Бактерии егэ фоксфорд

Люди — редкое исключение в мире бактерий.

Бактерии (греч. bakterion — палочка) — простые одноклеточные микроскопические организмы, принадлежащие к прокариотам.
В пищевых цепях они играют важнейшую роль редуцентов: разлагают органические вещества мертвых животных и растений.

Бактерии

Бактерии обладают исключительной устойчивостью: их можно обнаружить даже на стенках ядерного реактора. Такая способность
связана с их быстрым размножением — при благоприятных условиях бактерии делятся каждые 20 минут. При изменении условий
внешней среды (за счет мутаций) выживают и размножаются те формы, которые устойчивы к действию того или иного фактора (к примеру, радиации).

Строение бактерий

Бактерии имеют клеточную стенку, состоящую из муреина (пептидогликана) и выполняющую защитную функцию. У бактерий (прокариот,
доядерных) отсутствуют мембранные органоиды. В их клетке можно найти только немембранные: рибосомы, жгутики, пили. Пили —
поверхностные структуры, которые служат для прикрепления бактерии к субстрату.

Наследственный материал находится прямо в цитоплазме (не в ядре, как у эукариот) в виде нуклеоида. Нуклеоид (лат. nucleus — ядро + греч. eidos вид) —
одна сложная кольцевидная молекула ДНК, не ограниченная мембранами от остальной части клетки.

Строение бактерии

Долгое время выделяли «особый органоид» бактерий — мезосомы, считали, что они могут участвовать в некоторых клеточных процессах.

Спешу сообщить, что на данный момент установлено однозначно: мезосомы это складки цитоплазматический мембраны, образующиеся только
лишь при подготовке бактерий к электронной микроскопии (это артефакты, в живой бактерии их нет).

Мезосомы

При наступлении неблагоприятных для жизни условий бактерии образуют защитную оболочку — спору. При образовании споры клетка частично теряет воду,
уменьшаясь при этом в объеме. В таком состоянии бактерии могут сохраняться тысячи лет!

В состоянии споры бактерии очень устойчивы к изменениям температуры, механическим и химическим факторам. При изменении условий среды
на благоприятные, бактерии покидают спору и приступают к размножению.

Спора бактерии

Энергетический обмен бактерий

Бактерии получают энергию за счет окисления веществ. Существуют аэробные бактерии, живущие в воздушной среде, и анаэробные бактерии,
которые могут жить только в условиях отсутствия кислорода.

К аэробным бактериям относят многочисленных редуцентов, которые разлагают органические вещества мертвых растений и животных. Анаэробные
бактерии составляют микрофлору нашего кишечника — бескислородную среду обитания.

Бактерии аэробы и анаэробы

Получают энергию бактерии путем хемо- или фотосинтеза. Среди хемосинтезирующих бактерий можно встретить нитрифицирующие бактерии, железобактерии, серобактерии.

Важно заметить, что клубеньковые бактерии (азотфиксирующие) не осуществляют хемосинтез: клубеньковые бактерии относятся к гетеротрофам.

Среди фотосинтезирующих бактерий особое место принадлежит цианобактериями (сине-зеленым водорослям). Благодаря им сотни миллионов лет назад
возник кислород, а с ним и озоновый слой: появилась жизнь на поверхность земли и аэробный тип дыхания (поглощение кислорода), которым мы сейчас с вами пользуемся :)

Что касается бактерий гетеротрофов, то их способ питания основан на разложении останков животных и растений — сапротрофы (редуценты), либо же они
питаются органами и тканями животных и растений — паразиты.

Бактерии автотрофы и гетеротрофы

Биотехнология

Бактерии широко применяются в направлении биотехнологии — генной инженерии. Их используют для получения различных химических веществ (белков).

В ДНК бактерии вставляют нужный ген (к примеру, ген, кодирующий белковый гормон — инсулин), бактерия принимает новый участок гена за свой
собственный, в результате чего начинает синтезировать белок с данного участка. На рибосомах подобных бактерий синтезируется инсулин, который
человек собирает, обрабатывает и использует как лекарство.

Получение инсулина с помощью бактерий

Бактерии используются для получения антибиотиков (тетрациклина, стрептомицина, грамицидина), широко применяемых в медицине. Бактерии также применяют в пищевой промышленности, где их используют для получения молочнокислых продуктов, алкогольных напитков.

Классификация бактерий по форме

При микроскопии становятся заметны явные отличия форм бактерий.

По форме бактериальные клетки подразделяются на:

  • Стафилококки — их скопления похожи на виноградные грозди
  • Диплококки — округлой формы, расположенные попарно
  • Стрептококки — объединяются в цепочки, напоминающие нити жемчуга
  • Палочки
  • Вибрионы — изогнутые в виде запятой
  • Спириллы — спирально извитые палочки
  • Спирохеты — сильно извитые (до 10-15 витков) палочки

Формы бактерий

Размножение бактерий

Бактерии, как прокариоты (доядерные организмы), не могут делиться митозом, так как основное условие митоза — наличие ядра.
Бактерии делятся бинарным делением клетки.

В ходе бинарного деления бактерия делится на две дочерние клетки, являющиеся генетическими копиями материнской. Деление
в среднем происходит раз в 20 минут, популяция бактерий растет в геометрической прогрессии.

При размножении в лабораторных условиях бактерии образуют колонии. Колонии — видимые невооруженным глазом скопления клеток,
образуемые в процессе роста и размножения микроорганизмов на питательном субстрате. Колонии выращиваются в чашках Петри.

Колонии бактерий, бинарное деление бактерий

Бактериальные инфекции

Многие патогенные бактерии приводят к развитию тяжелых заболеваний у человека. На настоящий момент при бактериальных инфекциях
применяются антибиотики, дающие хороший эффект.

От некоторых болезней: дифтерия, коклюш и т.д. разработаны вакцины, дающие стойкий пожизненный иммунитет. После
вакцинации образуются антитела к возбудителю, вследствие чего организм становится защищен от подобных инфекций: при встрече с возбудителем человек не заболевает, или переносит
болезнь в легкой форме.

К бактериальным инфекциям относятся: чума, дифтерия, туберкулез, коклюш, гонорея, сифилис, тиф, столбняк, брюшной тиф, сальмонеллез,
дизентерия, холера. Ниже вы можете видеть возбудителей данных заболеваний и место их локализации в организме.

Бактериальные инфекции

Для борьбы с бактериями, вирусами и грибами в медицинских учреждениях (уже часто и в домашних условиях) используется кварцевание.
Кварцевание — процесс обеззараживания помещения, суть которого в лампе, испускающей ультрафиолетовое излучение, губительное для
микроорганизмов.

При проведении медицинских процедур локального кварцевания (облучения УФ отдельных участков) тела следует надевать защитные очки для
избежания ожога сетчатки глаза. При кварцевании помещений следует покинуть их по той же причине.

Кварцевание

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Вирусы — неклеточные формы жизни

Характеристика вирусов

Наряду с клеточной формой жизни существуют также и неклеточные ее формы — вирусы, вироиды и прионы. Вирусами (от лат. вира — яд) называют мельчайшие живые объекты, неспособные к проявлению каких-либо признаков жизни вне клеток. Факт их существования был доказан еще в 1892 году русским ученым Д. И. Ивановским, установившим, что болезнь растений табака — так называемая табачная мозаика — вызывается необычным возбудителем, который проходит через бактериальные фильтры, однако только в 1917 году Ф. Д’Эррель выделил первый вирус — бактериофаг. Вирусы изучает наука вирусология (от лат. вира — яд и греч. логос — слово, наука).

Вирусы существуют в двух формах: покоящейся, или внеклеточной, и воспроизводящейся, или внутриклеточной. Свободноживущих вирусов не существует, все они внутриклеточные паразиты на генетическом уровне.

В наше время известно уже около 1 000 вирусов, которые классифицируют по объектам поражения, форме и другим признакам, однако наиболее распространенной является классификация по особенностям химического состава и строения вирусов.

Особенности объектов поражения предопределяют подразделение вирусов на две большие группы: собственно вирусы и бактериофаги. Первые являются паразитами эукариотических клеток (животных, растений и грибов), а вторые — только клеток бактерий.

В отличие от клеточных организмов, вирусы состоят только из органических веществ — в основном нуклеиновых кислот и белка, однако часть вирусов содержит также липиды и углеводы.

Все вирусы условно делят на простые и сложные. Простые вирусы состоят из нуклеиновой кислоты и белковой оболочки — капсида. Капсид не монолитен, он собран из субъединиц белка — капсомеров. У сложных вирусов капсид покрыт липопротеиновой мембраной — суперкапсидом, в состав которого входят также гликопротеины и неструктурные белки-ферменты.

Несмотря на принадлежность к простым вирусам, наиболее сложное строение имеют вирусы бактерий — бактериофаги (от греч. бактерион — палочка и фагос — пожиратель), у которых выделяют головку и отросток, или «хвост». Головка бактериофага образована белковым капсидом и заключенной в нее нуклеиновой кислотой. В хвосте различают белковый чехол и спрятанный внутри него полый стержень. В нижней части стержня имеется специальная пластинка с шипами и нитями, ответственными за взаимодействие бактериофага с поверхностью клетки.

В отличие от клеточных форм жизни, у которых имеется и ДНК, и РНК, в вирусах присутствует только один вид нуклеиновой кислоты (либо ДНК, либо РНК), поэтому их делят на ДНК- (вирусы оспы, простого герпеса, аденовирусы, некоторые вирусы гепатита и бактериофаги) и РНК-содержащие вирусы (вирусы табачной мозаики, ВИЧ, энцефалита, кори, краснухи, бешенства, гриппа, остальные вирусы гепатита, бактериофаги и др.). У вирусов ДНК может быть представлена одноцепочечной молекулой, а РНК — двухцепочечной.

Так как вирусы лишены органоидов движения, заражение происходит при непосредственном контакте вируса с клеткой. В основном это происходит воздушно-капельным путем (грипп), через пищеварительную систему (гепатиты), кровь (ВИЧ) или переносчика (вирус энцефалита).

Непосредственно в клетку вирусы могут попадать случайно, с жидкостью, поглощаемой путем пиноцитоза, однако чаще их проникновению предшествует контакт с мембраной клетки-хозяина, в результате которого нуклеиновая кислота вируса или вся вирусная частица оказывается в цитоплазме. Большинство вирусов проникает не в любую клетку организма-хозяина, а в строго определенную, например, вирусы гепатита поражают клетки печени, а вирусы гриппа — клетки слизистой оболочки верхних дыхательных путей, так как они способны взаимодействовать со специфическими белками-рецепторами на поверхности мембраны клетки-хозяина, которые отсутствуют в других клетках.

В связи с тем, что у растений, бактерий и грибов клетки имеют прочные клеточные стенки, у вирусов, поражающих эти организмы, сформировались соответствующие приспособления к проникновению. Так, бактериофаги после взаимодействия с поверхностью клетки-хозяина «прокалывают» ее своим стержнем и вводят в цитоплазму клетки-хозяина нуклеиновую кислоту. У грибов заражение происходит в основном при повреждении клеточных стенок, у растений возможен как вышеупомянутый путь, так и проникновение вируса по плазмодесмам.

После проникновения в клетку происходит «раздевание» вируса, то есть утрата капсида. Дальнейшие события зависят от характера нуклеиновой кислоты вируса: ДНК-содержащие вирусы встраивают свою ДНК в геном клетки-хозяина (бактериофаги), а на РНК либо сначала синтезируется ДНК, которая затем встраивается в геном клетки-хозяина (ВИЧ), либо на ней может непосредственно происходить синтез белка (вирус гриппа). Воспроизведение нуклеиновой кислоты вируса и синтез белков капсида с использованием белоксинтезирующего аппарата клетки являются обязательными компонентами вирусной инфекции, после чего происходят самосборка вирусных частиц и их выход из клетки. Вирусные частицы в одних случаях покидают клетку, постепенно отпочковываясь от нее, а в других случаях происходит микровзрыв, сопровождающийся гибелью клетки.

Вирусы не только угнетают синтез собственных макромолекул в клетке, но и способны вызывать повреждение клеточных структур, особенно во время массового выхода из клетки. Это приводит, например, к массовой гибели промышленных культур молочнокислых бактерий в случае поражения некоторыми бактериофагами, нарушения иммунитета вследствие уничтожения ВИЧ Т4-лимфоцитов, представляющих собой одно из центральных звеньев защитных сил организма, к многочисленным кровоизлияниям и гибели человека в результате заражения вирусом Эбола, к перерождению клетки и образованию раковой опухоли и т. д.

Несмотря на то, что проникшие в клетку вирусы часто быстро подавляют ее системы репарации и вызывают гибель, вероятен также и иной сценарий развития событий — активация защитных сил организма, которая связана с синтезом противовирусных белков, например интерферона и иммуноглобулинов. При этом размножение вируса прерывается, новые вирусные частицы не образуются, а остатки вируса выводятся из клетки.

Происхождение вирусов не совсем ясно, однако полагают, что вирусы и бактериофаги — это обособившиеся генетические элементы клеток (например, плазмиды бактерий), которые эволюционировали вместе с клеточными формами жизни. Существуют также гипотезы упрощения прокариотических организмов вследствие паразитирования, доклеточного происхождения вирусов и занесения их из космоса.

Вирусы вызывают многочисленные заболевания человека, животных и растений. У растений это мозаичность табака и тюльпанов, у человека — грипп, краснуха, корь, СПИД и др. В истории человечества вирусы черной оспы, «испанки», а теперь и ВИЧ унесли жизни сотен миллионов человек. Однако инфицирование способно и повышать устойчивость организма к разнообразным возбудителям заболеваний (иммунитет), и таким образом способствовать их эволюционному прогрессу. Кроме того, вирусы способны «прихватывать» части генетической информации клетки-хозяина и переносить их следующей жертве, обеспечивая тем самым так называемый горизонтальный перенос генов, образование мутаций и, в конце концов, поставку материала для процесса эволюции.

В наше время вирусы широко используют в изучении строения и функций генетического аппарата, а также принципов и механизмов реализации наследственной информации, они применяются как инструмент генетической инженерии и биологической борьбы с возбудителями некоторых заболеваний растений, грибов, животных и человека.

Заболевание СПИД и ВИЧ-инфекция

ВИЧ (вирус иммунодефицита человека) был обнаружен только в начале 80-х годов ХХ века, однако скорость распространения вызываемого им заболевания и невозможность излечения на данном этапе развития медицины заставляют уделять ему повышенное внимание. В 2008 году Ф. Барре-Синусси и Л. Монтанье за исследование ВИЧ была присуждена Нобелевская премия в области физиологии и медицины.

ВИЧ — сложный РНК-содержащий вирус, который поражает главным образом Т4-лимфоциты, координирующие работу всей иммунной системы. На РНК вируса при помощи фермента РНК-зависимой ДНК-полимеразы (обратной транскриптазы) синтезируется ДНК, которая встраивается в геном клетки-хозяина, превращается в провирус и «затаивается» на неопределенное время. Впоследствии с этого участка ДНК начинается считывание информации о вирусной РНК и белках, которые собираются в вирусные частицы и практически одновременно покидают ее, обрекая на гибель. Вирусные частицы поражают все новые клетки и приводят к снижению иммунитета.

ВИЧ-инфекция имеет несколько стадий, при этом длительный период человек может быть носителем заболевания и заражать других людей, однако сколько бы ни длился этот период, все равно наступает последняя стадия, которая называется синдромом приобретенного иммунодефицита, или СПИДом.

Заболевание характеризуется снижением, а затем и полной потерей иммунитета организма ко всем возбудителям заболеваний. Признаками СПИДа являются хроническое поражение слизистых оболочек полости рта и кожи возбудителями вирусных и грибковых заболеваний (герпесом, дрожжевыми грибами и т. д.), тяжелая пневмония и другие СПИДассоциированные заболевания.

ВИЧ передается половым путем, через кровь и другие жидкости организма, но не передается через рукопожатия и бытовые предметы. В первое время в нашей стране инфицирование ВИЧ чаще было сопряжено с неразборчивыми половыми контактами, особенно гомосексуальными, инъекционной наркоманией, переливанием зараженной крови, в настоящее же время эпидемия вышла за пределы групп риска и быстро распространяется на другие категории населения.

Основными средствами профилактики распространения ВИЧ-инфекции являются использование презервативов, разборчивость в половых связях и отказ от употребления наркотиков.

Меры профилактики распространения вирусных заболеваний

Основным средством профилактики вирусных заболеваний у человека является ношение марлевых повязок при контакте с больными заболеваниями дыхательных путей, мытье рук, овощей и фруктов, протравливание мест обитания переносчиков вирусных заболеваний, вакцинация от клещевого энцефалита, стерилизация медицинских инструментов в лечебных учреждениях и др. Во избежание заражения ВИЧ следует также отказаться от употребления алкоголя, наркотиков, иметь единственного полового партнера, использовать индивидуальные средства защиты при половых контактах и т. д.

Вироиды

Вироиды (от лат. вирус — яд и греч. эйдос — форма, вид) — это мельчайшие возбудители болезней растений, в состав которых входит только низкомолекулярная РНК.

Их нуклеиновая кислота, вероятно, не кодирует собственные белки, а только воспроизводится в клетках растения-хозяина, используя ее ферментные системы. Нередко она может также разрезать ДНК клетки-хозяина на несколько частей, обрекая тем самым клетку и растение в целом на гибель. Так, несколько лет назад вироиды вызвали гибель миллионов кокосовых пальм на Филиппинах.

Прионы

Прионы (сокр. англ. proteinaceous infectious и —on) — это небольшие инфекционные агенты белковой природы, имеющие форму нити или кристалла.

Такие же по составу белки имеются и в нормальной клетке, однако прионы обладают особой третичной структурой. Попадая в организм с пищей, они помогают соответствующим «нормальным » белкам приобретать свойственную самим прионам структуру, что приводит к накоплению «ненормальных» белков и дефициту нормальных. Естественно, что это вызывает нарушения функций тканей и органов, в особенности центральной нервной системы, и развитие неизлечимых в настоящий момент заболеваний: «коровьего бешенства», болезни Крейтцфельдта – Якоба, куру и др.

Царство бактерий, строение, жизнедеятельность, размножение, роль в природе.
Бактерии — возбудители заболеваний растений, животных, человека. Профилактика
заболеваний, вызываемых бактериями

Царство бактерий

Бактерии — типичные прокариоты, представленные в основном одноклеточными и колониальными, реже многоклеточными формами. Среди них есть как автотрофы, так и гетеротрофы. Бактерии появились на Земле около 3,5 млрд лет назад и сыграли ключевую роль в преобразовании атмосферы и литосферы планеты. Обитают они во всех средах, от ледниковой минусовой температуры до кипящих источников, их находят даже на метеоритах, упавших на Землю, в атмосфере над ее поверхностью и в океанских глубинах. В настоящее время известно более 100 000 видов бактерий, однако только около 3000 из них изучены в той или иной степени. Изучением бактерий занимается наука бактериология, являющаяся разделом микробиологии. Впервые бактерии были описаны в XVII веке выдающимся микроскопистом А. ван Левенгуком.

Строение бактерий

Средние размеры клетки бактерий составляют 0,5–10 мкм. Бактериальная клетка имеет типичное для прокариот строение: кольцевая молекула ДНК, или хромосома бактерий, не отделена от цитоплазмы мембраной, а располагается в особом ее участке — нуклеоиде. Хромосома может быть не единственной молекулой ДНК в клетке — дополнительные маленькие кольцевые молекулы ДНК, способные встраиваться в хромосому, называются плазмидами. Плазмиды могут нести гены болезнетворности или устойчивости к антибиотикам.

Органоиды бактерий представлены в основном рибосомами, на которых происходит синтез белков. Все ферменты этих организмов находятся либо в цитоплазме, либо на немногочисленных мембранах, например, впячивании плазмалеммы — мезосоме.

Запасные вещества бактерий чаще всего откладываются в виде зерен крахмала или гликогена, капель жира и гранул волютина. У ряда бактерий, особенно у синезеленых водорослей, клетки содержат также вакуоли с белковыми оболочками, выполняющие функцию связывания атмосферного азота.

Так как многие бактерии подвижны, они имеют органоиды движения — жгутики. Кроме того, у них могут быть другие образования — ворсинки, служащие для прикрепления к субстрату или обмена наследственной информацией.

Как и эукариотические клетки, клетка бактерий окружена плазмалеммой, поверх которой чаще всего расположены клеточная стенка и капсула или облако слизи. Основу клеточной стенки большинства бактерий составляет сложное органическое вещество — муреин, цианобактерии имеют целлюлозные клеточные стенки. Муреин расщепляется компонентом слюны человека — лизоцимом, на чем и основывается его бактерицидное действие.

Капсула бактерий представляет собой уплотненный слой слизи, тогда как облако не имеет четко очерченных границ. Бактериальная слизь в основном имеет углеводную природу.

Компоненты поверхностного аппарата выполняют целый ряд функций: защищают бактериальную клетку от воздействия факторов окружающей среды, в том числе от проникновения бактериофагов, придают ей форму, помогают удерживать воду и принимают участие в транспорте веществ, служат резервуаром питательных веществ, объединяют клетки в колонии и цепочки, а также обеспечивают их прикрепление к субстрату.

Некоторые бактерии не образуют ни клеточной стенки, ни капсулы, тогда как другие утратили их в результате воздействия антибиотиков и факторов окружающей среды.

В зависимости от формы клетки бактерии делят на кокки, бациллы, вибрионы, спириллы и спирохеты. Кокки — это бактерии сферической формы, бациллы — палочковидной, спириллы — спиральной, вибрионы имеют вид запятой, тогда как спирохетами называют тонкие, длинные и извитые бактерии, способные к движению. Отдельные сферические бактерии называются микрококками, их группы по две — диплококками, гроздевидные скопления — стафилококками, а вытянутые цепочки — стрептококками. Эти морфологические особенности учитываются в классификации бактерий.

Большинство бактерий, вызывающих заболевания человека, имеют палочковидную форму, например дизентерийная, ботулиническая, дифтерийная, чумная, сибиреязвенная и столбнячная палочки, палочка Коха (туберкулез) и сальмонеллы (сальмонеллез и брюшной тиф). Реже это могут быть вибрионы, как хеликобактерии (язва желудка и двенадцатиперстной кишки) и холерный вибрион, а также спирохеты (сифилис) или диплококки (гонорея).

Если настоящие бактерии представлены одиночными клетками или колониальными формами, то среди цианобактерий (синезеленых водорослей) встречаются также многоклеточные формы, у которых клетки могут различаться по строению и выполняемым функциям. Так, у водоросли анабены среди вегетативных клеток встречаются и большие по размерам клетки — гетероцисты, имеющие общий чехол со всеми остальными клетками. Гетероцисты выполняют функции связывания атмосферного азота и вегетативного размножения, так как именно по этим клеткам происходит разрыв нити водоросли. Цианобактерии содержат хлорофилл и другие пигменты фотосинтеза (каротиноиды и фикобилины), что обусловливает их окраску. К ним принадлежат носток, анабена, осциллятория и др. Особенности строения и процессов жизнедеятельности синезеленых водорослей способствовали их выделению в отдельное подцарство цианобактерий (синезеленых водорослей), тогда как остальные представители царства относятся к подцарству бактерий.

Современная классификация бактерий учитывает не только морфологические их особенности, но и строение их клеточной стенки и процессы жизнедеятельности. По этим критериям бактерии предлагают разделить на два царства: археи и бактерии. Археи составляют сравнительно малоизученную группу прокариотических организмов, одни из которых обитают в экстремальных условиях среды, например в горячих гейзерах и сильно засоленных водоемах, а другие способны выделять метан в процессе жизнедеятельности. Археи присутствуют и в кишечнике человека, где синтезируют витамин В12. По организации наследственной информации и ряду других признаков археи ближе к эукариотическим организмам, чем бактерии.

Жизнедеятельность бактерий

Бактериям присущи все признаки живого, в том числе обмен веществ и превращения энергии, способность к самовоспроизведению и др. По способу питания бактерии относят к гетеротрофам и автотрофам. Среди гетеротрофных бактерий есть сапротрофы, паразиты, мутуалисты и даже хищники. Большинство бактерий поглощают пищу в растворенном виде из-за наличия клеточной стенки, а не заглатывают ее.

Сапротрофы обеспечивают расщепление органических веществ до минеральных, способствуя круговороту веществ в природе. Паразитические бактерии вызывают многочисленные заболевания, например чуму, холеру, туберкулез, пневмонию и другие. Мутуалистами являются бактерии кожи и слизистых оболочек человека, а также кишечника. Они не только защищают человека от других болезнетворных бактерий, но и могут синтезировать витамины, которые не образуются в организме человека. Следует отметить, что попадание мутуалистических бактерий в несвойственные им места приводит к развитию воспалительных процессов, например, стафилококк эпидермальный, в норме обитающий на нашей коже, может вызвать цистит, а стафилококк золотистый со слизистых оболочек — образование нарывов на месте ранок.

Не менее важен симбиоз клубеньковых бактерий с корнями растений. Эти бактерии связывают атмосферный азот в доступной для растений форме, а взамен получают от растений воду и органические вещества.

Автотрофные бактерии получают энергию за счет фотосинтеза или хемосинтеза. Значительная часть фотосинтезирующих бактерий относится к цианобактериям, или синезеленым водорослям, которые представлены свободноживущими формами, компонентами лишайников и мутуалистами, как синезеленая водоросль анабена, образующая симбиоз с водным папоротником азоллой.

Среди автотрофных бактерий, не относящихся к цианобактериям, можно найти как фототрофов, так и хемотрофов. Последние относятся к серо-, железо-, нитрифицирующим и водородным бактериям.

По потребности в кислороде бактерии делят на анаэробов (не нуждающихся в кислороде) и аэробов (требующих кислорода для своей жизнедеятельности). Соотношение этих форм бактерий зависит от особенностей среды обитания.

При неблагоприятных условиях бактерии образуют споры и цисты, имеющие плотные капсулы. Споры способны находиться в неактивном состоянии в течение многих лет (например, споры сибирской язвы — свыше 30 лет), однако при благоприятных условиях «спящая» бактерия возобновляет свою жизнедеятельность.

Размножение бактерий

Бактерии размножаются в основном делением клетки надвое, которому предшествует удвоение ДНК. При благоприятных условиях среды бактерии способны делиться каждые 20–30 мин. Нетрудно подсчитать, какое количество бактерий дает одна-единственная материнская клетка в течение суток.

Вегетативное размножение характерно только для многоклеточных цианобактерий, у которых образуются и отделяются специальные нити для размножения, однако нити могут разрываться и по гетероцистам.

У бактерий наблюдаются также процессы одностороннего переноса наследственной информации. В одних случаях происходит передача плазмиды от одной бактерии к другой с помощью специальной ворсинки — это конъюгация. В других случаях определенный участок ДНК от одной зараженной клетки к другой переносит бактериофаг — это трансдукция. Однако одним из наиболее интересных способов передачи наследственной информации является трансформация, при которой клетка не только поглощает ДНК другой бактерии из окружающей среды, но и встраивает ее в собственную хромосому, приобретая закодированные признаки. Открытие явления трансформации бактерий-пневмококков Ф. Гриффитом в 1928 году позволило вскоре установить функции нуклеиновых кислот как основного носителя наследственной информации, а в наше время широко используется в генетике бактерий и генной инженерии.

Роль бактерий в природе

В 1 г сельскохозяйственных почв содержится до 2,5 млрд бактерий, несколько меньше их в воде и в воздухе, до 2 кг этих организмов могут находиться на коже, слизистых оболочках и в кишечнике человека, тогда как не связанные напрямую с окружающей средой органы практически лишены бактериальной микрофлоры.

Бактерии играют исключительную роль в круговороте углерода, кислорода, водорода, азота, фосфора, серы, кальция и других элементов. Они возвращают в почву неорганические вещества (совместно с грибами), разлагая органические, в результате их деятельности образовались кислород земной атмосферы, залежи железной руды, карбонатов и других полезных ископаемых, они связывают азот в почве, образуя симбиоз с корнями бобовых и других растений (клубеньковые бактерии), переводя его в доступную для растений форму. Бактерии принимают активное участие и в биологической очистке водоемов. В отсутствие этих организмов существенно замедляются процессы почвообразования.

Бактерии нашли широкое применение в хозяйственной деятельности человека. Так, молочнокислые бактерии используются не только в производстве молочнокислых продуктов, но и в процессе квашения овощей и силосования кормов. Кишечная палочка с помощью методов генной инженерии «освоила» производство инсулина, она также является индикатором загрязнения воды. Другие бактерии благодаря способности концентрировать металлы используются для их добычи из бедных руд и отвалов.

Вред, наносимый бактериями, не менее значителен. Так, массовое размножение цианобактерий приводит к «цветению» воды, при этом в воду выделяется значительное количество токсических веществ, которые способны вызвать гибель самих синезеленых водорослей и других организмов. При нарушении санитарных норм бактерии портят продукты питания и загрязняют лекарственные препараты, что может приводить к негативным последствиям для здоровья человека, не говоря уже о том, что сами по себе многие бактерии являются болезнетворными организмами.

Бактерии — возбудители заболеваний растений, животных, человека

Паразитические бактерии вызывают заболевания человека, животных и растений, называемые бактериозами. У растений широко распространены такие бактериальные заболевания, как кольцевая гниль и парша картофеля, бактериальный ожог, рак и увядание томатов и др., которые наносят значительный вред сельскому хозяйству.

Животные не менее растений подвержены бактериальным заболеваниям, например чуме, туляремии, сальмонеллезу, сибирской язве, бруцеллезу и др. Больные животные представляют опасность и для человека, так как при контакте с ними или через переносчика (блох, клещей, комаров и др.) может происходить инфицирование. Чаще всего источниками инфекции являются грызуны, домашний скот и птица. В связи с этим необходимо строго придерживаться гигиенических норм и правил при контакте с животными.

Заражение человека возбудителями бактериальных инфекций происходит через пищеварительную систему, органы дыхания, при укусах переносчиков, а также через слизистые оболочки и повреждения кожи. В связи с этим бактериозы делят на кишечные (язва желудка, холера, дизентерия, сальмонеллез, брюшной тиф, ботулизм), респираторные (дифтерия, коклюш, туберкулез), кровяные инфекции (чума, сыпной тиф) и инфекции наружных покровов (сибирская язва, столбняк, сифилис и гонорея).

Механизм болезнетворного влияния бактерий в корне отличается от такового у вирусов, поскольку бактерии выделяют токсические вещества, оказывающие комплексное неблагоприятное воздействие на организм. При этом они могут даже не размножаться в тканях, как при столбняке и ботулизме. Последний вызывается ботулиническим токсином, который вырабатывается бактерией рода клостридиум в неправильно приготовленных и длительное время хранившихся консервах.

К категории особо опасных инфекций бактериальной природы относятся чума, бруцеллез, сибирская язва, сап и холера, так как их возбудители способны заразить почти каждого человека, протекают в тяжелой форме и вызывают как эпидемии, так и пандемии.

Несмотря на четкую организацию санитарно-эпидемиологической службы в Российской Федерации и других странах мира, постоянно сохраняется опасность возникновения эпидемий чумы и холеры, в последнее время вызывают также тревогу и темпы распространения туберкулеза.

Профилактика заболеваний, вызываемых бактериями

Основным средством профилактики бактериальных заболеваний у человека является повышение санитарной культуры населения, своевременное выявление и лечение больных, ношение марлевых повязок при контакте с больными, мытье рук, овощей и фруктов, протравливание мест обитания переносчиков соответствующих заболеваний, вакцинация и др. Например, если профилактика дифтерии заключается в периодической вакцинации, то от туберкулеза вакцины не существует, поэтому требуется своевременное выявление заболевших. Для этого в детском и подростковом возрасте делают пробу Манту, а взрослые обязаны ежегодно проходить флюорографическое исследование. При подозрении на туберкулез берутся дополнительные анализы, по результатам которых ставится окончательный диагноз. Поскольку туберкулезная палочка может поражать не только легкие, но и другие внутренние органы, а в последнее время наблюдается рост заболеваемости туберкулезом и выявлены чрезвычайно опасные его формы, требуется изоляция больных, соблюдение гигиенического режима и длительное лечение в специальных лечебницах и санаториях.

Для лечения бактериальных заболеваний чаще всего применяются антибиотики — сложные химические вещества, выделяемые микроорганизмами и способные подавлять развитие других микроорганизмов и раковых клеток или даже убивать их. Первый пригодный для клинического применения антибиотик — пенициллин — был получен в 1929 году А. Флемингом. Во время Великой Отечественной войны благодаря применению пенициллина были спасены жизни многих солдат. В настоящее время антибиотики применяют для лечения большого количества заболеваний человека, животных и растений, однако длительное применение приводит к появлению устойчивых к ним форм микроорганизмов. Поэтому во всем мире поднимается вопрос об отказе от антибиотиков как от лекарственного средства. Антибиотики применяются также в животноводстве для повышения продуктивности и для исследования тонких механизмов жизнедеятельности, поскольку они способны прерывать некоторые процессы, например образование клеточной стенки или синтез белка.

На этой странице Вы узнаете

  • Жизнь в постоянном анабиозе: что позволяет вирусным частицам не выходить из “спячки”?
  • Вирусы vs бактерии: кто кого заражает?
  • Что общего имеют раковые заболевания с вирусными инфекциями?

Вирусы знакомы нам с самого детства: именно они виноваты в том, что приходится неделями лежать дома вместо того, чтобы гулять с друзьями. Но вирусы могут быть не только вредными. Некоторые представители группы даже используются в медицине для лечения других инфекций. О том, кто такие вирусы и как их победить, вы узнаете в этой статье.

Общая характеристика вирусов

Вирусы были открыты в 1892 году ученым Д. И. Ивановским, который стал основоположником вирусологии.

Д.И. Ивановский

Вирусы – неклеточная форма жизни. 

Они являются внутриклеточными паразитами и могут проявлять свойства живого только внутри клетки-хозяина. В остальное время они будто спят: летают в воздухе в виде маленьких частиц и в буквальном смысле бездельничают.

Жизнь в постоянном анабиозе: что позволяет вирусным частицам не выходить из “спячки”?

Вирусы:
— не имеют клеточного строения;
— являются облигатными внутриклеточными паразитами;
— не имеют собственных систем метаболизма;
— имеют особый способ размножения.

Рассмотрим все эти особенности подробнее.

Формы вирусов

Вирусы существуют в двух формах: внеклеточной (или покоящейся) и внутриклеточной. Внеклеточная форма представлена вирионом. Вирион – это частица, которая не проявляет никаких свойств живого. Поэтому говорят, что вирусы – неклеточная форма жизни.

Вирусная частица

Облигатные внутриклеточные паразиты

Это организмы, которые просто не могут нормально жить вне организма хозяина. Вирусы совсем не умеют жить самостоятельно. Запомнить термин можно, используя ассоциацию. “Облигатный” схож по звучанию со словом “облачиться”: вирусы “облачились” в клетку хозяина, как в предмет нижнего белья, – и без него “в свет” ни в коем случае не выходят.

Отсутствие метаболизма

Метаболизм – это обмен веществ. Вне клетки хозяина вирусы не могут получать вещества из внешней среды и выделять продукты обмена. Вирионы не размножаются, не питаются, не вырабатывают тепло и не двигаются. 

Просыпаются вирусы только тогда, когда попадают в благоприятные условия – в клетку хозяина. Вирус сразу заражает клетку и начинает в ней размножаться. Про размножение надо поговорить отдельно.

Размножение вирусов

Представим, что клетка – завод по производству необходимых для организма белков. Вирусы обманывают её и приносят “рабочим” – рибосомам – другую инструкцию. Так клетка перестает выполнять свои обычные функции и начинает производить вирусные белки. Получается, главная задача вируса – пройти через все этапы защиты клетки и принести неправильную инструкцию на место. 

Как это происходит? 

  1. При проникновении вируса внутрь клетки, сначала происходит связывание белков вирусной частицы с белками оболочки клетки. 
  1. Затем происходит слияние клеточной мембраны и вирусной оболочки. 
  1. Вирус проникает в клетку. Здесь содержимое вируса (ДНК или РНК и различные ферменты) освобождается.
Размножение вирусов внутри клетки хозяина
  1. Если вирус содержит РНК, то репликация вирусного генома происходит с помощью фермента обратной транскриптазы. Благодаря ей идет процесс обратной транскрипции: образование вирусной ДНК по вирусной РНК. После этого достраивается вторая цепь ДНК, которая после будет внедряться в геном клетки-хозяина.

Если вирус содержит ДНК, то он сразу внедряет свой генетический материал в ДНК клетки-хозяина с помощью фермента интегразы. Запомним термин: интеграция – это внедрение. Фермент интеграза “разрезает” ДНК клетки-хозяина и “вклеивает” в нее ДНК вируса. 

Благодаря всем этим событиям, в клетке начинается процесс синтеза вирусных белков. Таким образом клетка, вместо того, чтобы синтезировать нормальные для ее жизнедеятельности вещества, начинает производить вирусные белки. После этого они будут собираться в новые вирусы и высвобождаться из клетки хозяина.

Строение вирусной частицы

В общем плане вирион (вирусная частица) состоит из:

  • генетического материала — молекулы ДНК или РНК, 
  • и капсида (оболочки). 

Однако есть более сложно устроенные вирусы, например, бактериофаги.

Вирусы vs бактерии: кто кого заражает?

Бактериофаги (в переводе с греческого – «пожиратели бактерий») – вирусы, поражающие клетки бактерий. Это значит, что вирусы могут заразить и истребить целую колонию бактерий! Бактериофаги используют в медицине для лечения бактериальных инфекций. 

Бактериофаги, или просто фаги – абсолютно естественные природные живые организмы. Благодаря тому, что они существуют практически в равном количестве с бактериями, численность последних строго сдерживается. Иначе, гипотетически, бактерии уже бы захватили весь мир.

Бактериофаги, используемые в медицине, имеют минимум побочных эффектов. Они воздействуют исключительно на клетки патогенных (вредных, опасных) бактерий, не затрагивая клетки человеческого организма.

Строение бактериофага

Разберем строение бактериофага подробнее.

  1. Головка состоит из генетического материала и защитной оболочки – капсида. Эта часть примерно такая же, как классический вирион, изученный нами чуть раньше.
  1. Нити (фибриллы), как шасси у лунохода, первыми контактируют с поверхностью посадки – живой клеткой. 
  1. Происходит “стыковка” – базальная пластинка прислоняется к клетке, приоткрывается и между клеткой и бактериофагом образуется проход для генетического материала. ДНК непременно должна поступить в клетку для последующего размножения.
  1. Стержневидный отросток покрыт сократительным чехлом. Эта часть нужна для того, чтобы ввести генетический материал в клетку хозяина. Стержневидный отросток – это своеобразный шприц, а сократительный чехол в ней действует как поршень, который своим движением проталкивает ДНК или РНК в клетку.

Разнообразие вирусов

Выделяют просто организованные вирусы и сложно организованные. Просто организованные вирусы, такие как бактериофаг, нам уже известны, а сложно организованные вирусы (например, вирус гриппа) имеют дополнительную защитную оболочку – суперкапсид

В зависимости от нуклеиновой кислоты, входящей в состав вируса, различают ДНК-содержащие и РНК-содержащие вирусы. 

Большинство вирусов животных и человека (около 80%) являются РНК-содержащими. Хранить наследственную информацию в молекуле РНК – это их уникальная способность. Геном вирусов может быть представлен различными видами нуклеиновых кислот: одно- или двухцепочечными, линейными или кольцевыми.

Вирион вируса табачной мозаики

Вирусные инфекции

Вирусы способны поражать различные живые организмы. Сегодня известно множество инфекционных заболеваний вирусной природы, поражающих животных и человека.

К вирусным заболеваниям относят: 

  • натуральную оспу, 
  • бешенство, 
  • энцефалиты, 
  • инфекционные гепатиты, 
  • полиомиелит, 
  • грипп, 
  • герпес, 
  • паротит (свинку), 
  • корь, 
  • краснуху и многие другие инфекции. 
Что общего имеют раковые заболевания с вирусными инфекциями?

Было выяснено, что существует ряд вирусов, способных вызывать процессы, приводящие к новообразованиям, к которым и относится рак. Вирусы, или по-другому онковирусы, вызывают мутации в клетке, из-за которых нормальные гены превращаются в онкогены. Онкогены при определенных условиях и вызывают развитие злокачественных опухолей.

Против некоторых вирусов разработаны вакцины, позволяющие предохранять население от развития инфекционных заболеваний. Например, благодаря изобретению вакцины от натуральной оспы людям удалось полностью искоренить это заболевание. Летом 1978 года был зафиксирован последний известный случай оспы.

Применение вакцин основано на введении мертвого или ослабленного антигена в организм для выработки организмом антител и создания искусственного активного иммунитета. К сожалению, не ко всем вирусам вырабатываются антитела, что создает трудности для синтеза новых вакцин.

Механизм выработки иммунитета:

  1. Встреча антигена (вредоносной частицы) с Т-лимфоцитами – клетками иммунной системы.
  2. Обезвреживание антигена.
  3. Передача информации Т-клеткам памяти.
  4. Выработка антител – белков, убивающих антигены.

Вирус иммунодефицита человека (ВИЧ) представляет особую опасность. Он паразитирует преимущественно в Т-лимфоцитах организма человека, выполняющих иммунную функцию. Вирус вызывает гибель Т-лимфоцитов, и, как следствие, снижение иммунитета, что приводит к развитию других инфекций. 

ВИЧ можно заразиться при гемотрансфузиях (переливании крови) или незащищенном половом акте. Также инфекция может передаваться от матери к ребенку при родах, такой путь передачи инфекции называется трансплацентарным.

Для лечения вирусных заболеваний используют специальные противовирусные препараты.

Иногда к терапии противовирусными препаратами могут добавляться антибиотики. Это делается с целью профилактики бактериальных осложнений. Например, на фоне гриппозной инфекции часто может развиваться пневмония, вызванная шаровидной бактерией – пневмококком. 

В качестве профилактики антибиотики, как правило, назначают лицам, находящимся в группе риска (пожилым людям, людям с хроническими заболеваниями или пониженным иммунитетом).

Термины 

ДНК – дезоксирибонуклеиновая кислота, молекула, обеспечивающая хранение, реализацию и передачу из поколения в поколение генетической информации.

Паразиты – это тип взаимоотношения организмов, при котором один организм живет за счет другого организма и тем самым вредит ему.

РНК – рибонуклеиновая кислота, играет важную роль в хранении и передаче наследственной информации клетки.

Фактчек

  • Вирусы были открыты в 1892 году ученым Д. И. Ивановским, ставшим основоположником вирусологии.
  • Вирусы не имеют клеточного строения.
  • Они являются облигатными внутриклеточными паразитами.
  • Не имеют собственных систем метаболизма.
  • Вирусы существуют в двух формах: внеклеточной (или покоящейся) и внутриклеточной.
  • Вирусы способны истреблять колонии бактерий, эту их способность используют для борьбы с вирусными заболеваниями.

Проверь себя

Задание 1.
К вирусным инфекциям относится…

  1. сальмонеллез
  2. дизентерия
  3. СПИД
  4. сифилис 

Задание 2. 
Какое свойство живого характерно для вириона?

  1. размножение
  2. дыхание
  3. метаболизм
  4. дискретность

Задание 3. 
Почему вирусы считаются представителями отдельной империи?

  1. они имеют ядро
  2. в клетке находится РНК
  3. в клетке отсутствуют мембранные органоиды
  4. они имеют неклеточное строение

Задание 4.
Бактериофаг – это…

  1. вирус бактерий
  2. вирус бешенства
  3. вирус гриппа
  4. вирус кори

Задание 5. 
Из перечисленных ниже заболеваний выберите те, которые вызывают вирусы.

  1. сальмонеллез
  2. дифтерия
  3. паротит
  4. тонзиллит

Ответы: 1 – 3; 2 – 4; 3 – 4; 4 – 1; 5 – 3.

Бактерий относят к прокариотическим организмам, которые не имеют ядерных оболочек, пластид, митохондрий и других мембранных органелл. Для них характерно наличие одной кольцевой ДНК. Размеры бактерий достаточно малы 0,15— 10 мкм. По форме клеток их можно разделить на три основные группы: шаровидные, или кокки, палочковидные и извитые. Бактерии, хотя и относятся к прокариотам, имеют довольно сложное строение.многообразие бактерий

Строение бактерий

Бактериальная клетка покрыта несколькими внешними слоями. Клеточная стенка обязательна для всех бактерий и является основным компонентом бактериальной клетки. Клеточная стенка бактерий придает форму и жесткость и, кроме того, выполняет ряд важных функций:

  • защищает клетку от повреждений
  • участвует в метаболизме
  • у многих патогенных бактерий токсична
  • участвует в транспорте экзотоксинов

Основным компонентом клеточной стенки бактерий является полисахарид муреин. В зависимости от строения клеточной стенки бактерии делятся на две группы: грамположительные (окрашиваются по Граму при приготовлении препаратов для микроскопирования) и грамотрицательные (не окрашиваются этим способом) бактерии.

виды бактерий

Формы бактерий: 1 — микрококки; 2 — диплококки и тетракокки; 3 — сарцины; 4 — стрептококки; 5 — стафилококки; 6, 7 — палочки, или бациллы; 8 — вибрионы; 9 — спириллы; 10 — спирохеты

строение бактерий

Сроение бактериальной клетки: I — капсула; 2 — клеточная стенка; 3 —   цитоплазматическая   мембрана; 4 — нуклеоид; 5 — цитоплазма; 6 — хроматофоры; 7 —тилакоиды; 8 — мезосома; 9 — рибосомы; 10 — жгутики; II — базальное тельце; 12 — пили; 13 — капли жира

клеточные стенки бактерии

Клеточные стенки грамположительной (а) и грамотрицательной (б) бактерий:1 — мембрана; 2 — мукопептиды (муреин); 3 — липопротеиды и белки

схема строения оболочки бактерии

Схема строения клеточной оболочки бактерии: 1 —   цитоплазматическая   мембрана; 2 — клеточная стенка; 3 — микрокапсула; 4 — капсула; 5 — слизистый слой

Обязательных клеточных структур бактерий – три:

  1. нуклеоид
  2. рибосомы
  3. цитоплазматическая мембрана (ЦПМ)

Органами движения бактерий являются жгутики, которых может быть от 1 до 50 и более. Для кокков характерно отсутствие жгутиков. Бактерии имеют способность к направленным формам движения — таксисам.

Таксисы бывают положительными, если движение направлено к источнику стимула, и отрицательными, когда движение направлено от него. Можно выделить следующие виды таксисов.

Хемотаксис — движение, основанное на разнице в концентрации химических веществ в среде.

Аэротаксис — на разнице концентраций кислорода.

При реакциях на свет и магнитное поле возникают соответственно фототаксис и магнитотаксис.

Важным компонентом в строении бактерий являются производные плазматической мембраны — пили (ворсинки). Пили принимают участие в слиянии бактерий в большие комплексы, прикреплении бактерий к субстрату, транспорте веществ.

Питание бактерий

По типу питания бактерии делят на две труппы: автотрофные и гетеротрофные. Автотрофные бактерии синтезируют органические вещества из неорганических. В зависимости от того, какую энергию используют автотрофы для синтеза органических веществ, различают фото- (зеленые и пурпурные серобактерии) и хемосинтезирующие бактерии (нитрифицирующие, железобактерии, бесцветные серобактерии и др.). Гетеротрофные бактерии питаются готовыми органическими веществами отмерших остатков (сапротрофы) или живых растений, животных и человека (симбионты).

К сапротрофам относятся бактерии гниения и брожения. Первые расщепляют азотсодержащие соединения, вторые — углерод-содержащие. В обоих случаях выделяется энергия, необходимая для их жизнедеятельности.

Надо отметить огромное значение бактерий в круговороте азота. Только бактерии и цианобактерии способны усваивать атмосферный азот. В дальнейшем бактерии осуществляют реак­ции аммонификации (разложение белков из мертвой органики до аминокислот, которые затем дезаминируются до аммиака и других простых азотсодержащих соединений), нитрификации (аммиак окисляют в нитриты, а нитриты — в нитраты), денитрификации (нитраты восстанавливаются в газообразный азот).

Дыхание бактерий

По типу дыхания бактерий можно разделить на несколько групп:

  • облигатные аэробы: растут при свободном доступе кисло­рода
  • факультативные анаэробы: развиваются как при досту­пе кислорода воздуха, так и в отсутствии его
  • облигатные анаэробы: развиваются при полном отсутст­вии кислорода в окружающей среде

Размножение бактерий

Бактерии размножаются путем простого бинарного деления клетки. Этому предшествует самоудвоение (репликация) ДНК. Почкование встречается как исключение.

У некоторых бактерий обнаружены упрощенные формы полового процесса. Например, у кишечной палочки половой процесс напоминает конъюгацию, при которой происходит передача части генетического материала из одной клетки в другую при их непосредственном контакте. После этого клетки разъединяются. Количество особей в результате полового процесса остается прежним, но происходит обмен наследственным материалом, т. е. осуществляется генетическая рекомбинация.

Спорообразование свойственно только небольшой группе бактерий, у которых известны два типа спор: эндогенные, образующиеся внутри клетки, и микроцисты, образующиеся из целой клетки. При образовании спор (микроцист) в бактериальной клетке уменьшается количество свободной воды, снижается ферментативная активность, протопласт сжимается и покрывается очень плотной оболочкой. Споры обеспечивают возможность переносить неблагоприятные условия. Они выдерживают длительное высыхание, нагревание свыше 100°С и охлаждение почти до абсолютного нуля. В обычном же состоянии бактерии неустойчивы при высушивании, воздействии прямых солнечных лучей, повышении температуры до 65—80°С и т. д. В благоприятных условиях споры набухают и прорастают, образуя новую вегетативную клетку бактерий.

Несмотря на постоянную гибель бактерий (поедание их простейшими, действие высоких и низких температур и других неблагоприятных факторов), эти примитивные организмы сохранились с древнейших времен благодаря способности к быстрому размножению (клетка может делиться через каждые 20—30 мин), образованию спор, чрезвычайно устойчивых к факторам внешней среды, и их повсеместному распространению.

Задание ollbio025820162017

Перед вами список пищевых продуктов, в состав которых либо входят сами живые организмы и их части, либо продукт приготовлен при помощи живых организмов (продукты обозначены буквами). Во втором столбце даны зашифрованные писания этих живых организмов (обозначены цифрами).
♦ Описания каких организмов даны цифрами? Как их используют при приготовлении продуктов?
♦ Установите соответствие между пунктами первого и второго столбца. Обратите внимание на то, что одному продукту может соответствовать несколько организмов и наоборот.
Организмы, которые могут случайно попасть в продукт, не указывайте!


При выполнении задания важно сразу соотнести живые объекты, из которых приготовляют определенные продукты питания, и их зашифрованные описания.
1. Это растения с чертырьмя чашелистиками и четырьмя лепестками. Признак, типичный для сем. Крестоцветных (Капустных). Можно более узко указать, что это – капуста. Многие крестоцветные – медоносы, их нектар пчёлы могут собирать для получения мёда.
Соответствие: 1 – Е, И.
2. Эти организмы не имеют ядра, генетический материал организован в виде кольцевой ДНК. Описание соответствует бактериям. Бактерии случайно могут попадать во все продукты. Однако для производства некоторых продуктов они необходимы. Так, молочнокислые бактерии используются для получения кефира, сметаны, а также квашении капусты и солении огурцов.
Соответствие: 2 – Б, В, Е, З.
3. Глаза этих организмов состоят из отдельных фасеток (омматидиев). Такой признак есть, в частности, у насекомых. Из всего перечня продуктов с помощью насекомых получен только мёд.
Соответствие: 3 – И.
4. Это почкующиеся одноклеточные организмы, с ядром, митохондриями и клеточной стенкой, но у них нет хлоропластов. Описание соответствует дрожжам. Дрожжи используются в производстве кефира и хлебного кваса, причем в производстве хлебного кваса – дважды. Сначала для выпечки хлеба, а потом – для сбраживания самого напитка. Случайно дрожжи
могут попадать в мёд или размножиться в сметане, образовать плёнку на поверхности огуречного рассола. Но эти ответы не стоит считать правильными.
Соответствие: 4 – Б, Ж.
5. У этих растений плод – тыквина. Явное указание на представителей семейства Тыквенные, к которым относится огурец.
Соответствие: 5 – З.
6. Это животные с четырёхкамерным сердцем и с четырёхкамерным желудком, три из пяти пальцев конечностей у них недоразвиты. Строение сердце позволяет сказать, что это – либо птицы, либо млекопитающие. Четырёхкамерный желудок характерен для некоторых представителей Парнокопытных. Он состоит следующих отделов: рубца, сетки, книжки и
сычуга. Строение конечностей также соответствует Парнокопытным. Наиболее вероятно, что дано описание коровы. Таким образом, все молочные продукты (кефир, сметана) произведены с ее участием. Кроме того, из соединительных тканей получают желатин, который используется
в пищевой промышленности как желирующий агент. Поэтому можно указать, что фруктовое желе также получено с участием продуктов из коровы.
Соответствие: 6 – А, Б, В.
7. Это растения из класса Двудольных с числом частей цветка, не кратным четырём. Под это описание подходят очень многие растения (более конкретно в контексте вопроса сказать нельзя). В частности, многие плодовые растения, которые дают фрукты, многие медоносы, а также сахарная свекла. Кроме того, у представителей семейства Злаковых также число частей цветка не кратно 4. Это означает, что мы можем указать достаточно много продуктов, полученных с использованием таких растений: фруктовое желе (фрукты, сахар, лимонная кислота), мармелад (сахар, лимонная кислота, лимон), сахар рафинад, хлебный квас, соленые
огурцы, мёд.
Соответствие: 7 – А, Г, Д, Ж, З, И.
8. Эти живые организмы накапливают багрянковый крахмал, а также образуют фикобилисомы. Явно имеются в виду Красные водоросли («багрянки»). Из них получают агар-агар, который используют как желирующий агент. Поскольку указано, что фруктовое желе приготовлено на желатине, этот ответнельзя считать правильным. Агар-агар из перечисленных продуктов используется только для производства мармелада.
Соответствие: 8 – Г.
9. Это растения с невзрачными цветками из класса Однодольных, обычно опыляются ветром. Описание соответствует представителям семейства Злаковые (Мятликовые). Зерновки злаков используют в производстве хлеба, т.е. один из продуктов – хлебный квас. Кроме того, сахар можно
получить из сахарного тростника (в задании не указано, какое растение использовали в производстве).Сахар входит в состав желе и мармелада. Его также добавляют при приготовлении кваса. Конечно, злаками откармливают корову, но такие ответы с участием пищевых цепей не будут
засчитаны.
Соответствие: 9 – А, Г, Д, Ж.

pазбирался: Надежда | обсудить разбор | оценить

Задание EB0921

Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. Какие признаки характерны для цианобактерий? 

  1. встречаются в составе лишайников
  2. имеют спиралевидный хроматофор
  3. являются редуцентами
  4. вызывают «цветение» воды
  5. являются прокариотическими фототрофами
  6. размножаются зооспорами

Цианобактерии, они же синезеленые водоросли.

  • Цианобактерии действительно встречаются в составе лишайников, т.к цианобактерии способны к фотосинтезу.
  • Цианобактерии не имеют хроматофора, но он есть у хламидомонады. Помимо отсутствия хроматофора, у синезеленых водорослей нет вакуолей и ядра.
  • Синезеленые водоросли способны к фотосинтезу, значит, они являются продуцентами, а не редуцентами.
  • Синезеленые водоросли действительно вызывают цветение воды. Под «цветением» нужно понимать бурное размножение водорослей, которое приводит к тому, что водоем становится зеленым.
  • Цианобактерии – прокариоты. Так как они способны к фотосинтезу, но они являются фототрофами.
  • Цианобактерии размножаются простым делением надвое.

Ответ: 145

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB0818D

Установите соответствие между организмами и особенностями строения тела: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ОРГАНИЗМЫ ОСОБЕННОСТИ СТРОЕНИЯ ТЕЛА

А)   хлорелла

Б)    дрожжи

В)    планария

Г)    пеницилл

Д)    медуза

Е)    сенная палочка

1)     одноклеточные

2)     многоклеточные


Хлорелла – одноклеточная зеленая водоросль.

Дрожжи – одноклеточные грибы.

Планария – многоклеточный организм, плоский червь.

Пеницилл – многоклеточный плесневый гриб.

Медуза – многоклеточное кишечнополостное животное.

Сенная палочка – одноклеточная бактерия.

Ответ: 112221

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB2502o

Назовите возможные способы получения и использования энергии бактериями и кратко раскройте их биологический смысл.


  1. Бактерии-фототрофы. Это сине-зелёные водоросли, содержащие в своих клетках хлорофилл и способные к фотосинтезу.
  2. Бактерии-хемотрофы. Преобразуют энергию неорганических соединений для создания собственных органических веществ.
  3. Бактерии-гетеротрофы, использующие органические соединения мёртвых или живых тел (паразиты и сапрофиты).

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB17894

Благодаря каким особенностям бактерии широко применяются в биотехнологии? Назовите не менее трёх особенностей.


  1. высокая скорость размножения;
  2. способность синтезировать биологически активные вещества;
  3. способность к мутациям и возможность получения новых высокопродуктивных штаммов;
  4. относительно простые способы выращивания бактерий.

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB23053

Найдите три ошибки в приведённом тексте «Бактерии». Укажите номера предложений, в которых сделаны ошибки, исправьте их.

(1)Все бактерии по способу питания являются гетеротрофами. (2)Азотфиксирующие бактерии обеспечивают усвоение атмосферного азота. (3)К группе азотфиксаторов относят клубеньковые бактерии, поселяющиеся на корнях бобовых растений. (4)Бобовые растения используют соединения азота для синтеза белка. (5)Денитрифицирующие бактерии осуществляют процесс нитрификации, повышающий плодородие почвы. (6)К хемотрофам относят железобактерии, серобактерии, водородные бактерии и нитрифицирующие бактерии. (7)Для всех хемотрофов характерен анаэробный тип энергетического обмена.


Исправляем ошибки в предложениях:

(1)Бактерии по способу питания бывают гетеротрофами и автотрофами.

(5) Нитрифицирующие бактерии осуществляют процесс нитрификации (процесс окисления аммиака до азотистой кислоты), повышающий плодородие почвы (Денитрифицирующие бактерии осуществляют процесс денитрификации — процесс восстановления нитратов до газообразных оксидов и молекулярного азота).

(7)Для хемотрофов характерен и анаэробный и аэробный тип энергетического обмена.

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB20712

Проанализируйте график скорости размножения молочнокислых бактерий.

https://bio-ege.sdamgia.ru/get_file?id=25052

Выберите утверждения, которые можно сформулировать на основании анализа полученных результатов. Скорость размножения бактерий

  1. всегда прямо пропорциональна изменению температуры среды.
  2. зависит от ресурсов среды, в которой находятся бактерии.
  3. зависит от генетической программы организма.
  4. в интервале от 20 до 36 °С повышается.
  5. уменьшается при температуре выше 36 °С в связи с денатурацией части белков в клетке бактерии.

  1. Неверно, так как при повышении температуры с 36 градусов до 40 численность бактерий падает.
  2. Нет информации.
  3. Нет информации.
  4. Верно.
  5. Верно.

Ответ: 45

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB16139

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

ОСОБЕННОСТЬ ВИРУСОВ И БАКТЕРИЙ ПРЕДСТАВИТЕЛЬ

А) нет клеточной стенки

Б) наследственный материал заключён в кольцевой ДНК

В) наследственный материал заключён в РНК

Г) может иметь жгутик

Д) внутриклеточный паразит

Е) симбионт человека

1) вирус иммунодефицита человека

2) кишечная палочка


Вирус не имеет клеточной стенки, у бактерии она из муреина, у бактерий ДНК кольцевая, у вирусов наследственный материал может быть заключен в РНК, бактерии могут иметь жгутик.

Вирусы — это только внутриклеточные паразиты, а кишечная палочка — симбионт человека, живущая в кишечнике.

Ответ: 121212

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB10238

Бактерии, в отличие от животных

  1. относят к безъядерным организмам
  2. являются эукариотами
  3. питаются готовыми органическими веществами
  4. могут быть хемотрофами
  5. структура молекулы ДНК только линейная
  6. имеют ДНК кольцевидной формы

Бактерии – безъядерные организмы, а животные- эукариоты.

Животные и большинство бактерий — гетеротрофы.

Некоторые бактерии способны хемосинтезировать, ни одно животное так не может.

У животных ДНК по форме- линейная, а у бактерий – кольцевая.

Ответ: 146

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB20706

Известно, что бактерия туберкулёзная палочка — аэробный, микроскопический, болезнетворный организм. Выберите из приведённого ниже текста три утверждения, относящиеся к описанию перечисленных выше признаков бактерии.

(1) Размеры туберкулёзной палочки составляют в длину 1–10 мкм, а в диаметре 0,2–0,6 мкм. (2) Организм неподвижен и не способен образовывать споры. (3) При температуре выше 20 °C во влажном и тёмном месте сохраняет жизнеспособность до 7 лет. (4) Для своего развития организм нуждается в наличие кислорода. (5) Туберкулёзная палочка является паразитическим организмом. (6) В природе организм распространяется не только с каплями жидкости, но и ветром.


Из перечисленных предложений, которые описывают туберкулёзную палочку, необходимо выбрать те, которые соответствуют условиям: аэробный, микроскопический, болезнетворный. Аэробный: для своего развития организм нуждается в наличие кислорода. Микроскопический: размеры туберкулёзной палочки составляют в длину 1–10 мкм, а в диаметре 0,2−0,6 мкм. Болезнетворный: туберкулёзная палочка является паразитическим организмом.

Ответ: 145

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB21645

Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. В процессе эволюции сформировались организмы разных царств. Какие признаки характерны для царства, представитель которого изображён на рисунке? 

https://bio-ege.sdamgia.ru/get_file?id=28686

  1. клеточная стенка состоит в основном из муреина
  2. хроматин содержится в ядрышке
  3. хорошо развита эндоплазматическая сеть
  4. отсутствуют митохондрии
  5. наследственная информация содержится в кольцевой молекуле ДНК
  6. пищеварение происходит в лизосомах

Это прокариотичская клетка, четко оформленного ядра нет.

Клеточная стенка из муреина – подходит

ЭПС, как и прочих мембранных органоидов в ней нет.

Наследственная информация хранится в кольцевой молекуле ДНК.

Лизосомы — одномембранные органоиды, их у прокариот нет.

Ответ: 145

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB10240

Почему бактерии относят к прокариотам?

  1. содержат в клетке ядро, обособленное от цитоплазмы
  2. состоят из множества дифференцированных клеток
  3. имеют одну кольцевую хромосому
  4. не имеют клеточного центра, комплекса Гольджи и митохондрий
  5. не имеют обособленного от цитоплазмы ядра
  6. имеют цитоплазму и плазматическую мембрану

Раз прокариоты, то оформленного ядра просто быть не может. Множество клеток — это уже ткань. 3,4,5- подходят, а вот вариант 6 относится к эукариотическим организмам.

Ответ: 345

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Даниил Романович | Просмотров: 17.6k

Вспомним,
что в настоящее время большинство учёных выделяют четыре царства живых
организмов: Бактерии, Животные, Растения и Грибы. Бактерии относятся к прокариотам. А животные, растения и грибы – к
эукариотам. Для клеток всех царств живых организмов характерно единство
строения, химического состава и функций. Однако между прокариотическими
и эукариотическими клетками существует много
различий.

Прокариоты
– это одноклеточные живые организмы. Они, в отличие от
эукариот, не имеют оформленного ядра и других мембранных органоидов
(митохондрий, эндоплазматической сети, комплекса Гольджи,
хлоропластов). Поэтому прокариот по-другому называют доядерными. Наука, которая занимается изучением микроскопических
организмов, в том числе и бактерий, называется микробиологией.

Большинство прокариотических клеток
имеют очень маленькие размеры. Типичная бактериальная клетка имеет размер около
1 микрометра, тогда как эукариотические клетки
имеют размер от 10 до 100 микрометров. Прокариотическая
клетка примерно такого же размера, как митохондрия в клетках эукариот.

Клетка прокариот имеет простую организацию. В
отличие от эукариот, их клетки не разделены на
клеточные компартменты (отсеки). Компартментами
в эукариотической
клетке являются все органоиды.

По
форме различают несколько морфологических
групп бактерий: шаровидные (кокки),
прямые палочковидные (бациллы),
изогнутые (вибрионы), спирально
изогнутые (спириллы). Некоторые
клетки не расходятся после деления, и в результате образуются пары (диплококки), цепочки (стрептококки), стафилококки (в виде грозди винограда) или пакеты кокков (сарцины).
Большинство бактерий бесцветны, и только некоторые (зелёные и пурпурные)
содержат в цитоплазме пигменты, которые придают им окраску.

Прокариоты способны к очень быстрому делению.
В течение 10–11 часов в благоприятных условиях одна бактерия способна
образовать потомство в 4 миллиарда особей. Прокариоты легко адаптируются к
условиям окружающей среды, у них очень часто происходят спонтанные мутации. Это
способствует их повсеместному распространению на Земле. Бактерии обитают в
почве, воде, воздухе, снегах полярных регионов и горячих источниках, на теле
животных и растений, внутри живых организмов.

Рассмотрим
строение бактерии. Как вы уже знаете, в клетке отсутствует ядро и
мембранные органоиды. В цитоплазме располагается только огромное количество
рибосом и одна крупная кольцевая двухцепочечная
молекула ДНК – нуклеоид. У многих видов
бактерий в цитоплазме располагаются ещё мелкие кольцевые суперспирализованные
молекулы ДНК – плазмиды. Они способны
удваиваться независимо от нуклеоида. Плазмиды могут находиться в бактериальной клетке в двух
состояниях – автономном (располагаются в цитоплазме) и интегрированном
(встраиваются в структуру нуклеоида и удваиваются
вместе с ним).

В
прокариотических клетках могут откладываться запасные
питательные вещества – полисахариды (крахмал, гликоген), жиры и полифосфаты.
Каждый вид прокариот накапливает один вид запасных веществ.

Цитоплазматическая
мембрана (цитолемма) прокариот не отличается от
мембраны эукариотической клетки и выполняет все
свойственные функции: транспортную, защитную, барьерную, рецепторную,
ферментативную и механическую. Однако существуют различия в химическом составе
клеток. В цитолемме прокариот отсутствуют молекулы
холестерина и некоторых других липидов.

Цитоплазматическая
мембрана прокариот способна образовывать впячивания
внутрь цитоплазмы – мезосомы. На их складчатых
мембранах располагаются окислительно-восстановительные
ферменты, а у фотосинтезирующих бактерий – и соответствующие пигменты (бактериохлорофилл), благодаря чему мезосомы
выполняют функции митохондрий, хлоропластов и других органоидов.

На
внутренней стороне мембраны расположены сайты связывания ДНК. После
удвоения ДНК каждая из дочерних молекул прикрепляется к одному из сайтов.
Происходит рост мембраны, и молекулы ДНК расходятся. Далее формируется
перегородка, которая разделяет клетку на две.

У
некоторых видов водных и почвенных бактерий в цитоплазме находятся газовые
вакуоли (аэросомы). Регулируя количество газа
в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на
её поверхность.

Снаружи
от цитолеммы находится клеточная стенка. Она
выполняет многочисленные функции: придаёт клетке форму, защищает от воздействия
неблагоприятных условий окружающей среды и от осмотического шока (когда при
погружении клетки, в которой удалили клеточную стенку, в дистиллированную воду
или другой гипотонический раствор, она насыщается водой, и происходит разрыв
цитоплазматической мембраны).

Выделяют
две группы бактерий – грамположительные
и грамотрицательные. Они имеют разное строение и окраску клеточной
стенки. Грамположительные бактерии при
окраске по методу Грама оказываются
окрашенными в синий цвет, сохраняют окраску и не обесцвечиваются в отличие
от грамотрицательных бактерий.

У
грамположительных клеток клеточная стенка толстая (20–80 нанометров). Она
состоит из пептидогликана муреина,
тейхоевых кислот и полисахаридов. Грамотрицательные
бактерии
имеют тонкий слой пептидогликана (2–3
нанометра), который покрыт наружной плазматической мембраной.

Если
обработать клетку лизоцимом или пенициллином, клеточная стенка разрушается.
Грамположительная клетка превращается в протопласт. Протопласт – это содержимое
бактериальной клетки, за исключением клеточной стенки, но вместе с
цитоплазматической мембраной. Протопласт подвержен осмотическому шоку.
Грамотрицательная клетка превращается в сферопласт. Сферопласт – бактериальная клетка с частично
разрушенной клеточной стенкой. Сферопласт менее
чувствителен к осмотическому шоку.

У
многих видов бактерий клеточная стенка окружена слизистой капсулой. Она
служит дополнительной защитой для клеток. Капсула обеспечивает устойчивость
бактерий к ряду воздействий, например к фагоцитозу
(при этом повышается возможность бактерий вызывать заболевание –
вирулентность). Слизистая капсула придаёт бактериям специфичность (в ней могут
находиться антигены – вещества, которые организм
рассматривает как чужеродные или опасные и начинает вырабатывать против них
антитела). Слизистая капсула предохраняет клетку от высыхания,
механических повреждений, от действия вирусов, служит источником запасных
питательных веществ, а также осуществляет связь между клетками и помогает
прикреплению к поверхностям.

Существуют
неподвижные бактерии и подвижные, которые передвигаются с помощью жгутиков.

Их
расположение может быть монополярным,
биполярным и перитрихиальным. По количеству
жгутиков различают монотрихи (одна нить) и политрихи (пучок нитей). Прокариотические клетки способны к быстрому движению – до 12 миллиметров в минуту. Когда жгутик
вращается против часовой стрелки, клетка движется в одном направлении, когда
жгутик вращается по часовой стрелке, клетка кувыркается.

Для
прокариот характерен хемотаксис – двигательная реакция на химический
раздражитель. Бактерии способны двигаться по
направлению к атрактантам (притягивающим веществам) и
от репеллентов (отталкивающих от себя). В качестве аттрактантов выступают
питательные вещества, сахара и аминокислоты, в качестве репеллентов – спирты и
другие вредоносные вещества. Помимо хемотаксиса существуют и другие
виды таксиса. Аэротаксис – движение к кислороду. Движение в сторону концентрации кислорода проявляется у аэробов, в
обратную сторону – у анаэробов. Аэробы – организмы, которые нуждаются
в кислороде для процессов синтеза энергии в отличие от анаэробов. Фототаксис – свойство микроорганизмов ориентироваться и двигаться по
направлению к или от источника света. Существует как положительный фототаксис –
движение происходит в направлении к источнику света, так и отрицательный фототаксис – движение
идёт в противоположном направлении. Магнитотаксис –
способность железосодержащих бактерий реагировать своим движением на магнитное
поле.

На
поверхности клеток многих бактерий расположены нитевидные белковые структуры – фимбрии, или пили. Они образованы белком пилином. Пили располагаются по периферии клетки в
количестве от 100 до 250. Они участвуют в
передаче генетического материала между бактериальными клетками при
конъюгации, помогают прикрепляться к поверхностям и другим клеткам (например,
прикрепление к слизистой оболочке кишечника).

При
наступлении неблагоприятных условий прокариоты способны образовывать покоящиеся формы, способные сохранять
жизнеспособность в течение длительного времени. К таким формам относят эндо- и экзоспоры,
цисты и бактероиды. Рассмотрим, как образуется спора у бактерий.
Содержимое клетки сжимается, отходит от оболочки, округляется и образует на своей
поверхности, находясь внутри материнской оболочки, новую, более плотную
оболочку. При нормальных условиях споры могут сохраняться до нескольких сотен
лет. Зрелые споры сохраняются очень долго в самых неблагоприятных условиях. Они
устойчивы к действию высоких температур, радиации, ультрафиолетовых лучей,
химических веществ. Но при температуре 100 °С 90 % спор гибнет через 11 минут.

При наступлении благоприятных условий спора
прорастает и становится жизнедеятельной бактерией.

По
типу питания бактерии делят на две группы: автотрофные и гетеротрофные. Автотрофные бактерии синтезируют органические вещества из
неорганических. В зависимости от того, какую энергию используют автотрофы для
синтеза органических веществ, различают фото-
и хемосинтезирующие бактерии. К фототрофам
относятся зелёные и пурпурные серобактерии. Они используют энергию Солнца. Хемосинтезирующие бактерии используют для
жизнедеятельности энергию химических реакций. Нитрифицирующие (почвенные) бактерии окисляют соли аммония до
нитратов, железобактерии –
двухвалентное железо в трёхвалентное, серные
бактерии – соединения серы до сульфатов. Клубеньковые бактерии фиксируют атмосферный азот и окисляют его до
аммиака. Большая часть бактерий являются гетеротрофами. Они питаются готовыми
органическими веществами. Сапротрофы питаются
органическими веществами мёртвых тел или выделений других организмов. Паразитические бактерии поселяются на
живых организмах и питаются за их счёт.

У
бактерий, как и у эукариот, выделяют два типа дыхания: аэробное и
анаэробное. Аэробные бактерии
обитают в условиях свободного доступа кислорода. Они получают энергию в
процессе окисления органических веществ до углекислого газа и воды. Анаэробные бактерии обитают в
бескислородных условиях и существуют за счёт энергии, выделяемой при реакциях
брожения.

Like this post? Please share to your friends:
  • Бактерии вызывающие заболевания егэ
  • Бактерии все для егэ
  • Бактерии 2 часть егэ биология
  • Бакланов южнее главного удара егэ сочинение
  • Бакланов текст егэ сочинение