиБФ); катализирует реакцию фермент
рибулозобифосфат-карбоксилаза
(РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата
образуется неустойчивое шестиуглеродное соединение, которое сразу же
распадается на две молекулы
фосфоглицериновой кислоты
(ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных
продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях
используются энергии АТФ и НАДФ·Н2, образованных в световую фазу;
цикл этих реакций получил название «цикл Кальвина»:

6СО2
+ 24Н+ + АТФ → С6Н12О6 + 6Н2О.

Кроме глюкозы, в
процессе фотосинтеза образуются другие мономеры сложных органических соединений
— аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время
различают два типа фотосинтеза: С3— и С4-фотосинтез.

С3-фотосинтез

С3-фотосинтез

Это тип фотосинтеза,
при котором первым продуктом являются трехуглеродные (С3)
соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза
(М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая
фаза». Характерные особенности С3-фотосинтеза: 1) акцептором
углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует
РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется
шестиуглеродное соединение, которое распадается на две ФГК. ФГК
восстанавливается до
триозофосфатов
(ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Фотодыхание

Фотодыхание:
1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое
поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века
было установлено, что кислород подавляет фотосинтез. Как оказалось, для
РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и
кислород:

О2
+ РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом
называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором
фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат
становится гликолатом, который растение должно утилизировать. Он поступает в
пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где
окисляется до серина, при этом происходит потеря уже фиксированного углерода в
виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в
одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений
на 30–40% (
С3-растения — растения, для
которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез
— фотосинтез, при котором первым продуктом являются четырехуглеродные (С4)
соединения. В 1965 году было установлено, что у некоторых растений (сахарный
тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются
четырехуглеродные кислоты. Такие растения назвали
С4-растениями.
В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений
практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый
газ. Путь превращений углерода в С4-растениях стали называть
путем
Хэтча-Слэка
.

Для С4-растений
характерно особое анатомическое строение листа. Все проводящие пучки окружены
двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки.
Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор —
фосфоенолпируват
(ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С).
Процесс катализируется
ФЕП-карбоксилазой.
В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2
и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла
много гран, где активно идут реакции световой фазы. В хлоропластах клеток
обкладки идут реакции темновой фазы.

Оксалоацетат (4С)
превращается в малат, который через плазмодесмы транспортируется в клетки
обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата,
СО2 и НАДФ·Н2.

Пируват возвращается в
клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь
фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует
энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

С4-фотосинтез

Строение С4-растений

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки
обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 —
много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны,
крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

Значение фотосинтеза

Благодаря фотосинтезу,
ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются
миллиарды тонн кислорода; фотосинтез является основным источником образования
органических веществ. Из кислорода образуется озоновый слой, защищающий живые
организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый
лист использует лишь около 1% падающей на него солнечной энергии,
продуктивность составляет около 1 г органического вещества на 1 м2
поверхности в час.

Хемосинтез

Синтез органических
соединений из углекислого газа и воды, осуществляемый не за счет энергии света,
а за счет энергии окисления неорганических веществ, называется
хемосинтезом.
К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие
бактерии
окисляют аммиак до азотистой, а затем до азотной кислоты (NH3
→ HNO2 → HNO3).

Железобактерии
превращают закисное железо в окисное (Fe2+ → Fe3+).

Серобактерии
окисляют сероводород до серы или серной кислоты (H2S + ½O2
→ S + H2O, H2S + 2O2 → H2SO4).

В результате реакций
окисления неорганических веществ выделяется энергия, которая запасается
бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза
органических веществ, который проходит аналогично реакциям темновой фазы
фотосинтеза.

Хемосинтезирующие
бактерии способствуют накоплению в почве минеральных веществ, улучшают
плодородие почвы, способствуют очистке сточных вод и др.

Энергетический обмен.

(катаболизм (в переводе — разрушение) , диссимиляция)

Автор статьи — Л.В. Окольнова.

Энергетический обмен — это часть процесса обмена веществ (метаболизма).

Этими терминами называют:

— распад сложного вещества (полимера) на более простые (мономеры);
— окисление веществ;
— превращение органических веществ в неорганические;

Обязательное условие — выделение тепла и энергии (АТФ)

Самые часто встречающиеся катаболические процессы в организмах:

— пищеварение;
— дыхание;
— разложение редуцентами органических веществ до неорганических;
— брожение.

Все живые организмы в природе по типу дыхания делятся на 2 группы:

Аэробы (+О2)

Анаэробы (-О2)

используют 02 для дыхания и обмена веществ

живут в  бескислородной среде

большинство животных

бактерии (кроме фотосинтезирующих)

растения

грибы

некоторые микроорганизмы

паразитические животные

Стадии энергетического обмена аэробов:

3 этапа энергетического обмена:

—    подготовительный;
—    бескислородный;
—    кислородный.

Для анаэробов:

2 этапа энергетического обмена:

—    подготовительный;
—    бескислородный.

Рассмотрим аэробный энергетический обмен:

1 этап —подготовительный.

Все живые существа потребляют пищу органические вещества в виде крупных молекул — полимеров.

Первое, что необходимо для пищеварения — расщепить эти полимеры на более простые и небольшие составляющие — мономеры.

Расщепляются (диссимилируют) вещества под действием ферментов и в определенной среде. Причем, для каждого вещества существует свой фермент (это называется специфичностью ферментов).

У многоклеточных организмов это происходит в пищеварительной системе, у одноклеточных — прямо в клетке в лизосомах.

подготовительный этап

У многоклеточных организмов мономеры всасываются в кровь, разносятся кровью к тканям и органам и поступают в клетки для следующего этапа.

У одноклеточных — идут в запас в аппарат Гольджи, в рибосомы — для синтеза новых белков и глюкоза — в цитоплазму для следующего этапа.

2 этап — в цитоплазме клеток — бескислородный.

(его рассматривают только на примере углеводов).

бескислородный этап

3 этап — в митохондриях — кислородный.

Этот процесс сложный, многостадийный, обязательно участвуют ферменты, мы его рассмотрим схематично.

кислородный

Все процессы суммарно:

подготовительный расщепление полимеров в пищеварительной системе у многоклеточных,

в лизосомах у одноклеточных

крахмал -> глюкоза, выделяется тепло
бескислородный расщепление глюкозы в цитоплазме глюкоза -> пировиноградная кислота + 2АТФ
кислородный расщепление пировиноградной кислоты в митохондриях пировиноградная кислота -> CO2 + H2O + 36 АТФ

итоговое

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Энергетический обмен.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Аденозинтрифосфорная кислота —

АТФ

АТФ аденозинтрифосфорная кислота, или аденозинтрифосфат. Это вещество — своеобразный аккумулятор, без которого невозможно существование клетки.

АТФ находится в цитоплазме, в ядре, в двухмембранных органоидах (пластидах и митохондриях). Это основной и универсальный источник энергии, используемый клеткой для осуществления всех жизненных процессов. Благодаря расщеплению АТФ клетки могут осуществлять активный транспорт, синтезировать необходимые вещества, делиться и т. д. 

Количество АТФ определяется выполняемыми функциями — обычно в клетке содержится приблизительно (0,05) % АТФ от её массы. Но в активно функционирующих клетках (например, в мышцах) может быть и до (0,5) %.

Строение АТФ

АТФ — это нуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты. Остатки фосфорной кислоты в молекуле АТФ соединены друг с другом высокоэнергетическими (макроэргическими) связями. При разрыве такой связи выделяется почти в (4) раза больше энергии, чем при разрыве других связей. Обычно макроэргические связи обозначают символом ∼.

При гидролизе молекулы АТФ происходит отделение одного остатка фосфорной кислоты и образуется аденозиндифосфат (АДФ). При этом высвобождается (40) кДж/моль энергии.

shutterstock_1509423494.jpg
Рис. (1). Превращение АТФ в АДФ

Другие производные нуклеотидов

Важную роль в процессах обмена веществ играют производные нуклеотидов, которые являются переносчиками водорода в разных биохимических процессах (например, в фотосинтезе и клеточном дыхании). Одним из таких веществ служит никотинамиддинуклеотидфосфат (НАДФ).

НАДФ.png

Рис. (2). Модель молекулы НАДФ 

В световую фазу фотосинтеза молекула НАДФ присоединяет водород и переходит в восстановленную форму НАДФ

·H2

служащую источником атомов водорода в реакциях темновой фазы.

Витамины

Витамины — сложные органические соединения, которые в незначительных количествах требуются живым организмам для нормального протекания биохимических процессов. В отличии от других органических соединений витамины не являются источником энергии.

Большинство витаминов поступает с пищей, но некоторые могут синтезироваться и в самом организме. 

Витамины обычно называют буквами латинского алфавита. Их делят на две группы: водорастворимые (

B1

,

B2

,

B5

,

B6

,

B12

,

PP

,

C

) и жирорастворимые (

A

,

D

,

E

,

K

).

Витамины принимают участие в обмене веществ преимущественно как составная часть сложных ферментов. Их отсутствие или недостаток приводит к тяжёлым нарушениям жизнедеятельности организма.

Источники:

Рис. 1. Превращение АТФ в АДФ https://image.shutterstock.com/image-illustration/atp-energy-currency-cell-600w-1509423494.jpg

Рис. 2. Модель молекулы НАДФ Автор: Benjah-bmm27 — собственная работа, Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=1884538. 11.09.2021. 

Все живые организмы на Земле представляют собой открытые системы, способные активно организовывать поступление энергии и вещества извне. Энергия необходима для осуществления жизненно важных процессов, но прежде всего для химического синтеза веществ, используемых для построения и восстановления структур клетки и организма. Живые существа способны использовать только два вида энергии: световую (энергию солнечного излучения) и химическую (энергию связей химических соединений). По этому признаку организмы делятся на две группы ― фототрофы и хемотрофы.

Главным источником структурных молекул является углерод. В зависимости от источников углерода живые организмы делят на две группы: автотрофы, использующие неорганический источник углерода (диоксид углерода), и гетеротрофы, использующие органические источники углерода.

Процесс потребления энергии и вещества называется питанием. Известны два способа питания:

  • голозойный ― посредством захвата частиц пищи внутрь тела;

  • голофитный ― без захвата, посредством всасывания растворенных пищевых веществ через поверхностные структуры организма.

Разберемся с процессами, связанными с проникновением веществ в клетку.

Транспорт веществ в клетку

Существует два типа проникновения веществ в клетку через мембраны: пассивный и активный транспорт.

Пассивный транспорт

Пассивный транспорт — перенос веществ по градиенту концентрации из области высокой концентрации в область низкой без затрат энергии (например, диффузия, осмос).

  • Диффузия — пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации.

По пути простой диффузии частицы вещества перемещаются сквозь билипидный слой мембраны. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2, N2, бензол) и полярные маленькие молекулы (CO2, H2O, мочевина). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Простая диффузия представляет собой процесс, при котором газ или растворенные вещества распространяются и заполняют весь объём вещества. Молекулы или ионы, растворённые в жидкости, находясь в хаотичном состоянии, сталкиваются со стенками клеточной мембраны, что может вызвать двоякий исход: молекула либо отскочит, либо пройдёт через мембрану. Если вероятность последнего велика, то говорят, что мембрана проницаема для данного вещества.

Если концентрация данного вещества по обе стороны мембраны различна, то возникает процесс, который способствует выравниванию концентрации. Через клеточную мембрану проходят как хорошо растворимые (гидрофильные), так и нерастворимые (гидрофобные) вещества.

В случае, когда мембрана плохо проницаема, либо непроницаема для данного вещества, она подвергается действию осмотических сил. При более низкой концентрации вещества в клетке она сжимается, при более высокой концентрации — впускает внутрь воду.

Через биологические мембраны путём простой диффузии проникают многие вещества. Однако вещества, которые имеют высокую полярность и органическую природу, не могут проникать через мембрану путем простой диффузии, эти вещества попадают в клетку путем облегчённой диффузии. Облегчённой диффузией называется диффузия вещества по градиенту его концентрации, которая осуществляется с помощью специальных погружённых в мембрану транспортных белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегчённой диффузии по сравнению с простой пассивной диффузией. Облегчённая диффузия не требует специальных энергетических затрат за счёт гидролиза АТФ. Эта особенность отличает облегчённую диффузию от активного трансмембранного транспорта.

  • Осмос — процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества из объёма с меньшей концентрацией растворенного вещества.

Перенос растворителя через мембрану обусловлен осмотическим давлением. Это осмотическое давление возникает из-за того, что система пытается выровнять концентрацию раствора в обеих средах, разделенных мембраной, и описывается вторым законом термодинамики. Оно равно избыточному внешнему давлению, которое следует приложить со стороны раствора, чтобы прекратить процесс, то есть создать условия осмотического равновесия. Превышение избыточного давления над осмотическим может привести к обращению осмоса — обратной диффузии растворителя.

Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану, или через слой клеток, протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев источником энергии служит энергия макроэргических связей АТФ.

  • Калий-натриевый насос

К веществам, активно транспортируемым, по крайней мере, через некоторые клеточные мембраны, относят ионы натрия, калия, кальция, железа, водорода, хлора, йода, мочевой кислоты, некоторые сахара и большинство аминокислот.

Механизм активного транспорта лучше всего изучен для натрий-калиевого насоса (Na+/K+-нaсоса) — транспортного процесса, который выкачивает ионы натрия через мембрану клетки наружу и в то же время закачивает в клетку ионы калия. Этот насос отвечает за поддержание различной концентрации ионов натрия и калия по обе стороны мембраны, а также за наличие отрицательного электрического потенциала внутри клеток.

Рассмотрим работу насоса. Когда 2 иона калия связываются с белком-переносчиком снаружи и 3 иона натрия связываются с ним внутри, активируется АТФ-азная функция белка. Это ведет к расщеплению 1 молекулы АТФ до АДФ с выделением энергии высокоэнергетической фосфатной связи. Полагают, что эта освобожденная энергия вызывает химическое и конформационное изменение молекулы белка-переносчика, в результате 3 иона натрия перемещаются наружу, а 2 иона калия — внутрь клетки.

Рисунок 1. Калий-наттриевый насос

Фагоцитоз и пиноцитоз также относятся к активному транспорту.

  • Фагоцитоз (греч. фаго – пожирать) – поглощение клеткой твердых органических веществ. Оказавшись около клетки, твердая частица окружается выростами мембраны, или под ней образуется углубления мембраны. В результате частица оказывается заключенной в мембранный пузырек – фагосому – внутри клетки. Фагоцитоз свойственен простейшим, кишечнополостным, лейкоцитам, а также клеткам капилляров костного мозга, селезенки, печени, надпочечников.

  • Пиноцитоз (греч. пино – пью) – это процесс поглощения клеткой мелких капель жидкости с растворенными в ней высокомолекулярными веществами. Осуществляется путем захвата этих капель выростами цитоплазмы. Захваченные капли погружаются в цитоплазму и там усваиваются. Явление пиноцитоза свойственно животным клеткам и одноклеточным простейшим.

Рисунок 2. Фагоцитоз

Рисунок 3. Пиноцитоз

Превращение веществ в клетке

Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма. Метаболизм представляет собой совокупность взаимосвязанных и сбалансированных процессов, включающих разнообразные химические превращения в организме.

Реакции синтеза, осуществляющиеся с потреблением энергии, составляют основу анаболизма (пластического обмена, или ассимиляции).

Процесс синтеза веществ = пластический обмен = ассимиляция = анаболизм

Чтобы что-то построить, надо затратить энергию — этот процесс идет с поглощением энергии.

Противоположный анаболизму процесс – катаболизм – процесс расщепления веществ с высвобождением энергии (энергетический обмен, или диссимиляция).

Процесс расщепления = энергетический обмен = диссимиляция = катаболизм

Это процесс, при котором сложные вещества разлагаются на простые. “Ломать — не строить”, так что энергия при этом выделяется.

В основном, это реакции окисления, происходят они в митохондриях, самый простой пример — дыхание. При дыхании сложные органические вещества расщепляются до простых, выделяется углекислый газ и энергия.

Вообще, эти два процесса взаимосвязаны и переходят один в другой. Суммарно уравнение метаболизма — обмена веществ в клетке — можно записать так:

катаболизм + анаболизм = обмен веществ в клетке = метаболизм

Рассмотрим эти процессы подробнее.

Энергетический обмен = Диссимиляция = Катаболизм

Этот процесс идет в несколько этапов, и нам нужно рассмотреть, как он проходит в различных организмах.

Организмов будет всего 2 — многоклеточный (человек, например) и одноклеточный (растительный и животный).

И запомните, сочетание букв АТФ (аденозинтрифосфат) — означает “энергию”. Просто эта энергия заключена в молекуле.

1. Значение АТФ в обмене веществ

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам и состоит из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты.

Энергия, высвобождающаяся при гидролизе АТФ, используется клеткой для совершения всех видов работы. Значительные количества энергии расходуются на биологические синтезы. АТФ является универсальным источником энергообеспечения клетки. Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования, происходящему с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 минуты).

2. Энергетический обмен в клетке. Синтез АТФ

Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования, т.е. присоединения неорганического фосфата к АДФ. Энергия для фосфорилирования АДФ образуется в ходе энергетического обмена. Энергетический обмен, или диссимиляция, представляет собой совокупность реакции расщепления органических веществ, сопровождающихся выделением энергии. В зависимости от среды обитания диссимиляция может протекать в два или три этапа.

У большинства живых организмов ― аэробов, живущих в кислородной среде, ― в ходе диссимиляции осуществляется три этапа: подготовительный, бескислородный, кислородный. У анаэробов, обитающих в среде лишенной кислорода, или у аэробов при его недостатке, диссимиляция протекает лишь в два первых этапа с образованием промежуточных органических соединений, еще богатых энергией.

  • Первый этап – подготовительный. В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением.

  • Второй этап – бескислородный (гликолиз). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе:

С6Н12O6 + 2АДФ + 2Ф → 2С3Н4O3 + 2АТФ.

Остальная энергия рассеивается в виде тепла.

В клетках дрожжей и растений (при недостатке кислорода) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением.

Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных.

  • Третий этап – кислородный, состоящий из двух последовательных процессов – цикла Кребса, названного по имени Нобелевского лауреата Ганса Кребса, и окислительного фосфорилирования. Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ. (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.

Окислительное фосфорилирование, или клеточное дыхание происходит на внутренних мембранах митохондрий, в которые встроены молекулы-переносчики электронов. В ходе этой стадии освобождается большая часть метаболической энергии. Молекулы-переносчики транспортируют электроны к молекулярному кислороду. Часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ.

Суммарная реакция энергетического обмена:

С6Н12O6 + 6O2 → 6СO2 + 6Н2O + 38АТФ.

Пластический обмен = ассимиляция = анаболизм

Пластический обмен, или ассимиляция, представляют собой совокупность реакций, обеспечивающих синтез сложных органических соединений в клетке. Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул:

Органические вещества пищи (белки, жиры, углеводы) → пищеварение → Простые органические молекулы (аминокислоты, жирные кислоты, моносахара) → биологические синтезы → Макромолекулы тела (белки, жиры, углеводы).

Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе автотрофной ассимиляции реакции фото- и хемосинтеза, обеспечивающие образование простых органических соединений, предшествует биологическим синтезам молекул макромолекул:

Неорганические вещества (углекислый газ, вода) → фотосинтез, хемосинтез → Простые органические молекулы (аминокислоты, жирные кислоты, моносахара)→ биологические синтезы → Макромолекулы тела (белки, жиры, углеводы).

1. Фотосинтез

Фотосинтез ― синтез органических соединении из неорганических, идущий за счет энергии клетки. Ведущую роль в процессах фотосинтеза играют фотосинтезирующие пигменты, обладающие уникальным свойством ― улавливать свет и превращать его энергию в химическую энергию. Фотосинтезирующие пигменты представляют собой довольно многочисленную группу белково-подобных веществ. Главным и наиболее важным в энергетическом плане является пигмент хлорофилл, встречающийся у всех фототрофов, кроме бактерий-фотосинтетиков. Фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид у эукариот или во впячивания цитоплазматической мембраны у прокариот.

В процессе фотосинтеза кроме моносахаридов (глюкоза и др.), которые превращаются в крахмал и запасаются растением, синтезируются мономеры других органических соединении ― аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растительные, а точнее ― хлорофиллосодержащие, клетки обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.

2. Хемосинтез

Хемосинтез также представляет собой процесс синтеза органических соединений из неорганических, но осуществляется он не за счет энергии света, а за счет химической энергии, получаемой при окислении неорганических веществ (серы, сероводорода, железа, аммиака, нитрита и др.). Наибольшее значение имеют нитрифицирующие, железо- и серобактерии.

Высвобождающаяся в ходе реакций окисления энергия запасается бактериями в виде АТФ и используется для синтеза органических соединений. Хемосинтезирующие бактерии играют очень важную роль в биосфере. Они участвуют в очистке сточных вод, способствуют накоплению в почве минеральных веществ, повышают плодородие почвы.

Название нуклеиновых кислот произошло от слова «нуклеус» — в переводе с латинского ядро. Впервые нуклеиновые кислоты были обнаружены в ядре клеток в 1868 году швейцарским учёным Иоганном Фридрихом Мишером.

Долгое время функция нуклеиновых кислот в клетке была неясна. Считалось что эти вещества являются всего лишь запасником фосфора в организме.

Хотя Ф. Мишер писал, что это вещество явно связано с процессом оплодотворения, но до середины XX века биологи так и не могли разгадать загадку нуклеиновых веществ.

По мнению ученых того времени, строение молекул нуклеиновых кислот было слишком однообразным и не могло рассматриваться в качестве носителя генетической информации.

Постепенно было доказано, что именно нуклеиновые кислоты являются носителем наследственной информации, благодаря им дочерние клетки наследуют свойства и признаки материнской клетки.

Нуклеиновые кислоты- природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной информации в живых организмах.

Эта информация доступна зарегистрированным пользователям

Нуклеиновые кислоты— биологические полимеры, мономерами которых являются нуклеотиды.

К нуклеиновым кислотам относят:

  • дезоксирибонуклеиновую кислоту- ДНК
  • рибонуклеиновую кислоту- РНК

ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.

ДНК у прокариот находится в цитоплазме в составе нуклеоида.

ДНК у эукариотических организмов содержится исключительно в ядре клетки.

РНК содержится и в ядре, и в ядрышке, и в цитоплазме эукариотических клеток.

Нуклеотид (мономер) нуклеиновых кислот состоит из:

  • азотистого основания
  • остатка углевода- пентозы (рибоза в РНК, дезоксирибоза в ДНК)

44

  • остатка фосфорной кислоты

Связи между нуклеотидами легко подвергаются распаду при реакции с водой (гидролиз).

Азотистые основания- это ароматические гетероциклические соединения, производные пиримидина или пурина.

Пять соединений этого класса являются основными структурными компонентами нуклеиновых кислот, общими для всей живой материи.

Пиримидиновые основания наиболее просто устроены и к ним относят:

  • урацил
  • тимин
  • цитозин

Пуриновые основания являются производными пурина, молекула которого состоит из двух гетероциклов. К пуриновым основаниям относятся:

  • аденин
  • гуанин

Эта информация доступна зарегистрированным пользователям

Для сокращения названий нуклеотидов в биологии принято обозначать одной буквой — первой буквой их названия:

цитозин- Ц

гуанин- Г

аденин- А

тимин- Т

урацил- У

Эта информация доступна зарегистрированным пользователям

ДНК- дезоксирибонуклеиновая кислота

Нуклеиновую кислоту, содержащую дезоксирибозу, называют дезоксирибонуклеиновой кислотой или ДНК.

ДНК- это вещество, которое отличается необычным молекулярным строением и не похоже ни на одно химическое соединение.

Функции ДНК:

  • кодирование аминокислот
  • служит матрицей для синтеза всех видов РНК
  • хранение наследственной информации

Молекула ДНК представляет собой две спирально закрученные друг вокруг друга цепи:

Эта информация доступна зарегистрированным пользователям

Используя все имеющиеся данные о нуклеиновых кислотах, в 1953 году в США ученые Ф.Крик и Д.Уотсон смоделировали пространственную модель ДНК, где четко видно, что ДНК- это полимер, а его мономерами являются нуклеотиды.

Нуклеотид ДНК состоит из 3-х компонентов:

  • азотистого основания четырех видов (тимин, цитозин, аденин, гуанин)
  • пятиатомного сахара- дезоксирибозы
  • остатка фосфорной кислоты

Эта информация доступна зарегистрированным пользователям

Нуклеотиды соединены в одной цепи через углевод одного нуклеотида и остаток фосфорной кислоты соседнего нуклеотида прочной ковалентной связью.

В двойную цепь нуклеотиды соединены комплементарно через азотистые основания водородными связями:

  • между аденином и тимином двойная водородная связь 

       44

  • между гуанином и цитозином тройная водородная связь

       44

Эта информация доступна зарегистрированным пользователям

Нуклеотидный состав ДНК в 1905 г. впервые количественно проанализировал американский биолог Эрвин Чаргафф.

Он обнаружил, что в молекуле ДНК число пуриновых оснований всегда равно числу пиримидиновых.

Молекулярное количество аденина равно количеству тимина, а количество гуанина равно цитозину- это правило Чаргаффа или принцип комплементарности (дополнительности).

Согласно принципу комплементарности можно восстановить недостающую цепь ДНК.

44  44

Задача:

Первая цепочка ДНК имеет следующую последовательность нуклеотидов:

А- Г- Ц- Т- Т- Ц- Г- Г- А- Г

Достойте вторую цепочку ДНК, используя принцип комлементарности.

Решение:

Мы видим, что первый нуклеотид в первой цепи ДНК- аденин (А), смотрим правило комплементарности:

44  44

значит аденину (А) соответствует тимин (Т).

Далее второй нуклеотид в первой цепи гуанин (Г)— опять обращаемся к принципу комплементарности: гуанин (Г) соответствует цитозину (Ц).

И таким образом мы можем достроить всю вторую цепь ДНК.

Первая цепь ДНК: А- Г- Ц- Т- Т- Ц- Г- Г- А- Г

Вторая цепь ДНК: Т- Ц- Г- А- А- Г- Ц- Ц- Т- Ц

Кроме достраивания цепей ДНК в ЕГЭ присутствуют задачи на определение количества (%) нуклеотидов в гене и определение длины гена.

Для решения таких задач тоже используют правило Чаргаффа:молекулярное количество аденина равно количеству тимина, а количество гуанина равно цитозину.

Нуклеотиды расположены на расстоянии друг от друга 0,34 нм, а молекулярная масса одного нуклеотида равна 345 — эти величины постоянные, они также используются для решения задач по ДНК.

Примеры задач:

Задача

В молекуле ДНК доля тиминовых нуклеотидов составляет 15% от общего количества нуклеотидов.

Определите количество других видов нуклеотидов в данной молекуле ДНК.

Решение:

1. По правилу Чаргаффа количество Тимина (Т) в ДНК равно аденину (А), следовательно, если доля Т = 15%, значит и А будет = 15%.

2. В сумме А Т = 30% 

3. Всего всех нуклеотидов ДНК = 100%, из них на долю А + Т приходится 30%

4. 100% — 30% = 70%, то есть 70% приходится на гуанин (Г) и цитозин (Ц)

5. Количество Ц Г , следовательно 70% : 2 = 35% (35% = Г; 35% = Ц)

Ответ: А = (15%), Т = (15%), Г = (35%), Ц = (35%)

Задача

Участок цепи ДНК содержит 1500 нуклеотидов. В одной из цепей содержится 150 нуклеотидов А, 200 нуклеотидов Т, 250 нуклеотидов Г и 150 нуклеотидов Ц. Сколько нуклеотидов каждого вида будет во второй цепи ДНК?

Решение:

По правилу Чаргаффа в ДНК количество гуанина (Г) равно цитозину (Ц), количество тимина (Т) равно аденину (А). Если А в первой цепочке 150 нуклеотидов, значит и Т во второй цепи будет тоже 150, следовательно получается:

1-я цепь:          2-я цепь:

А = 150             Т = 150

Т = 200             А = 200

Г = 250             Ц = 250

Ц =1 50             Г = 150

Ответ: Во второй цепи ДНК: Т=150; А=200; Ц=250; Г=150

Задача

В молекуле ДНК обнаружено 880 гуаниловых нуклеотидов, которые составляют 22% от общего количества нуклеотидов этой ДНК. Сколько каждого нуклеотида содержится в этой молекуле ДНК? Какова длина этой молекулы ДНК?

Решение:

1) Исходя из принципа комплементарности (А + Т) + (Г+ Ц) = 100%

Тогда количество цитидиловых нуклеотидов равно: Г = Ц = 880, или 22%, то есть Г = 22% и Ц = 22%

2) На долю (Т + А) приходится: 100% — (22% + 22%) = 56%- количество Т и А

3) Необходимо посчитать количество нуклеотидов, исходя из процентных данных. Составляем пропорцию:

880 = 22%

Х = 56%

Х = (880*56) : 22 = 2400 нуклеотидов, приходится в сумме на А+Т

Так как А = Т, то 2400 : 2=1120 нуклеотидов, то есть 1120 = А и 1120 нуклеотидов Т

3)  Всего в этой молекуле ДНК содержится (880 х 2) + (1120 х 2) = 4000 нуклеотидов.

4) Для определения длины ДНК узнаем, сколько нуклеотидов содержится в одной цепи:

4000 : 2 = 2000

Мы знаем, что нуклеотиды расположены на расстоянии друг от друга 0,34 нм и вычисляем длину ДНК в одной цепи:

0,34 нм х 2000 нуклеотидов= 680 нм.

Ответ: в молекуле ДНК Г = Ц = 880 и А = Т = 1120 нуклеотидов; длина этой молекулы 680 нм.

Синтез ДНК

Каждая молекула ДНК способна к самоудвоению, в основе которого лежит тот же принцип комлементарности (дополнительности). Этот принцип поможет понять, как строится новая молекула ДНК в новой клетке.

Перед каждым делением клетки (в интерфазе) происходит образование новой молекулы ДНК под действием фермента дезоксирибонуклеазы.

Фермент разрывает двойную цепь ДНК и спираль раскручивается.

Каждая отдельная цепь собирает новую молекулу ДНК по принципу комплементарности, в результате образуется две молекулы ДНК.

Этот процесс называется редупликация ДНК— копирование молекулы ДНК.

Эта информация доступна зарегистрированным пользователям

Нуклеиновую кислоту, содержащую рибозу, называют рибонуклеиновой кислотой или РНК.

РНК— это полимер, мономерами которого являются нуклеотиды.

В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой, и эта цепь очень похожа на одну из цепей ДНК.

РНК участвует в реализации генетической информации.

Эта информация доступна зарегистрированным пользователям

По своей структуре нуклеотиды РНК очень близки, но не тождественны нуклеотидам ДНК, они также образуют между собой водородные связи.

Цепи РНК значительно короче и их вес меньше цепей ДНК.

Состав мономера (нуклеотида) РНК:

  • азотистые основания четырех видов (цитозин, гуанин, аденин, урацил), они такие же как у ДНК, кроме урацила, который очень близок по строению с тимином ДНК
  • пятиуглеродный моносахарид (рибоза)
  • остаток фосфорной кислоты

Эта информация доступна зарегистрированным пользователям

Виды РНК

Все виды РНК представляют собой неразветвленные полимеры, все они принимают участие в процессах образования белка.

Информация о строении всех видов РНК хранится в ДНК.

Процесс синтеза РНК на матрице ДНК называется транскрипцией, этот процесс подробно раскрыт в теме биосинтез белка.

Выделяют три вида РНК:

  • информационная (матричная) РНК- обозначается иРНК или мРНК
  • транспортная РНК- обозначается тРНК
  • рибосомная РНК- обозначается рРНК

Информационная РНК— содержит информацию о первичной структуре (аминокислотной последовательности) белков.

Длина зрелой мРНК составляет от нескольких сотен до нескольких тысяч нуклеотидов.

На долю иРНК приходится до 5% от общего содержания РНК в клетке.

Эта информация доступна зарегистрированным пользователям

Функции иРНК:

  • перенос генетической информации от ДНК к рибосомам
  • служит матрицей для синтеза молекулы белка
  • определяет аминокислотную последовательность первичной структуры белковой молекулы

Транспортные РНК (тРНК) содержат обычно от 73 до 93 нуклеотидов.

По структуре тРНК напоминают лист клевера.

В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов.

Эта информация доступна зарегистрированным пользователям

На долю тРНК приходится около 10% от общего содержания РНК в клетке.

В строении тРНК можно выделить участок, который состоит из трех нуклеотидов-антикодон.

Антикодоны специфически связываются с тройкой нуклеотидов (кодон) на матричной РНК при синтезе белка.

Конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону.

Функции тРНК — транспорт аминокислот к месту синтеза белка, к рибосомам, трансляционный посредник.

Рибосомные РНК (рРНК) содержат от 3000 до 5000 нуклеотидов.

На долю рРНК приходится 80- 85% от общего содержания РНК в клетке.

В комплексе с рибосомными белками рРНК образует рибосомы- органоиды, осуществляющие синтез белка.

В эукариотических клетках синтез рРНК происходит в ядрышках.

Функции рРНК:

  • необходимый структурный компонент рибосом и обеспечение функционирования рибосом
  • обеспечение взаимодействия рибосомы и тРНК

Эта информация доступна зарегистрированным пользователям

Все виды РНК синтезируются в клеточном ядре на матрице ДНК под действием ферментов полимераз.

Таблица сравнения ДНК и РНК

Нуклеиновая кислота

ДНК

РНК

Особенности строения

Двойная спираль, способность к репликации (самоудвоению)

Одинарная цепочка нуклеотидов.

Виды РНК:

  • информационная (матричная) РНК- (иРНК или мРНК)
  • транспортная РНК- (тРНК)
  • рибосомная РНК- (рРНК)

Строение нуклеотида

Азотистое основание- углевод- остаток фосфорной кислоты

Локализация в клетке

Ядро, митохондрии, хлоропласты

Ядро, ядрышко, цитоплазма, рибосомы, митохондрии, хлоропласты

Локализация в ядре

Хромосомы

Ядрышко

Азотистые основания

Аденин (А)

Тимин (Т)

Гуанин (Г)

Цитозин (Ц)

Аденин (А)

Урацил (У)

Гуанин (Г)

Цитозин (Ц)

Углевод нуклеотида

Пятиуглеродный моносахарид дезоксирибоза

Пятиуглеродный моносахарид рибоза

Функции

Хранение и передача наследственной информации

Биосинтез белка (реализация наследственной информации)

Эта информация доступна зарегистрированным пользователям

АТФаденозинтрифосфат или аденозинтрифосфорная кислота.

Все проявления жизнедеятельности, все функции клетки осуществляются с затратой энергии.

Энергия требуется для движения, биохимических реакций, переноса веществ через клеточные мембраны, для любых форм клеточной активности.

Источником энергии в живых клетках, обеспечивающим все виды их деятельности, является аденозинтрифосфорная кислота (АТФ).

АТФ был открыт в 1929 г. Карлом Ломанном, а в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке.

АТФ содержится в каждой клетке животного или растительного организма, в клетках бактерий и вирусах, хотя запас АТФ в клетках не велик.

АТФ содержится в:

  • цитоплазме
  • митохондриях
  • ядре клетки

У растений АТФ:

  • образуется в световой фазе фотосинтеза
  • используется в темновой фазе при синтезе глюкозы

За счет обменных процессов в организме происходит пополнение истраченных запасов этого богатого энергией вещества.

При усиленной, но кратковременной работе, например при беге на короткую дистанцию, мышцы работают за счет распада собственного АТФ. После окончания бега спортсмен усиленно дышит, в этот период происходит интенсивное окисление углеводов и других веществ для восполнения израсходованной АТФ.

При длительной напряженной работе содержание АТФ в клетках может существенно не изменяться, так как реакции окисления успевают обеспечить быстрое и полное восстановление израсходованной АТФ.

Итак, АТФ представляет единый и универсальный источник энергии для функциональной деятельности клетки.

В организме возможна передача энергии из одних частей клетки в другие и заготовка энергии впрок.

Синтез АТФ может происходить в одном месте клетки и в одно время, а использоваться в другом месте и в другое время.

Наиболее большое количество молекул АТФ можно обнаружить в скелетных мышцах.

АТФ- единый и универсальный источник энергообеспечения клетки.

По химическому строению АТФ является нуклеотидом.

Состав нуклеотида АТФ:

  • азотистое основание- аденин (А)
  • углевод- рибоза
  • три остатка фосфорной кислоты

Эта информация доступна зарегистрированным пользователям

АТФ — очень неустойчивая структура. Самопроизвольно или под влиянием фермента в АТФ разрывается связь между фосфором (Р) и кислородом (О). К освободившимся связям легко присоединяется одна или две молекулы воды и отщепляется одна или две молекулы фосфорной кислоты.

Если отщепляется одна молекула фосфорной кислоты, то АТФ переходит в АДФ (аденозиндифосфорную кислоту), если отщепляется две молекулы фосфорной кислоты, то образуется АМФ (аденозинмонофосфорная кислота).

Эта информация доступна зарегистрированным пользователям

И теперь самое важное: при реакции отщепления одной фосфорной кислоты выделяется большое количество энергии (40 кДж).

Чтобы подчеркнуть такую высокую энергетическую эффективность фосфорно-кислородной связи в АТФ ее называют «связью, богатой энергией» или макроэргической и обозначают знаком «~»

В АТФ имеются две макроэргические связи.

Значение АТФ в жизни клетки: центральная роль в клеточных превращениях энергии (распад АТФ на АДФ и АМФ с выделением энергии, синтез АТФ из АДФ с поглощением энергии)

Синтез АТФ

Два исследователя Пол Д. Бойер (США) и Джон Э. Уолкер (Великобритания) в 1997 году получили Нобелевскую премию за объяснение ферментативного механизма, лежащего в основе синтеза АТФ.

АТФ синтезируется в митохондриях в несколько этапов при взаимодействии специального фермента АТФ-синтазы с фосфатами во время дыхания клетки (окисление глюкозы в присутствии кислорода) и во время фотосинтеза (за счет солнечной энергии).

Синтез молекул АТФ происходит в ходе кислородного этапа энергетического обмена, во время которого в клетке образуется 36 молекул АТФ.

Эта информация доступна зарегистрированным пользователям

Витамины (лат. vita «жизнь»)- группа низкомолекулярных органических соединений простого строения и разнообразной химической природы, они необходимы для нормального функционирования организма.

Витамины являются составной частью ферментов, ускоряющих обменные процессы в организме.

Эта информация доступна зарегистрированным пользователям

История открытия витаминов

До XIX века о существовании витаминов ничего не было известно. Хотя болезни от нехватки этих веществ у людей активно проявлялись, обычно причины болезненного состояния списывались на инфекцию.

Особенно страдали от нехватки витаминов мореплаватели, которые при длительных путешествиях погибали от цинги- болезни, вызываемой острым недостатком витамина C.

Витамины по большей части содержатся в овощах и фруктах, которые моряки не брали с собой так как они быстро портились.

При цинге из-за недостатка витамина С нарушается биосинтез коллагена, входящего в состав соединительной ткани. В результате становятся слабыми сосуды, появляются кровотечения, поражаются кости, выпадают зубы, понижается иммунитет.

В 1747 году шотландский врач Джеймс Линд, пребывая в длительном плавании, провел своего рода эксперимент на матросах, больных цингой, дополнительно вводя в их рацион различные продукты.

В ходе этой работы было обнаружено, что у матросов, в рацион которых врач Линд добавлял фрукты, а в частности, цитрусовые лимоны и апельсины, болезнь проходила после 6 дней употребления этих фруктов.

Однако в то время его открытие признания в научном мире не заслужило.

Джеймс Линд и его работа:

Эта информация доступна зарегистрированным пользователям

В 1795 году лимоны и другие цитрусовые стали стандартной добавкой к рациону британских моряков.

Эта информация доступна зарегистрированным пользователям

Вторая половина XIX века была периодом бурного развития химии и физиологии.

К тому времени были получены основные сведения о химической природе главных составных частей пищи: белков, жиров, углеводов.

В 1880 году русский врач Николай Иванович Лунин в 26 лет экспериментально доказал, что в молоке содержатся некие вещества, незаменимые для питания.

Эта информация доступна зарегистрированным пользователям

Его опыт состоял в следующем:

Исследователь взял две группы мышей.

Первую группу мышей кормил натуральным коровьим молоком, а вторую группу смесью белков, жиров, углеводов и минеральных солей, по составу и в соотношениях, полностью соответствовавших коровьему молоку.

Опыт длился 70 дней.

Животные первой группы, питавшиеся натуральным молоком, оставались здоровыми на всем протяжении опыта.

Мыши из второй группы, питавшиеся смесью, погибали в срок от 11 до 21 дня.

Н.И.Лунин писал в своей диссертации: «В молоке, кроме казеина, жира, молочного сахара и солей, должны содержаться другие вещества, которые совершенно необходимы для питания. Обнаружить эти вещества и изучить их значение представляет большой интерес».

Именно исследование Н.И.Лунина можно считать первыми доказательствами существования витаминов, а самого Лунина российским первооткрывателем витаминов.

Эта информация доступна зарегистрированным пользователям

Далее история учения о витаминах продолжится в ходе изучения болезни «Бе́рибе́ри», которая была характерна для японских жителей, питавшихся очищенным рисом.

Эта информация доступна зарегистрированным пользователям

Истоки заболевания были найдены спустя годы.

В 1897 году ирландский врач Христиан Эйкман пришел к выводу, что, шлифуя рис, люди лишают себя необходимых полезных веществ, которые входят в состав верхних слоев неочищенных зерен.

В 1911 году польский учёный Казимир Функ, выделил кристаллический препарат из рисовых отрубей, небольшое количество которого излечивало бери-бери. Функ назвал это вещество «витамин»: от латинских слов «vita» (жизнь) и «amine» (азот).

С развитием биологической химии ученные постепенно установили химические формулы витаминов и научились получать их в чистом виде.

Благодаря применению витаминов исчезли такие массовые болезни, как рахит, цинга, пеллагра и другие авитаминозы.

Краткая история открытия жирорастворимых витаминов:

Витамин

Когда и какими учеными был открыт витамин

Витамин А 

В 1917 г. был обнаружен независимо Элмером Макколом и Лайфайеттом VHS Менделем и Томасом Бурром Осборном.

Витамин Д

В 1937 г. Виндаус сумел выделить активный витамин Д3.

Витамин Е

В 1936 г. получены первые препараты витамина Е путем экстракции из масел ростков зерен.

Синтез витамина Е осуществлен в 1938г. Каррером.

Краткая история открытия водорастворимых витаминов:

Витамин

Когда и какими учеными был открыт витамин

Витамин В1 (тиамин)

В 1911г. польским учёным Казимиром Функом.

В чистом виде впервые выделен Б. Янсеном в 1926г.

Витамин В2 (рибофлавин)

В 1879 г. ученый Блисc открыл это вещество.

Как рибофлавин описан в 1932г.

Витамин В3

В качестве витамина был открыт в 1933 г. Р.Уильямсом

Витамин С

В 1923 г. доктором Гленом Кингом было установлено химическое строение витамина С.

В 1928 г. доктор и биохимик Альберт Сент-Дьёрди впервые выделил витамин С.

В 1933 г. швейцарские исследователи синтезировали аскорбиновую кислоту (аналог витамина С)

Витамин К

В 1929 г. датский биохимик Хенрик Дам выделил жирорастворимый витамин, который в 1935 г. назвали витамином К. Участвует в свертываемости крови.

Витамин РР (никотиновая кислота)

С 1915 г. американский врач Гольдберг исследовал этот витамин, и постепенно был получен кристаллический препарат никотиновой кислоты

Классификация и роль витаминов в организме человека

Большую часть витаминов организм не способен синтезировать сам, поэтому витамины должны попадать в наш организм вместе с пищей.

Источниками витаминов для человека являются пищевые продукты растительного и животного происхождения.

Эта информация доступна зарегистрированным пользователям

Некоторые витамины образуются микрофлорой кишечника.

Витамины делят на:

  • жирорастворимые витамины: А, D, E, K
  • водорастворимые витамины: C, Р и витамины группы B

При недостатке или переизбытке в организме какого-либо витамина наступает болезненное состояние, характеризуемое определенным набором симптомов.

Гиповитаминоз- патологическое состояние, связанное с недостатком в организме определенного витамина.

Авитаминоз— тяжелое патологическое состояние, связанное с отсутствием в организме определенного витамина.

Гипервитаминоз— патологическое состояние, связанное с избытком в организме определенного витамина.

Авитаминозы и гиповитаминозы могут возникать не только в случае отсутствия витаминов в пище, но и при нарушении их всасывания при заболеваниях желудочно-кишечного тракта.

Жирорастворимые витамины накапливаются в жировой ткани и печени, поэтому гиповитаминозы и авитаминозы этих витаминов наблюдаются реже, чем у водорастворимых витаминов, которые не могут накапливаться в организме.

Таким образом, чаще наблюдаются гиповитаминозы водорастворимых витаминов и гипервитаминозы жирорастворимых витаминов.

Витаминология— медико-биологическая наука, изучающая структуру и механизмы действия витаминов, а также их применение в лечебных и профилактических целях.

Водорастворимые витамины:

  • Витамины группы В входят в состав многих ферментов, содержатся в продуктах (например, в хлебе), некоторые синтезируются кишечными симбионтами
  • Витамин С, или аскорбиновая кислота необходим для нормального формирования соединительной ткани. Он защищает от окисления ферменты, ответственные за синтез антител, поэтому помогает иммунной системе; поступает с пищей; при его недостатке развивается цинга
  • Витамин К – фактор свертываемости крови; образуется кишечной микрофлорой
  • Витамин РР (никотиновая кислота) – участвует в метаболизме белков, жиров, аминокислот, углеводов. Является лекарственным средством

Жирорастворимые витамины:

  • Витамин А (ретинол) необходим для образования зрительного пигмента сетчатки — родопсина (при его недостатке развиваются нарушения зрения и болезнь куриная слепота), поступает с пищей
  • Витамин D участвует в минерализации костной ткани. Его активная форма формируется в организме при ультрафиолетовом облучении (эндогенный витамин), поэтому связанное с ним заболевание рахит может развиваться при недостатке самого витамина или при недостатке ультрафиолета в зимнее время в северных районах. Витамина D содержится много в рыбьем жире (экзогенный витамин)
  • Витамин Е (токоферол) участвует в репродуктивной функции и иммунной защите, поступает с пищей

Различные факторы: кипячение, замораживание, высушивание, освещение могут оказать негативное влияние на витамины и разрушить их.

Наименее стойким из всех витаминов является витамин С, который начинает разрушаться при нагревании всего лишь до 60°С, а также при доступе воздуха, солнечного света, повышении влажности.

Витамин А более устойчив к действию высокой температуры, но легко окисляется при доступе воздуха.

Витамин D выдерживает продолжительное кипячение в кислой среде, а в щелочной быстро разрушается.

Витамины группы В более устойчивы и меньше разрушаются при кулинарной обработке. Наименее стоек из них витамин В1, который распадается при длительном кипячении и повышении температуры до 120°С.

Витамин Е выдерживает кипячение любой длительности.

Длительное хранение и высушивание губительно действуют на витамины А, С, но не разрушают витамины D, Е, В1, B2.

Витамин

Функции

Симптомы авитаминоза и гиповитаминоза

Источники витамина для организма

 А

Для роста и развития, нормального функционирования слизистых оболочек, восприятия света,

иммунитет (синтез интерферонов, иммуноглобулина, лизоцима); антиоксидант

Язвы на коже и слизистых оболочках. «Куриная слепота» – неспособность видеть при слабом свете; у детей -отставание в росте

Печень, сливочное масло, сыр, в виде каротина- в моркови, красном перце, тыкве, и в других овощах и фруктах красного цвета

 В1

Необходим для нормальной деятельности нервной системы

Заболевание под названием Бери-бери – повышенная возбудимость, нарушение сна, снижение памяти, судороги, паралич

В оболочках зерен злаковых растений, гречневой и овсяной крупах, зеленом горошке, ржаной хлеб

 В2

Влияет на состояние эпителия слизистой оболочки ротовой полости и других пищеварительных органов

Воспаление слизистой оболочки в ротовой полости, трещинки в углах рта, Катаракта – помутнение хрусталиков глаз

Молоко, сыр, и другие молочные продукты, печень почки, гречневая крупа

 В6

Участвует в белковом обмене, уменьшает отложения в сосудах холестерина, который ведёт к развитию атеросклероза, ожирению печени и отложению камней в желчном пузыре

Ожирение печени, нарушение функции нервной системы, вызывает потерю аппетита, тошноту, воспаление языка, образова­ние трещин в углах рта, воспаление красной каймы губ

Дрожжи пекарские и пивные, печень животных и рыб, яичный желток, сельдь, треска, зеленый горошек, стручковая фасоль, куриное мясо. Частично синтезируется микробами

 В12

Участвует в синтезе ферментов, ответственных за созревание клеток крови в костном мозге

Ухудшение аппетита, слабость, снижение массы тела. Злокачественная анемия (малокровие)

Печень, яичные желтки, кисломолочные продукты

 С

Участвует в синтезе белков соединительной ткани, повышает иммунитет

Быстрая утомляемость слабеет устойчивость к инфекциям, сонливость. Цинга – стенки кровеносных сосудов становятся хрупкими, кровоточат десна, расшатываются и выпадают зубы

Овощи, фрукты, ягоды, много в шиповнике, черной смородине, лимоне и капусте

 D

Регулирует содержание кальция и фосфора в крови, минерализация костей и зубов

Рахит – кости теряют прочность, у детей искривляются ноги деформируется грудная клетка, замедляется рост. Нарушение усвоения кальция и фосфора, снижается тонус мышц и устойчивость к инфекционным болезням

Яичный желток, печень, рыбий жир, молоко, образуется в коже под влиянием УФ лучей

 РР

Обеспечивает нормальное протекание окислительно-восстановительных процессов, участвует в образовании гормонов надпочечников

Нарушение деятельности пищеварительной системы, потемнение кожи, покрытие её язвочками

Дрожжи, неочищенный рис, печень, яичный желток, молоко. Образуется в организме из продуктов питания

 Н (биотин)

Участвует в энергетическом обмене

У маленьких детей недостаток витамина Н проявляется дерматитом.

У взрослых мелкое шелушение кожи,

сонливость,

потеря аппетита,

мышечная слабость,

болезненность мышц,

рвота, малокровие

Ананас, свекла, гречка, фасоль, мясо и субпродукты, грибы; синтезируется бактериальными симбионтами в толстом кишечнике

Эта информация доступна зарегистрированным пользователям

Понравилась статья? Поделить с друзьями:
  • Архитектура для сдачи егэ по истории
  • Аттестационный экзамен для юриста
  • Архитектура двфу какие экзамены
  • Аттестационный экзамен государственных гражданских служащих
  • Архитектура графика экзамен