Банковские задачи егэ математика профиль разбор

В части с развернутым ответом в ЕГЭ по профильной математике есть уникальный номер, к которому школьник почти готов сразу после освоения материала для первых 12-ти заданий. Речь об экономической задаче под номером 17 в ЕГЭ по математике. Конечно, поготовиться придется, но, если повезет с прототипом, баллы можно урвать почти даром!

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Прототипы для 17-го номера делятся на три большие группы: 

  • банковские задачи, 
  • на ценные бумаги,
  • задачи на оптимальный выбор. 

В этой статье мы расскажем, как научить ученика структурировать условие любой банковской задачи, как составить по этим данным математическую модель и найти решение. Расскажем, на что обратить внимание ученика, чтобы школьник не потерял баллы из-за неверного оформления.

Главная трудность — школьник плохо понимает условие, ведь с кредитами и вкладами он пока не сталкивался.

  • Как работает процент по кредиту?
  • На какую сумму начисляется?
  • Из каких частей состоит платеж?
  • Как уменьшается долг?

На все эти вопросы вам придется ответить. Это отличная возможность показать пользу уроков математики, ведь 17-ый номер — едва ли не самая прикладная задача за весь школьный курс! 

Например, можно рассказать о том, какие бывают образовательные кредиты. Вы в курсе, что их дают с 14 лет, а платеж первые годы может быть ничтожным? Школьник об этом точно не знает.

С чего начать разбор экономической (банковской) задачи в ЕГЭ по математике

Экзамен немного утрирует реальную ситуацию, в жизни кредит работает сложнее. Однако грустно упускать возможность рассказать школьнику что-то из реальности! Если у вас есть опыт с кредитованием, самое время им поделиться. Если нет, то воспользуйтесь нашим:

  • Например, расскажите, что клиенту придется сверх купить страховку на случай потери работоспособности, ведь банк не хочет терять прибыль даже если на заемщика кирпич упадет. Ваши ученики знают, как работает страховка?
  • Расскажите о механизме аннуитетного платежа: как часть денег банк забирает себе в качестве дохода, то есть на погашение процентов за пользование кредитом; а на вторую часть уменьшает ваш долг. В реальности это разделение считается по специальной формуле, и совсем не в пользу заемщика.
  • Например, по нашему опыту, в ипотеке на 10 лет из 20 тысяч ежемесячного платежа на первых порах всего 5 000 рублей идет в счет уменьшения долга, а 15 000 — забирает себе банк! Но каждый раз платеж чуть ребалансируется, и в счет долга идет чуть больше. Так в последних платежах через 10 лет в счет процентов идет буквально пара сотен, а все остальное гасит долг. 
Как научить школьника решать любую банковскую задачу
Экономическая задача ЕГЭ по математике в реальной жизни

Хорошая новость в том, что в экзаменационных задачах подобной вакханалии не бывает. Долг и проценты или гасятся равномерно, или по заранее известному алгоритму, достаточно просто внимательно прочитать условие.

Еще одно частое упрощение в ЕГЭ — процент там обычно не годовой, а ежемесячный! То есть своим платежом заемщик гасит набежавший за этот месяц процент и уменьшает долг на заданную величину. Удобно.

Мы предлагаем научить школьника упорядочивать данные банковской задачи в ЕГЭ по математике с помощью таблицы. Табличка — не единственный способ решить 17-ый номер, кто-то использует последовательности, кто-то — считает прикладным методом как заправский бухгалтер. Однако наш метод универсален, а значит вы дадите школьнику один алгоритм на все типы банковских задач. Согласитесь, работать с одним алгоритмом проще, чем подбирать разные по ситуации.

Тип 1. Равные платежи

Особенность этого типа заданий в том, что заемщик всегда вносит одинаковые суммы.

В июле 2020 года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
— каждый январь долг увеличивается на r % по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.
Если ежегодно выплачивать по 58 564 рубля, то кредит будет полностью погашен за 4 года, а если ежегодно выплачивать по 106 964 рубля, то кредит будет полностью погашен за 2 года. Найдите r.

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Очевидно, что эта схема должна оказаться у школьника в тетради. Ведь вы же знаете: того, чего нет в тетради, и на уроке-то не было!

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Заполняем всю табличку. Учитываем обе ситуации из условия. Для наглядности каждую выделим жирной рамкой.

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Теперь остался еще один непростой шаг — перейти от структурированных данных к математической модели. Дайте ученику возможность увидеть, что уже почти составил ее.

Мы получили два уравнения, которые подсветили в табличке оранжевым. Объединим их в систему и решим!

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Напомните выпускнику о культуре вычислений! Порой эти задачи составлены так, что неудачная последовательность действий сделает их нерешаемыми без калькулятора. Потому не надо спешить делать первое попавшееся действие, пусть школьник тренируется думать на пару ходов вперед.

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Например, разделим одно уравнение на другое, ведь так мы избавимся от одной неизвестной S:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Наше решение не зависит от суммы кредита, S сокращается. 

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

По сути, мы получили уравнение с одной неизвестной, ведь платежи a и b знаем из условия. Выразим k:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Пожалуй, все, проще уже некуда. Подставляем значения!   

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Тут можно обратить внимание ученика на то, как составители экзамена на самом деле заботятся о нем! Ведь будь задачка хоть чуть-чуть другой, посчитать без калькулятора было бы невозможно.

Вспоминаем, что k=1+r/100, а найти нам надо r.

Ответ: 10%.

Не забудьте после решения расставить акценты в задаче:

Чтобы решить задачу и получить 3 балла, мы:
Воспользовались простым алгоритмом упорядочивания данных,
Составили математическую модель,
Нашли удобный способ решить ее, ВСЕ!
Это и есть алгоритм решения банковской задачи.

Тип 2. Равномерно убывающий долг

В прошлой задаче заемщик платил одинаковую сумму каждый месяц. Тут ему нужно уменьшать долг на одну и ту же величину. То есть за месяц пользования деньгами банк начислил на них процент, клиент теперь должен чуть больше. Своим платежом он оплатит банку проценты, чтобы заем стал таким, как ДО их начисления. А сверху внесет сумму, которая как раз и пойдет на то самое РАВНОМЕРНОЕ уменьшение долга.  

15-го января планируется взять кредит в банке на 39 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что общая сумма выплат после полного погашения кредита на 20% больше суммы, взятой в кредит. Найдите r.
(Считайте, что округления при вычислении платежей не производятся.)

Тут главный элемент в задаче — равномерно убывающий долг. Если мы взяли сумму S на 39 месяцев, и каждый месяц долг должен быть меньше на одинаковую величину, то что это за величина? Пусть правильный ответ 1/39 S даст ученик.

Проиллюстрируйте школьнику, как здорово работает наш алгоритм. Пусть выпускник проговаривает пункты вслух, а вы их выполняйте. Следите, чтобы каждый шаг подопечный фиксировал в тетради:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Продолжаем заполнять табличку. Пусть дальше пробует выпускник, ведь пока сам не попробуешь, не научишься:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Осталось увязать добытую информацию в уравнение или неравенство. Обратите внимание подопечного на то, что ненужных подробностей в задачах ЕГЭ не бывает! Единственная информация в задаче, которую мы до сих пор не использовали — общая сумма выплат. По условию она на 20% больше суммы кредита, то есть равна 1,2S:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Приведем подобные, вынесем общий множитель за скобку:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Решение в итоге снова не зависит от того, какую сумму взяли в долг. Разделим обе части на S и упростим выражение:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Ответ: 1%.

И снова все по нашему алгоритму, ничего нового, кроме него, мы не используем! Не забудьте излучать восторг, иначе школьник не проникнется мощью вашего метода решения.

Тип 3. Долг, убывающий согласно табличке

Задача похожа на прошлую. Разница лишь в том, что кроме процентов нам каждый месяц придется гасить не равную долю долга, а долю согласно таблице.

15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
— 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r — целое число;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата 15.01 15.02 15.03 15.04 15.05 15.06 15.07
Долг(в млн рублей) 1 0,9 0,8 0,7 0,6 0,5 0

Найдите наименьшее значение r, при котором общая сумма выплат будет больше 1,2 млн рублей.

Протестируем нашу универсальную табличку в третий раз, доверьте это непростое занятие школьнику. Пусть процессом командует он! По ответам будет ясно, ловит ли он суть.

Отличие от прошлого типа будет лишь в том, что в третий столбец мы будем записывать не равномерно убывающий долг, а перенесем остаток долга из таблицы условия. Чтобы не таскать по решению нули, считать будем в миллионах:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Чтобы долг убывал согласно табличке, нам снова каждый раз придется гасить набежавшие проценты и первые 5 месяцев добавлять сверху 0,1 млн. После останется погасить весь остаток.

Акцентируйте внимание на механизме погашения, для школьника он не всегда очевиден.

«По условию нам снова дана общая сумма выплат, значит достаточно просуммировать оранжевый столбец, и уравнение готово», — вероятно, подумает школьник. Подловите его! Уравнение в этой задаче — прямой путь потерять балл! Сумма выплат должна быть БОЛЬШЕ 1,2 млн. Отразим это в модели с помощью неравенства:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Подопечный должен быть уверен в каждом символе в бланке ответа. Даже не пригодившиеся промежуточные вычисления с ошибкой приведут к катастрофе.

Приведем подобные и вынесем общие множители за скобку:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Последний шаг – не забыть, что по условию процент должен быть целым и округлить в верную сторону.

Ответ: 5%.

Правильная математическая модель — это суперважно! К ней проверяющие обязательно придерутся.

Тип 4. Погашение кредита в два этапа.

По сути, это та же прошлая задача, но месяцев больше

В 2017-2018 учебном году составителей экзамена посетило вдохновение, на свет родился вот этот тип банковских задач. Школьники были в шоке, и от страха завалили 17-ый номер. Хотя всего-то нужно было догадаться воспользоваться знаниями об арифметической прогрессии и достать из условия одно немного неочевидное дано!

15-го декабря планируется взять кредит в банке на 13 месяцев. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 12-й долг должен быть на 50 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 13-го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 804 тысячи рублей?

И снова пусть по возможности командует школьник. По крайней мере он уже точно в курсе, что происходит первые 13 месяцев.

Последовательно начисляем процент на остаток долга – считаем выплату – фиксируем остаток долга после выплаты. Сумму кредита возьмем за S.

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Научите школьника не спешить с вычислениями. Например, вместо того чтобы написать S-600, мы пишем S-50*12, потому что так удобнее: нам сразу ясно, что речь идет о двенадцатом месяце. Да и потом вычисления будут проще, если мы оставим маленькие числа.

Осталось составить уравнение, и модель готова. В задаче нам снова дали сумму всех выплат:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Как обычно, сгруппируем отдельно слагаемые с r/100, отдельно слагаемые без них:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Вот именно последняя группировка всех платежей в счет долга и оказалась неочевидной. Без нее в задаче остается одна лишняя неизвестная величина, которая рушит все решение.

Осталось привести уравнение к решаемому виду. Для этого надо просуммировать то, что получилось в скобках. Если внимательно приглядеться, то видно, что это сумма арифметической прогрессии:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Посчитаем эту сумму:

Подставляем выражение для суммы в уравнение, заметим, что по условию r=2:

Мы сокращали дробь, пока это было возможно, и в итоге довольно просто получили ответ даже без калькулятора. Ваш подопечный должен научиться также!

Ответ: 700 тысяч.

Зачем использовать формулу суммы прогрессии, если можно посчитать вручную? Все верно, можно. Но это только в данном случае кредит взяли всего на 13 месяцев. А бывают прототипы, когда срок – 21 и больше месяцев. В какой-то момент считать вручную станет совсем долго и неудобно, потому воспользоваться формулой суммы – более универсальный метод.

Чем закончить разбор экономической (банковской) задачи № 17 в ЕГЭ по математике

Чтобы у ученика окончательно сложилась картинка занятия, пробегитесь еще раз по основным выводам:

  • Повторите алгоритм заполнения таблицы и решения задачи (да, пятый раз);
  • Повторите типы задач и механизм распределения платежа на проценты и долг;
  • Напомните, как важно считать культурно и быть уверенным в каждой циферке в бланке;
  • Проговорите, что математическая модель должна точно отражать условие задачи.

Как показывает практика, чем больше повторяешь, тем больше шансов, что в голове выпускника останется хоть что-то.

За что дают баллы?

Знание критериев оценивания экономической (банковской) задачи № 17 в ЕГЭ по математике поможетученику чувствовать себя увереннее, ведь выставление баллов — это не какая-то магия и не вредность экспертов. Все правила игры прописаны в нормативных документах.

17-ый номер стоит 3 балла. Чтобы узнать, как их присуждают, мы залезли в методические рекомендации для членов предметных комиссий.

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

Согласно пояснениям из документа, для получения одного балла мало просто обоснованно составить математическую модель по задаче, надо предложить правильный метод ее анализа. 

Два балла получит школьник, который ошибся в вычислениях или не обосновал появление математической модели в решении. Например, согласно методическим рекомендациям, решение на 2 балла выглядит так:

Как научить школьника решать экономическую (банковскую) задачу в ЕГЭ по математике

А вот отсутствие промежуточных вычислений хоть и усложняет проверку, но баллы не снимает.

Идеально выполненная первая часть ЕГЭ по профильной математике принесет школьнику всего 62 тестовых балла. Добавим сюда пару ошибок по невнимательности, и останутся совсем крохи — баллов 50, не больше. Для поступления на бюджет мало, а значит необходимо планировать делать вторую часть! Чем раньше школьник это осознает, тем проще будет с ним работать. А банковская задача поможет получить дополнительные баллы с минимальными усилиями.

Однако кредиты – не единственный прототип 17-го номера, и в следующий раз мы расскажем, как научить школьника решать задачи на оптимальный выбор и ценные бумаги. 

Всего: 258    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

15‐го января планируется взять кредит в банке на 14 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15 число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 15% больше суммы, взятой в кредит. Найдите r.

Источник: ЕГЭ — 2015. Основная волна по математике 04.06.2015. Вариант Ларина.


Планируется выдать льготный кредит на целое число миллионов рублей на пять лет. В середине каждого года действия кредита долг заёмщика возрастает на 10% по сравнению с началом года. В конце 1-го, 2-го и 3-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 4-го и 5-го годов заёмщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наибольший размер кредита, при котором общая сумма выплат заёмщика будет меньше 8 млн.


Савелий хочет взять в кредит 1,4 млн рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка процента 10% годовых. На какое минимальное количество лет может Савелий взять кредит, чтобы ежегодные выплаты были не более 330 тысяч рублей?

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко. 2015 г.


Источник: А. Ларин. Тренировочный вариант № 322 (часть C).


1 января 2015 года Тарас Павлович взял в банке 1,1 млн рублей в кредит. Схема выплаты кредита следующая  — 1 числа каждого следующего месяца банк начисляет 2 процента на оставшуюся сумму долга (то есть увеличивает долг на 2%), затем Тарас Павлович переводит в банк платёж. На какое минимальное количество месяцев Тарас Павлович может взять кредит, чтобы ежемесячные выплаты были не более 220 тыс. рублей?

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко. 2015 г.


15-го января планируется взять кредит в банке на 39 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 20% больше суммы, взятой в кредит. Найдите r.

Источник: ЕГЭ — 2015. Основная волна по математике 04.06.2015. Вариант 2 (Часть С).


15-го января планируется взять кредит в банке на 39 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 20% больше суммы, взятой в кредит. Найдите r.

Источник: ЕГЭ — 2015. Основная волна по математике 04.06.2015. Вариант 2 (Часть С)., Задания 17 (С4) ЕГЭ 2015


В июле планируется взять кредит на сумму 2 320 500 рублей. Условия его возврата таковы:

— каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

На сколько рублей больше придётся отдать в случае, если кредит будет полностью погашен четырьмя равными платежами (то есть за 4 года), по сравнению со случаем, если кредит будет полностью погашен двумя равными платежами (то есть за 2 года)?


Наш добрый герой В. взял в банке кредит в размере 20 192 020 рублей по очень знакомой схеме:

— в конце очередного месяца пользования кредитом банк начисляет проценты за пользование заемными средствами по специальной ставке данного варианта 2,96%;

— в этот же день клиент выплачивает часть долга и сумму начисленных процентов;

— после выплаты долг должен быть на одну и ту же величину меньше долга на конец предыдущего месяца.

Но дальше все пошло не по сценарию. Наш герой решил каждый месяц, начиная с первого, платить банку сверх прочего дополнительную сумму на погашение долга, при этом долг по‐прежнему ежемесячно уменьшался на одну и ту же величину (бóльшую, чем планировалось изначально) до полного погашения. В итоге срок кредита сократился на 52%. На какое наименьшее число процентов могла уменьшиться при этом переплата банку?

Источник: А. Ларин. Тренировочный вариант № 296.


Фермер получил кредит в банке под определенный процент годовых. Через год фермер в счет погашения кредита вернул в банк  дробь: числитель: 3, знаменатель: 4 конец дроби от всей суммы, которую он должен банку к этому времени, а еще через год в счет полного погашения кредита он внес в банк сумму, на 21% превышающую величину полученного кредита. Каков процент годовых по кредиту в данном банке?

Источник: А. Ларин: Тренировочный вариант № 85.


31 декабря 2014 года Никита взял в банке некоторую сумму в кредит под некоторый процент годовых. Схема выплаты кредита следующая  — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на а%), затем Никита переводит очередной транш. Если он будет платить каждый год по 2 073 600 рублей, то выплатит долг за 4 года. Если по 3 513 600 рублей, то за 2 года. Под какой процент Никита взял деньги в банке?


15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.

Источник: ЕГЭ — 2015 по математике. Основная волна 04.06.2015. Вариант 1 (Часть С)., Задания 17 (С4) ЕГЭ 2015


В начале года фирма «Жилстройсервис» выбирает банк для получения кредита среди нескольких банков, кредитующих под разные проценты. Полученным кредитом фирма фирма планирует распорядится следующим образом: 75% кредита направить на строительство коттеджей, а остальные 25% на оказание риэлтерских услуг населению. Первый проект может принести прибыль в размере от 36% до 44% годовых, а второй  — от 20% до 24% годовых. В конце года фирма должна вернуть кредит банку с процентами и при этом рассчитывает на чистую прибыль от указанных видов деятельности от не менее 13%, но и не более 21% годовых от всего полученного кредита. Какими должны быть наименьшая и наибольшая процентные ставки кредитования выбираемых банков, чтобы фирма гарантированно обеспечила себе указанный выше уровень прибыли.

Источник: А. Ларин: Тренировочный вариант № 157.


В январе 2020 года Борис взял кредит в банке на сумму 4 200 000 рублей. По договору с банком Борис должен был погасить долг двумя равными платежами в феврале 2021 года и феврале 2022 года, при условии, что в январе 2021 года и январе 2022 года сумма оставшегося долга увеличивается на 10%. В феврале 2021 года Борис сделал первую выплату в соответствии с договором. После этого ему удалось договориться с банком о рефинансировании кредита и уменьшить процент, на который сумма долга вырастет в январе 2022 года, до 7%. Какую сумму сэкономит Борис на рефинансировании своего кредита?

Источник: Пробный вариант ЕГЭ по математике 18.03.21 Санкт-Петербург. Вариант №1


В январе 2020 года Василий взял кредит в банке на сумму 3 300 000 рублей. По договору с банком Василий должен был погасить долг двумя равными платежами в феврале 2021 года и феврале 2022 года, при условии, что в январе 2021 года и январе 2022 года сумма оставшегося долга увеличивается на 20%. В феврале 2021 года Василий сделал первую выплату в соответствии с договором. После этого ему удалось договориться с банком о рефинансировании кредита и уменьшить процент, на который сумма долга вырастет в январе 2022 года, до 16%. Какую сумму сэкономит Василий на рефинансировании своего кредита?

Источник: А. Ларин. Тренировочный вариант № 348., Пробный вариант ЕГЭ по математике 18.03.21 Санкт-Петербург. Вариант №2


Оля хочет взять в кредит 1 200 000 рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка процента 10% годовых. На какое минимальное количество лет может Оля взять кредит, чтобы ежегодные выплаты были не более 320 000 рублей?


В июле 2016 года планируется взять кредит в банке на три года в размере S млн рублей, где S  — целое число. Условия его возврата таковы:

— каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;

— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц и год Июль 2016 Июль 2017 Июль 2018 Июль 2019
Долг
(в млн рублей)
S 0,7S 0,4S 0

Найдите наибольшее значение S, при котором разница между наибольшей и наименьшей выплатами будет меньше 1 млн рублей.

Источник: Задания 17 (С5) ЕГЭ 2016


15-го января планируется взять кредит в банке на некоторый срок (целое число месяцев). Условие его выплаты таковы:

− 1-го числа k-ого месяца долг возрастёт на 1% по сравнению с концом предыдущего месяца;

− со 2-го по 14-е число k-того месяца необходимо выплатить часть долга;

− 15-го числа k-того месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

На сколько месяцев планируется взять кредит, если известно, что общая сумма выплат после полного погашения кредита на 20% больше суммы, взятой в кредит?

Источник: Задания 17 (С5) ЕГЭ 2017, ЕГЭ — 2017. Основная волна 02.06.2017. Вариант 402 (C часть).


В июле планируется взять кредит в банке на сумму 9 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:

— каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга;

— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

Чему будет равна общая сумма выплат после полного погашения кредита, если наименьший годовой платёж составит 825 тыс рублей?

Источник: РЕШУ ЕГЭ


В июле 2018 года планируется взять кредит в банке на шесть лет в размере S тыс. рублей. Условия его возврата таковы:

— каждый январь долг увеличивается на 2% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;

— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Найдите S, если общая сумма выплат после полного погашения кредита составила 327 тысяч рублей.

Всего: 258    1–20 | 21–40 | 41–60 | 61–80 …

В 2018 году на ЕГЭ по математике появились задачи, напугавшие многих выпускников. «Это страшно, — говорили они после экзамена. — Никогда такого не было. Решить невозможно».

Конечно же, я сочувствую абитуриентам, для которых ЕГЭ – все-таки большой стресс. Экзамен – это испытание не только знаний, но и хладнокровия, и способности действовать в сложной ситуации. И может быть, сказать себе: «Да, задача необычная, но я знаю общий подход к решению таких задач – справлюсь и на этот раз».

Действительно ли настолько страшны были «банковские» задачи на ЕГЭ по математике 2018 года? Они своеобразны. Их невозможно решить без подготовки, без знания того, как вообще устроены задачи ЕГЭ на кредиты.

Запомним: есть всего два характерных типа «банковских» задач, или задач на кредиты.

1 тип. Выплаты кредита производятся равными платежами. Эта схема еще называется «аннуитет». К первому типу относятся также все задачи, где известны платежи (или дана закономерность именно для платежей).

2 тип. Выплаты кредита подбираются так, что сумма долга уменьшается равномерно. Это так называемая «схема с дифференцированными платежами». Ко второму типу относятся также задачи, где известна закономерность уменьшения суммы долга.

О двух схемах решения задач на кредиты – мой краткий теоретический материал.

Более подробно я рассказываю теорию и решаю такие задачи на своих мастер-классах и интенсивах. Чтобы узнать о них, подпишись на нашу рассылку.

Посмотрим с этой точки зрения на «банковские» задачи ЕГЭ-2018.

1.

15-го декабря планируется взять кредит в банке на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1604 тысяч рублей?

Прежде всего, введем переменные. Расчеты будем вести в тысячах рублей.

Пусть S – сумма, которую планируется взять в кредит,

Z – общая сумма выплат, Z = 1604 (тыс. рублей),

Х — ежемесячное уменьшение суммы долга, Х = 30 (тысяч рублей),

p=3% — процент, начисляемый банком ежемесячно.

После первого начисления процентов сумма долга равна Scdot (1+ frac{p}{100}) = Scdot k. После каждого начисления процентов сумма долга увеличивается в k = 1+ frac{p}{100} раза. В нашей задаче k = 1,03.

Определим, к какому типу относится задача. Долг уменьшается равномерно (по условию, 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца). Значит, это задача второго типа. А в задачах второго типа мы рисуем следующую схему:

После первого начисления процентов сумма долга равна kS. Затем, после первой выплаты, сумма долга равна S – X, где Х = 30 (тысяч рублей).

Значит, первая выплата равна kS – (S – X) (смотри схему).

Вторая выплата: k (S – X ) – ( S – 2X).

Последняя выплата: k ( S – 20 X).

Найдем общую сумму выплат Z:

Z = kS – (S – X) + k (S – X ) – ( S – 2X) + … + k ( S – 20X) =
= k ( S + S – X + S – 2X + … + S – 20 X) – ( S – X + S – 2X + … + S – 20X).

Мы сгруппировали слагаемые, содержащие множитель k, и те, в которых нет k.

Упростим выражения в скобках:

k (21S – X (1 + 2 + 3+ … + 20)) – (20S – X (1 + 2 + 3+ … + 20)) = Z.

В задачах этого типа (когда сумма долга уменьшается равномерно) применяется формула для суммы арифметической прогрессии: S_n=frac{(a_1+a_n)}{2}cdot n.

В этой задаче мы тоже ее используем:

1 + 2 + 3+ ... + 20 = frac{1+20}{2}cdot 20 = 210.

Получим:

k (21 S – 210X ) – 20 S + 210 k = S (21k – 20) – 210 X (k-1) = Z.

Осталось подставить числовые значения:

S ( 21⋅ 1,03 – 20) – 210 ⋅ 30 ⋅ 0,03 = 1604.

Отсюда S = 1100 тысяч рублей = 1 100 000 рублей.

Следующая задача относится к тому же типу. Математическая модель та же самая. Только найти нужно другую величину – процент, начисляемый банком. К тому же количество месяцев, на которое взят кредит, неизвестно.

2.

15-го декабря планируется взять кредит в банке на 1 000 000 рублей на (n+1) месяц. Условия его возврата таковы:
—1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— cо 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— 15-го числа n-го месяца долг составит 200 тысяч рублей;
— к 15-му числу (n + 1)-го месяца кредит должен быть полностью погашен.
Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1378 тысяч рублей.

Как всегда, введем обозначения. Для удобства ведем расчеты в тысячах рублей.

S = 1000000 рублей = 1000 (тыс. рублей) – сумма кредита,

Х = 40 (тыс. рублей) – ежемесячное уменьшение суммы долга,

Z = 1378 (тыс. рублей) – общая сумма выплат,

k = 1+ frac{r}{100 } — коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов.

Рисуем уже знакомую схему погашения кредита.

Первая выплата: kS – (S – X).

Вторая выплата: k (S – X ) – ( S – 2X).

Последняя выплата: k ( S – n X).

По условию, 15-го числа n-го месяца долг составит 200 тысяч рублей.

Значит, S – nX = 200. Подставим числовые данные:

1000 – 40 n = 200; тогда n = 20, n + 1 = 21, то есть кредит был взят на 21 месяц. Очень удобно – количество месяцев в этой задаче оказалось таким же, как в предыдущей. Поэтому очень кратко повторим основные моменты решения

Общая сумма выплат Z:

Z = kS – (S – X) + k (S – X ) – ( S – 2X) + … + k ( S – X) =
= k ( S + S – X + S – 2X + … + S – 20 X) – ( S – X + S – 2X + … + S – 20X) =
= k (21S – X (1 + 2 + 3+ … + 20)) – (20S – X (1 + 2 + 3+ … + 20)) =
= k (21 S – 210X ) – 20 S + 210 k = S (21k – 20) – 210 X (k-1).

Мы снова использовали ту же формулу для суммы арифметической прогрессии:

1 + 2 + 3+ ... + 20 = frac{1+20}{2}cdot 20 = 210.

По условию, Z = 1378 (тыс. рублей).

Выразим k из формулы S (21k – 20) – 210 X (k-1) = Z:

k=displaystyle frac{Z+20S-210X}{21(S-10X)}.

Подставим данные из условия задачи.

k =displaystyle frac{ 1378 + 20cdot 1000-210cdot 40 }{21 cdot (1000-10cdot 40)}   = 1,03.

Ответ: r = 3%.

Третья задача из числа «кошмаров» ЕГЭ-2018 по математике. Та же схема!

3.

15-го декабря планируется взять кредит в банке на сумму 300 тысяч рублей на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
— 15-го числа 20-го месяца долг составит 100 тысяч рублей;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Найдите общую сумму выплат после полного погашения кредита.

Тоже задача второго типа – есть информация об уменьшении суммы долга. Точно также будем вести расчеты в тысячах рублей.

Как всегда, введем обозначения. Для удобства ведем расчеты в тысячах рублей.

S = 300 (тыс. рублей) – сумма кредита,

n = 21 – количество месяцев,

r = 2%; k = 1+ frac{r}{100 }= 1,02,

Х – ежемесячное уменьшение суммы долга,

Z – общая сумма выплат.

Рисуем ту же схему, что и в предыдущей задаче. По условию, 15-го числа 20-го месяца долг составит 100 тысяч рублей.

Значит, S – 20 X = 100. Подставив данные из условия, найдем, что Х = 10.

Точно так же считаем сумму выплат (смотри задачи 1 и 2).

Z = S (21k – 20) – 210 X (k-1).

Подставляем данные из условия: Z = 300 (21 ⋅ 1,02 – 20) – 210 ⋅ 10 ⋅ 0,02 = 384 (тыс. рублей).

Ответ: 384000 рублей.

Хочешь узнать решения всех сложных задач ЕГЭ? Подпишись на нашу рассылку.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Разбор задачи №17 («Банковская», или «Экономическая») на ЕГЭ по математике 2018 года.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

На чтение 12 мин Просмотров 33.3к. Опубликовано 7 февраля, 2019

Для решения таких задач необходимо понимать алгоритм решения экономических задач

За задание №17 по математике ЕГЭ профильный уровень можно получить 3 балла. Мы рассмотрим как решать экономические задачи ЕГЭ по математике, которые в каждом варианте профильного уровня по математике идут под номером 17.

Решение №17 включает в себя обязательное построение математической модели, то есть это обычная текстовая задача, но с экономическим (финансовым) уклоном и чаще всего с большим количеством вычислений.

Можно выделить несколько блоков заданий:

1. Вклады и кредиты

2. Акции и другие ценные бумаги

3. Методы оптимальных решений

Рассмотрим каждый из вышеперечисленных блоков.

Содержание

  1. Вклады и кредиты
  2. Акции и другие ценные бумаги
  3. Методы оптимальных решений
  4. Примеры решения задач

Вклады и кредиты

Вклады и кредиты – самый обширный блок. Здесь вы можете встретить различные схемы возврата кредита или увеличения суммы вклада, и ваша задача – упорядочить данные таким образом, чтобы большой массив текста превратился в удобную математическую схему.

Чтобы правильно решать такие задачи, необходимо владеть формулой сложных процентов. Начисление по этой формуле предполагает, что каждый последующий год процент начисляется не на исходную сумму, а на исходную сумму, увеличенную предыдущим начислением процентов.

Формула выглядит следующим образом:

формула подсчета процентов по вкладам

где FV – будущая сумма.

PV – текущая сумма.

p – процент, в соответствии с которым происходит начисление

n – количество лет начисления процента.

Если начисления происходят не ежегодно, а чаще, например, ежеквартально, формула модифицируется в следующий вид:

формула 2 в экономической задаче,

где

FV – будущая сумма

PV – текущая сумма

p – процент, в соответствии с которым происходит начисление

n – количество лет начисления процента

m – количество начислений в год (например, m=4, если начисления ежеквартальные).

Давайте отработаем эту формулу на подготовительной задаче.

Задача 1

Алексей положил 100 000 рублей в банк под 6% годовых на 3 года. Какая сумма будет у Алексея через год? Через 2 года? Через 3 года?

Решение:

Рассчитаем по формуле сложного процента сумму через год:

формула 3 к задаче

Теперь сумму через 2 года:

формула 4 к задаче

Теперь сумму через 3 года:

нахождение суммы с учетом процентов

Более того, вам придётся работать со схемами кредитов/вкладов, поэтому решим более сложную задачу, в которой нужно будет переводить текст в таблицы и уравнения/неравенства.

Задача 2

Вклад в размере 10 млн рублей планируется открыть на четыре года. В конце каждого года вклад увеличивается на 10% по сравнению с его размером в начале года, а, кроме этого, в начале третьего года и четвёртого годов вклад ежегодно пополняется на одну и ту же фиксированную сумму, равную целому числу миллионов рублей. Найдите наименьший возможный размер такой суммы, при котором через четыре года вклад станет не меньше 28 млн рублей.

Решение:

Пусть искомая сумма составит a млн рублей.

Составим таблицу, чтобы упорядочить данные и построить математическую модель.

таблица

По условию, нужно найти наименьшее целое x, для которого выполнено неравенство

14,641 + 2,31a ≥ 28

a ≥ расчет стоимости

Наименьшее целое число, при котором знак неравенства выполняется, это число 6.

Значит, искомая сумма — 6 млн рублей.

Ответ: 6 млн рублей.

Акции и другие ценные бумаги

Следующий блок, который мы рассмотрим, затрагивает относительно новое понятие ценной бумаги. Что вам нужно знать о ценной бумаге, чтобы решать подобные задания, не вдаваясь в экономические особенности, это то, как она может приносить доход.

Тип 1: когда вы получаете доход от того, что ценная бумага, которую вы купили ранее, растет в цене. Например, сначала ценная бумага стоила 3 000, а через год стала стоить 4 000. Непосредственно этих 4 000 у вас нет, но вы можете продать ценную бумагу за 4 000 и получите больше, чем потратили за год до этого.

Тип 2: когда вы получаете некий процент от прибыли компании за то, что ранее приобрели ценную бумагу этой компании. Если вы являетесь владельцем акции, то доход данного типа вы получаете в форме дивидендов.

Помимо этого дохода вы также можете продать эту ценную бумагу и, если она теперь стоит больше, чем когда вы ее покупали, вы также получите прибыль. Это не все пути получения дохода от ценных бумаг, но других особенностей вам знать не нужно. При необходимости все дополнительные условия будут описаны в самой задаче.

Схема разделения дохода в задачах о ценных бумагах

Рассмотрим следующую задачу, в которой как раз фигурирует понятие ценной бумаги.

Задача 3.

Григорий приобрёл ценную бумагу компании за 9000 рублей в начале 2016 года. Компания находится на стадии активного роста, поэтому цена данной бумаги каждый год возрастает на 2000 рублей. В любой момент Григорий может продать бумагу и положить вырученные деньги на банковский счёт. Каждый год сумма на счёте будет увеличиваться на 12 %. В начале какого года Григорий должен продать ценную бумагу, чтобы через 15 лет после покупки этой бумаги сумма на банковском счёте была наибольшей?

Решение:

Продать бумагу нужно тогда, когда прирост стоимости ценной бумаги станет меньше, чем банковский процент. Пусть это случится в год n.

К этому моменту n к изначальной цене акции 9000 прибавится n раз по 2000, тогда на текущий момент её цена составит:

9000 + 2000n

Чтобы получить прирост, который Григорий получит, если хранить деньги в форме акции, необходимо ежегодный прирост (в данной задаче – 2000 рублей) поделить на накопленную к данному моменту сумму.

Прирост денежной суммы в банке всегда одинаков и равен предложенному проценту, то есть 0,12.

Таблица

Либо можем составить уравнение, которое объединит все строчки нашей таблицы:

Формула для подсчета данных таблицы

По прошествии четырёх лет Григорий должен продать бумагу, то есть в начале 2020 года.

Ответ: 2020

Методы оптимальных решений

Это особый блок, позволяющий максимизировать одну целевую функцию при учёте данных в условии ограничений.

Основные типы заданий в этом блоке:

1. Оптимизация работы на производстве с учётом цен на рынке товара и факторов производства;

2. Многозаводское производство (включая разные заводы/ отели/ другие рабочие пространства);

3. Транспортная задача.

Разберём несколько задач с основными методами решения.

Задача.

У фермера есть 2 поля, площадь каждого из которых составляет 10 гектаров. На каждом поле можно выращивать пшеницу и ячмень. Урожайность пшеницы на первом поле составляет 500 ц/га, а на втором поле – 300 ц/га. Урожайность ячменя, наоборот, на первом поле составляет 300 ц/га, а на втором поле – 500 ц/га. При этом известно, что между данными злаками поля можно делить в любом соотношении.

Если известно, что на рынке установилась цена на пшеницу 7000 рублей за центнер, а цена на ячмень 9000 рублей за центнер, то какой наибольший доход фермер может получить?

Решение:

Имеем 2 поля с различными характеристиками.

В целом, продавать ячмень выгоднее, чем продавать пшеницу, так как 9000 > 7000 рублей.

Более того, известно, что на втором поле урожайность ячменя выше, чем урожайность пшеницы (500 ц/га против 300 ц/га). Тогда очевидно, что второе поле полностью фермер займёт ячменём, откуда получит:

10·500· 9000= 45000000 рублей

Ситуация с первым полем не так очевидна.

Продавать ячмень, как и прежде, выгоднее, чем продавать пшеницу. Однако на первом поле урожайность ячменя ниже, чем урожайность пшеницы (300 ц/га против 500 ц/га).

Поэтому необходимо сравнить соотношения этих величин:

Тогда получается, что засеять первое поле пшеницей выгоднее, так как низкая цена компенсируется высокой урожайностью.

Доход с первого поля:

10 · 500 ·7000 = 35000000 рублей

Суммарный доход составит:

35000000 рублей + 45000000 рублей = 80000000 рублей

Ответ: 80000000 рублей

Есть и другие типы заданий, в которых необходимо будет применить не житейские знания, а навыки составления уравнений и нахождения наименьшего/ наибольшего значений функций.

Задача.

На двух заводах есть по 360 рабочих, каждый из которых готов трудиться по 5 часов в сутки для обработки чёрных или цветных металлов. На первом заводе один рабочий за час обрабатывает 0,3 кг чёрных металлов или 0,1 кг цветных металлов. На втором заводе для обработки x кг чёрных металлов в день требуется x2 человеко-часов труда, а для обработки у кг цветных металлов в день требуется у2 человеко-часов труда.

Владельцу заводов поступил заказ на обработку металлов, причём 1 кг чёрных металлов ценится заказчиком так же, как 1 кг цветных металлов. Какую наибольшую массу обработанных металлов может за сутки суммарно получить заказчик?

Решение:

Как и дано в условии, 1 кг чёрных металлов ценится заказчиком так же, как 1 кг цветных металлов, что означает, что металлы взаимозаменяемы в пропорции 1:1.

Пусть на втором заводе t рабочих обрабатывают чёрные металлы, тогда (360-t) рабочих обрабатывают цветные металлы.

Знаем, что x2 человеко-часов труда требуется обработки x кг чёрных металлов, а у2 человеко-часов труда требуется в день для обработки у кг цветных металлов.

На первом заводе один рабочий за час обрабатывает 0,3 кг чёрных металлов или 0,1 кг цветных металлов, однако чёрные и цветные металлы для заказчика равнозначны, из чего сделаем вывод, что все 360 рабочих обрабатывают чёрные металлы, то есть 108*5 = 540 кг в день.

Имея соотношение на втором заводе и производительность рабочих на первом заводе, составим функцию возможного количества обработанных металлов:

Формула для расчета

Необходимо найти наибольшее значение этой функций. Последовательность действий мы уже знаем из темы «Анализ функций». Необходимо:

1. Найти производную функции;

2. Приравнять производную к 0, получить точки, подозрительные на экстремум;

3. Определить знаки производной на полученных промежутках и проверить, какие точки являются точкой максимума, а какие – точкой минимума.

Проведём такую последовательность действий с нашей производственной функцией.

  1. формула 9
  2. Приравниваем производную к нулю.     формула 11Приведём к общему знаменателю.  формула 12Приравняем числитель к 0.формула 13Возведём в квадрат.формула 14Получили единственную точку экстремума.
  3. Проверим, является ли она точкой максимума.на числовой оси отмечаем знак производнойВидим, что в точке t=180 производная меняет знак с + на -, тогда, по определению, это точка максимума.Итак, на втором заводе 180 рабочих обрабатывают чёрные металлы, тогда 180 рабочих обрабатывают цветные металлы.Поставим данные значения в изначальную целевую функцию.вычисленияОтвет: 600 кг

Видим, что экономическая задача достаточно разнообразна, но и решать вы её можете абсолютно разными способами – через производные, составление таблиц, схем, выведение формул и простой перебор вариантов.

Самое главное – внимательно прочитать и понять условие.

Примеры решения задач

Задача 1. В 2019 году клиент планирует открыть вклад в банке 1 ноября сроком на 1 месяц под 11% годовых. Какая сумма денег окажется на счёте вклада 1 декабря того же года, если планируемая сумма вклада равна 100 000 рублей? Ответ округлите до двух знаков после запятой.

Решение: При однократном начислении процентов через дней на вклад под годовых в невисокосный год получим сумму  Формула суммы процентов

Воспользуемся этой формулой, считаяS0= 100 000, r = 11 , m = 30 (так как в ноябре 30 дней).

Получим:

вычисления к задаче

Число в скобках с точностью до 7 знаков после запятой равно 1,0090411, значит, S=100 904,11Таким образом, на счёте вклада будет 100 904 рубля 11 копеек.

Задача 2. Через сколько полных лет у клиента на счету будет не менее 950 000 рублей, если он намерен открыть вклад 31 декабря и планирует каждый год класть на счет 260 000 рублей при условии, что банк раз в год (начиная со следующего года) 31 декабря будет начислять 10% на имеющуюся сумму?

Решение:

Будем последовательно вычислять сумму на счете и упорядочивать данные с помощью таблицы.

Таблица к задаче

Задача 3. По вкладу «А» банк в течение трёх лет в конце каждого года увеличивает на 10% сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» увеличивает эту сумму на 11% в течение каждого из первых двух лет, а на третий год начисляемые проценты изменяются. Найдите наименьшее целое число процентов за третий год по вкладу «Б», при котором по истечении трёх лет этот вклад всё ещё будет выгоднее вклада «А».

Решение:

Пусть на каждый тип вклада была внесена сумма По вкладу «А» сумма каждый год увеличивается на Формула процентов

умножается на коэффициент 1,1.

Тогда по вкладу «А» после первого года сумма станет равна ;

после второго года: 1,21S;

после третьего года: 1,331S.

По вкладу «Б» после первого года сумма станет равна1,11S;

после второго года 1,2321S.

Пусть на третий год по вкладу «Б» банк увеличивает сумму на r%. Тогда после третьего года по вкладу «Б» сумма станет равна

формула, где r— натуральное число,

проценткоэффициент повышения в третий год.

По условию требуется найти наименьшее целое число процентов за третий год по вкладу «Б», при котором за все три года этот вклад всё ещё останется выгоднее вклада «А», то есть сумма через три года на вкладе «Б» должна быть больше суммы на вкладе «А». Составим неравенство:

формула 22

Так как r— натуральное число, то наименьший процент равен 9%.

Задача 4. Сергей планирует приобрести ценную бумагу за 7 тысяч рублей. Цена бумаги каждый год будет возрастать на 2 тысячи рублей. В любой момент Сергей сможет продать ценную бумагу и вырученные деньги положить на банковский счет. Каждый год сумма на счете будет увеличиваться на 10%. В течение какого года после покупки Сергей должен продать ценную бумагу, чтобы через 30 лет после покупки этой бумаги сумма на счете стала наибольшей?

Решение.

Во второй год цена ценной бумаги составит: (7+2) тысячи рублей

В третий год (7+2)+2= 7+2∙2 тысячи рублей

В четвертый год (7+2)+2)+2= 7+2∙3 тысячи рублей

подсчет процентов в n год.

Сопоставим 10% банковский рост цены бумаги ее ежегодному росту на 2000 рублей.

10% от цены бумаги на формула

Ценную бумагу стоит продать тогда, когда 10% от цены бумаги станут больше, чем 2 тысячи рублей.

Получаем неравенство:

Вычисления - решение неравенства

Наименьшее натуральное n, удовлетворяющее этому неравенству, равно 8.

Задача 5.

Пенсионный фонд владеет ценными бумагами, которые стоят t2 тыс. рублей в конце года t (t=1; 2; … ). В конце любого года пенсионный фонд может продать ценные бумаги и положить деньги на счёт в банке, при этом в конце каждого следующего года сумма на счёте будет увеличиваться на 20%. В конце какого года пенсионному фонду следует продать ценные бумаги, чтобы в конце тридцатого года сумма на его счёте была наибольшей?

Решение:

решение задачи 5

Методичка по решению экономических задач

(задание 17 ЕГЭ)

Составитель: Мокина В.С.,

учитель математики

МАОУ гимназия №83

Тюмень 2021 год

Содержание

l. Задачи на оптимальный выбор.

2. Задачи на кредит с аннуитетным платежом

3. Задачи на дифференцированный платеж 

4. Задачи на нахождение суммы кредита

5. Задачи на нахождение суммы вклада

Все представленные в банке ЕГЭ задачи (задание 17), можно условно разделить на группы и подгруппы:

Задачи, не связанные с банковскими операциями (задачи на оптимизацию)

Банковские задачи на вклады

1) нахождение срока вклада;

2) вычисление процентной ставки по вкладу;

3) нахождение суммы вклада;

4) нахождение ежегодной суммы пополнения вклада

Банковские задачи на кредиты:

1) нахождение количества лет выплаты кредита;

2) вычисление процентной ставки по кредиту;

3) нахождение суммы кредита;

4) нахождение ежегодного транша.

В методичке показаны методы решения задач экономического содержания, связанные с банковскими кредитами, оптимизацией производства товаров и услуг.

Рассмотрим решение задач (задание 17), в которых требуется оптимальным образом распределить производство продукции для получения максимальной прибыли.

Задачи на оптимальный выбор. Например, нужно найти максимальную прибыль (при соблюдении каких-либо дополнительных условий), или минимальные затраты. Сначала в такой задаче нужно понять, как одна из величин зависит от другой (или других). Другими словами, нужна та функция, наибольшее или наименьшее значение которой мы ищем. А затем — найти это наибольшее или наименьшее значение. Иногда — с помощью производной. А если функция получится линейная или квадратичная — можно просто воспользоваться свойствами этих функций.

У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 500 ц/га, а на втором – 300 ц/га. Урожайность свёклы на первом поле составляет 300 ц/га, а на втором – 500 ц/га. Фермер может продать картофель по цене 5000 руб. за центнер, а свёклу – по цене 8000 руб. за центнер. Какой наибольший доход может получить фермер?

Решение:

Величина дохода фермера будет зависеть от того как будет распределена площадь поля между картофелем и свёклой. Пусть х га, засажено картофелем на первом поле, тогда (10 – х) га, засаженных свеклой на первом поле. Полученная прибыль с первого поля, равна:

S(х) = х·500·5000 + (10 – х)·300·8000 = 24000000 + 100000х (руб.)

Функция возрастающая, т.к. к>0, значит, наибольшая доходность будет достигнута при наибольшем значении х = 10 га и прибыль с первого поля составит: S(10) = 24000000 + 100000·10 = 25000000 рублей.

Обозначим через у — количество гектар, засаженных картофелем на втором поле, а (10- у) — количество гектар, засаженных свеклой на втором поле. Прибыль со второго поля составит:

S(у) = 300·5000·у + (10 – у)·500·8000 = 40000000 – 2500000у ( руб.)

Функция убывающая, т.к. к<0, значит, наибольшая доходность будет достигнута при наименьшем значении х = 0 га и прибыль с первого поля составит: S(10) = 40000000 рублей.

Таким образом, максимальная прибыль с обоих полей, равна: S = 25000000 + 40000 = 65000000 рублей, что составляет 65 млн. рублей.

Ответ: 65млн. рублей.

Реши самостоятельно:

У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 400 ц/га, а на втором — 300 ц/га. Урожайность свёклы на первом поле составляет 300 ц/га, а на втором — 400 ц/га.

Фермер может продавать картофель по цене 10 000 руб. за центнер, а свёклу — по цене 11 000 руб. за центнер. Какой наибольший доход может получить фермер?

У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 300 ц/га, а на втором — 200 ц/га. Урожайность свёклы на первом поле составляет 200 ц/га, а на втором — 300 ц/га.

Фермер может продавать картофель по цене 10 000 руб. за центнер, а свёклу — по цене 13 000 руб. за центнер. Какой наибольший доход может получить фермер?

У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 200 ц/га, а на втором — 300 ц/га. Урожайность свёклы на первом поле составляет 250 ц/га, а на втором — 200 ц/га.

Фермер может продавать картофель по цене 15 000 руб. за центнер, а свёклу — по цене 18 000 руб. за центнер. Какой наибольший доход может получить фермер?

Кон­серв­ный завод вы­пус­ка­ет фрук­то­вые ком­по­ты в двух видах тары — стек­лян­ной и же­стя­ной. Про­из­вод­ствен­ные мощ­но­сти за­во­да поз­во­ля­ют вы­пус­кать в день 90 цент­не­ров ком­по­тов в стек­лян­ной таре или 80 цент­не­ров в же­стя­ной таре. Для вы­пол­не­ния усло­вий ас­сор­ти­мент­но­сти, ко­то­рые предъ­яв­ля­ют­ся тор­го­вы­ми се­тя­ми, про­дук­ции в каж­дом из видов тары долж­но быть вы­пу­ще­но не менее 20 цент­не­ров. В таб­ли­це при­ве­де­ны се­бе­сто­и­мость и от­пуск­ная цена за­во­да за 1 цент­нер про­дук­ции для обоих видов тары.

Вид тары

Себестоимость за 1 ц

Отпускная цена за 1 ц

стекло

1500 рублей

2100 рублей

жесть

1100 рублей

1750 рублей

Пред­по­ла­гая, что вся про­дук­ция за­во­да на­хо­дит спрос (ре­а­ли­зу­ет­ся без остат­ка), най­ди­те мак­си­маль­но воз­мож­ную при­быль за­во­да за один день (при­бы­лью на­зы­ва­ет­ся раз­ни­ца между от­пуск­ной сто­и­мо­стью всей про­дук­ции и её се­бе­сто­и­мо­стью).

5) Фаб­ри­ка, про­из­во­дя­щая пи­ще­вые по­лу­фаб­ри­ка­ты, вы­пус­ка­ет блин­чи­ки со сле­ду­ю­щи­ми ви­да­ми на­чин­ки: ягод­ная и тво­рож­ная. В дан­ной ниже таб­ли­це при­ве­де­ны се­бе­сто­и­мость и от­пуск­ная цена, а также про­из­вод­ствен­ные воз­мож­но­сти фаб­ри­ки по каж­до­му виду про­дук­та при пол­ной за­груз­ке всех мощ­но­стей толь­ко дан­ным видом про­дук­та.

Вид начинки

Себестоимость за 1 тонну

Отпускная цена за 1тонну

Производственные возможности

ягоды

70000 рублей

100000 рублей

90т/месс.

творог

100000 рублей

135000 рублей

75 т/месс.

Для вы­пол­не­ния усло­вий ас­сор­ти­мент­но­сти, ко­то­рые предъ­яв­ля­ют­ся тор­го­вы­ми се­тя­ми, про­дук­ции каж­до­го вида долж­но быть вы­пу­ще­но не менее 15 тонн. Пред­по­ла­гая, что вся про­дук­ция фаб­ри­ки на­хо­дит спрос (ре­а­ли­зу­ет­ся без остат­ка), най­ди­те мак­си­маль­но воз­мож­ную при­быль, ко­то­рую может по­лу­чить фаб­ри­ка от про­из­вод­ства блин­чи­ков за 1 месяц.

Предприниматель купил здание и собирается открыть в нём отель. В отеле могут быть стандартные номера площадью 27 квадратных метров и номера «люкс» площадью 45 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 981 квадратный метр. Предприниматель может поделить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 2000 рублей в сутки, а номер «люкс» — 4000 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своём отеле предприниматель?

Решение:

Пусть у — число номеров «люкс», а  х — число стандартных номеров и S = 981м2. Тогда должно соблюдаться неравенство: 27х + 45у = 981

Выразим число обычных номеров т.е.

х = 981 – 45у, х = t1622482975aa.gif = 36 + t1622482975ab.gif = 36 + t1622482975ac.gif

Найдем решение этого уравнения подбором, где х, у t1622482975ad.gifN

Если у = 2, то х = 33 у = 14, то х = 15

у = 5, то х = 28 у = 17, то х = 8

у = 11, то х =18 у = 20, то х = 3

f(х,у) = 2000х + 4000у.

Очевидно, что максимальная прибыль будет при максимальном числе номеров «люкс», поэтому выбираем у = 20, х = 3.

Тогда в сутки предприниматель получит:

4000·20 + 2000·3 = 80000 + 6000 = 86000 рублей.

Проверим оставшиеся варианты

2·4000 + 33·2000 = 74000 рублей

5·4000 + 28·2000 = 76000 рублей

11·4000 + 18·2000 = 74000 рублей

2·4000 + 33·2000 = 80000 рублей

14·4000 + 15·2000 = 86000 рублей

17·4000 + 8·2000 = 84000 рублей

Ответ: 86000 рублей

Реши самостоятельно:

Предприниматель купил здание и собирается открыть в нем отель. В отеле могут быть стандартные номера площадью 30 квадратных метров и номера «люкс» площадью 40 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 940 квадратных метров. Предприниматель может определить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 4000 рублей в сутки, а номер «люкс» — 5000 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своем отеле предприниматель?

Предприниматель купил здание и собирается открыть в нем отель. В отеле могут быть стандартные номера площадью 21 квадратный метр и номера «люкс» площадью 49 м2. Общая площадь, которую можно отвести под номера, составляет 1099 м2. Предприниматель может поделить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 2000 рублей в сутки, а номер «люкс» — 4500 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своем отеле предприниматель?

Предприниматель купил здание и собирается открыть в нём отель. В отеле могут быть стандартные номера площадью 27 квадратных метров и номера «люкс» площадью 45 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 981 квадратный метр. Предприниматель может поделить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 2200 рублей в сутки, а номер «люкс» — 4000 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своём отеле предприниматель?

Производство некоторого товара облагалось налогом в размере t0 руб. за ед. товара. Государство увеличило налог в 2.5 раза (t1= 2.5t0), но сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог, чтобы добиться максимальных налоговых сборов. если известно, что при налоге равном t руб. за ед. товара, объем производства товара составляет 9000 – 2t ед., если это число положительно, и 0 единиц?

Решение:

Обозначим Q(t) = 9000- 2t единиц товара, Q(t)- объем производства. Тогда налоговые сборы составляют S(t) = Q ·t, S(t) = (9000 — 2tt = 9000t – 2t2 руб. Рассмотрим функцию S(t) = 9000t – 2t2. Это квадратичная функция, графиком является парабола, ветви которой направлены вниз. Максимального значения эта функция достигает в вершине параболы. t = t1622482975ae.gift = t1622482975af.gif = 2250, 2250 руб. за единицу товара. При t= t0 налоговые сборы составляют 9000t0 – 2t02 руб. При t= 2,5t0 налоговые сборы составляют 9000·2,5t0 – 2·(2,5t0)2 = 22505t0 – 12,5t02 руб. Так как сумма налоговых поступлений не изменилась, то 9000t0 – 2t02 = 22505t0 – 12,5t02 / : t0 t1622482975ag.gif 0 получим 9000 – 2t0 = 22505 – 12,5t0 , 10,5 t0 = 13500, t0 = 13500: 10,5 = t1622482975ah.gif, значит за единицу товара был налог t1622482975ah.gif руб., а стал t1622482975ai.gif руб. Теперь этот налог надо уменьшить на r%, чтобы налог стал равным 22500 руб. за единицу товара.

t1622482975aj.gif

Значит государству необходимо на 30% уменьшить налог, чтобы добиться максимальных налоговых сборов.

Ответ: уменьшить на 30%

Решить самостоятельно

Производство некоторого товара облагалось налогом в размере t0 руб. за ед. товара. Государство увеличило налог в 2.5 раза (t1= 2.5t0),но сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог, чтобы добиться максимальных налоговых сборов. если известно, что при налоге равном t руб. за ед. товара, объем производства товара составляет 7000–2t ед., если это число положительно, и 0 единиц?

Производство некоторого товара облагалось налогом в размере t0 рублей за единицу товара. После того как государство, стремясь нарастить сумму налоговых поступлений, увеличило налог вдвое (до 2t0 рублей за единицу товара), сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог после такого увеличения, чтобы добиться максимальных налоговых поступлений, если известно, что при налоге, равном t рублей за единицу товара, объём производства составляет 10 000 – 2t единиц и это число положительно?

lll. 1. В начале 2001 года Алексей приобрел ценную бумагу за 11 000 рублей. В конце каждого года цена бумаги возрастает на 4 000 рублей. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счет. Каждый год сумма на счете будет увеличиваться на 10%. В начале каждого года Алексей должен продать ценную бумагу, чтобы через 15 лет после покупки этой бумаги сумма на счете была наибольшей?

Решение:

Используем арифметическую прогрессию, в которой а1=11000 — цена за бумагу в первый год покупки году, d=4000 — увеличение стоимости бумаги, аn — пока еще неизвестный нам год продажи бумаги (по счету от года покупки), n — номер года.

Формула n-ого члена арифметической прогрессии: an=a1+d(n-1).

Используя ее находим числа, отвечающие за стоимость бумаги на начало n-го года (по счету от года покупки).

Каждый год сумма на счете будет увеличиваться на 10% = 0,1 от данной суммы, и эти 10% должны быть больше или равны 4000.

Составим неравенство: 0,1·(a1+d(n-1)) ≥ 4000.

Подставим а1=11000, d=4000 и решим неравенство:

0,1·(11000+4000(n-1)) ≥ 4000 обе части неравенства умножим на 10, чтобы избавится от десятичной дроби, получим

11000+4000(n — 1) ≥ 40000;

11000+4000n — 4000 ≥ 40000;

4000n ≥ 33000;

n ≥ 8,25, n Ν n=8

через 8 лет надо продать бумагу, т.е. в 2001+8=2009 году

Или рассуждаем так: на восьмом году (т.е. в 2008) 10% от стоимости будет больше 4000, значит бумагу надо продать в следующем (т.е. 2009)).

Ответ: 2009 год.

Другое решение этой задачи.

Чтобы извлечь наибольшую прибыль, Алексей должен воспользоваться банковским депозитом, когда 10% от суммы, вырученной за ценную бумагу, превысит 4000 руб. Найдем значение суммы, от которой 10% будут равны 4000, получим: х·0,1 = 4000

х = 4000: 0,1 = 40000

То есть ценную бумагу в 11000 рублей нужно довести до суммы большей или равной 40000 рублей и полученную сумму положить в банк. Ценная бумага дойдет до этого уровня через 40000 – 11000 = 4000·n

n = 29000: 4000 = 7,25 n Ν n=8

то есть через 8 лет, и в начале 2009-го года полученную сумму нужно положить на банковский депозит.

Ответ: 2009.

Реши самостоятельно:

В начале 2001 года Алексей приобрел ценную бумагу за 7000 рублей. В конце каждого года цена бумаги возрастает на 2000 рублей. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счет. Каждый год сумма на счет будет увеличиваться на 10%. В начале какого года Алексей должен продать ценную бумагу, чтобы через пятнадцать лет после покупки этой бумаги сумма на банковском счете была наибольшей?

В начале 2001 года Алексей приобрел ценную бумагу за 19000руб. В конце каждого года цена бумаги возрастает на 3000 руб. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счет. Каждый год сумма на счете будет увеличиваться на 10%. В начале какого года Алексей должен продать ценную бумагу, чтобы через пятнадцать лет после покупки этой бумаги сумма на банковском счете была наибольшей?

Решение экономических задач: банки, проценты, кредиты.

1. Аннуитетный платеж – представляет собой равные ежемесячные платежи, растянутые на весь срок кредитования. В сумму платежа включены: часть ссудной задолженности и начисленный процент. При этом, в первые месяцы (или годы) кредита большую часть транша составляют проценты, а меньшую – погашаемая часть основного долга. Ближе к концу кредитования пропорция меняется: большая часть транша идет на погашение «тела» кредита, меньшая – на проценты. При этом общий размер платежа всегда остается одинаковым.

Задачи на кредит с аннуитетным платежом

1 января 2015 года Александр Сергеевич взял в банке 1,1 млн. рублей в кредит. Схема выплаты кредита следующая – 1-го числа каждого следующего месяца банк начисляет 1% на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Александр Сергеевич переводит в банк платёж. На какое минимальное количество месяцев Александр Сергеевич может взять кредит, чтобы ежемесячные выплаты были не более 275 тыс. рублей?
Решение:

месяца

Остаток после начисления процентов и платежа

0

1100000руб.

1

1100000 ·1,02 – 275000 = 836000 руб.

2

836000 ·1,02 – 275000 = 569360 руб.

3

569360 ·1,02 – 275000 = 300053,6 руб.

4

300053,6·1,02 – 275000 = 28054,13 руб.

5

28054,13 ·1,02 = 28334,67 — 28334,67 = 0

Ответ: 5 месяцев

Реши самостоятельно:

1 января 2015 года Иван Сергеевич взял в банке 1 млн. рублей в кредит. Схема выплаты кредита следующая: 1-го числа каждого следующего месяца банк начисляет 2% на оставшуюся сумму долга (то есть увеличивает долг на 2%), затем Иван Сергеевич переводит в банк платёж. На какое минимальное количество месяцев Иван Сергеевич может взять кредит, чтобы ежемесячные выплаты были не более 200 тыс. рублей.

1 января 2015 года Андрей Владимирович взял в банке 1,1 млн. рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 3 процента на оставшуюся сумму долга (то есть увеличивает долг на 3%), затем Андрей Владимирович переводит в банк платёж. На какое минимальное количество месяцев Андрей Владимирович может взять кредит, чтобы ежемесячные выплаты были не более 220 тыс. рублей?

1 ян­ва­ря 2019 года Павел Васильевич взял в банке 1 млн. руб­лей в кре­дит. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая: 1 числа каж­до­го сле­ду­ю­ще­го ме­ся­ца банк на­чис­ля­ет 1 про­цент на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на 1%), затем Павел Васильевич пе­ре­во­дит в банк платёж. На какое ми­ни­маль­ное ко­ли­че­ство ме­ся­цев Павел Васильевич может взять кре­дит, чтобы еже­ме­сяч­ные вы­пла­ты были не более 125 тыс. руб­лей?

1 ян­ва­ря 2018 года Тимофей Ильич взял в банке 1,1 млн. руб­лей в кре­дит. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая — 1 числа каж­до­го сле­ду­ю­ще­го ме­ся­ца банк на­чис­ля­ет 2 про­цен­та на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на 2%), затем Тимофей Ильич пе­ре­во­дит в банк платёж. На какое ми­ни­маль­ное ко­ли­че­ство ме­ся­цев Тимофей Ильич может взять кре­дит, чтобы еже­ме­сяч­ные вы­пла­ты были не более 220 тыс. руб­лей?

IV.1. 31 декабря 2014 года Алексей взял в банке 9282000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%) затем Алексей переводит в банк X рублей. Какой должна быть сумма X, чтобы Алексей выплатил долг четырьмя равными платежами (то есть за 4 года)?

Решение:

Пусть S = 9282000 рублей  размер взятого в банке кредита. 31 декабря каждого года размер кредита увеличился на 10%, а затем, Алексей переводит в банк X рублей, т.е. остаток через четыре года будет равен нулю.

год

дата

долг

0

31 декабря 2014

S = 9282000 рублей  

31 декабря 2015

1,1S

1

1 января 2016

1,1S — х

31 декабря 2016

(1,1S – х)1,1

2

1 января 2017

1,12 S – 1,1х -х

31 декабря 2017

(1,12 S – 1,1х –х)1,1

3

1 января 2018

(1,12 S – 1,1х –х)1,1 — х

31 декабря 2018

((1,12 S – 1,1х –х)1,1 – х)1,1

4

1 января 2019

((1,12 S – 1,1х –х)1,1 – х)1,1 — х

Решим уравнение: ((1,12 S – 1,1х –х)1,1 – х)1,1 – х = 0

1,14 S – 1,13 х — 1,12 х — 1,1х –х = 0

Х = t1622482975ak.gif

Х = t1622482975al.gif

Х = 2928200

Ответ: 2928200.

31 декабря 2018 года Роман взял в банке 8599000 рублей в кредит под 14% годовых. Схема выплаты кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга(то есть увеличивает долг на 14%), затем Роман переводит в банк Х рублей. Какой должна быть сумма Х, чтобы Роман выплатил долг тремя равными платежами (то есть за 3 года)?

31 декабря 2019 года Виктор взял в банке 3276000 рублей в кредит под 20 % годовых. Схема выплаты кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20 %), затем Виктор переводит в банк Х рублей. Какой должна быть сумма Х, чтобы Виктор выплатил долг тремя равными платежами (то есть за 3 года)?

31 декабря 2020 года Георгий взял в банке 2648000 рублей в кредит под 10 % годовых. Схема выплаты кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10 %), затем Георгий переводит в банк Х рублей. Какой должна быть сумма Х, чтобы Георгий выплатил долг тремя равными платежами (то есть за 3 года)?

IV.2. В августе 2020 года взяли кредитУсловия возврата таковы:

— каждый январь долг увеличивается на r %;

— с февраля по июль необходимо выплатить часть долгаКредит можно выплатить за три года равными платежами по 56 595 рублей, или за два года равными платежами по 81 095 рублей. Найдите r.

Решение:

Пусть S рублей сумма кредита, ежегодные выплаты x руб., r % годовых,

к = 1 + r/100. Выплаты: b = 81095 руб., х = 56595 руб. По условию долг на июль меняется так:

год

Долг (руб.)

1

кSb

2

Sb)к — b

Если долг выплачен двумя равными платежами b руб., то (кSb)к – b = 0

к2 S – кbb = 0; к2 S = (к + 1)b; S = ((к+1) b)/к2

Если долг выплачен тремя равными платежами х руб., то

год

Долг (руб.)

1

кS — х

2

S – х)к — х

3

((кS – х)к – х)к — х

((кS – х)к – х)к – х = 0

к3 S – к2 х – кх — х = 0

S = ((к2 + к+1) х)/к3

Решим систему уравненийt1622482975am.gif

t1622482975an.gif= t1622482975ao.gif

(к+1)к b = х(к2 + к+1)

2 + к) b = х(к2 + к) + х

2 + к) b — х(к2 + к) – х = 0

2 + к)( b – х) –х = 0

(81095 – 56595) (к2 + к) – 56595 = 0

24500к2 + 24500к — 56595 = 0

100к2 + 100к – 231 = 0

D = 102400, к = 1,1 к = -21 не удовлетворяет условию

к = 1 + r/100, r = 10%

Ответ: 10

Реши самостоятельно:

31 декабря 2017 года Пётр взял в банке некоторую сумму в кредит под некоторый процент годовых. Схема выплаты кредита следующая — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на а %), затем Пётр переводит очередной транш. Если он будет платить каждый год по 2 592 000 рублей, то выплатит долг за 4 года. Если по 4 392 000 рублей, то за 2 года. Под какой процент Пётр взял деньги в банке?

В августе 2017 года взяли кредит. Условия возврата таковы:

каждый январь долг увеличивается на r %;

с февраля по июль необходимо выплатить часть долга.

Кредит можно выплатить за три года равными платежами по 38 016 рублей, или за два года равными платежами по 52 416 рублей.

Найдите r.

В августе 2020 года взяли кредит. Условия возврата таковы: — каждый год долг увеличивается на r — процентов с февраля по июнь необходимо выплатить часть долга Кредит можно выплатить за 4 года равными платежами по 777600 руб. или за 2 года равными платежами по 1317600 руб. Найдите r.

В июле 2020 года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:

— каждый январь долг увеличивается на r % по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.

Если ежегодно выплачивать по 58 564 рубля, то кредит будет полностью погашен за 4 года, а если ежегодно выплачивать по 106 964 рубля, то кредит будет полностью погашен за 2 года. Найдите r.

2. Дифференцированный платеж – представляет собой неравные ежемесячные транши, пропорционально уменьшающиеся в течение срока кредитования. Наибольшие платежи – в первой четверти срока, наименьшие – в четвертой четверти. «Срединные» платежи обычно сравнимы с аннуитетом. Ежемесячно тело кредита уменьшается на равную долю, процент же насчитывается на остаток задолженности. Поэтому сумма транша меняется от выплаты к выплате. Если в задаче присутствуют слова «равными платежами» или «долг уменьшается на одну и ту же величину», то речь идет о дифференцированном платеже.

V. Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заёмщика возрастает на 25 % по сравнению с началом года. В конце 1-го и 2-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заёмщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 9 млн. рублей.

Решение:

Пусть S млн. рублей сумма первоначального кредита. В середине каждого года действия кредита долг возрастает на 25 %, x млн.рублей заёмщик выплачивает в конце 3-го и 4-го годов. В конце 1-го и 2-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному.

1 год

начало

S млн. рублей

2 год

начало

S млн. рублей

середина

S + 0,25 S = 1,25 S

середина

S + 0,25 S = 1,25 S

конец

1,25 S — 0,25 S = S

конец

1,25 S — 0,25 S = S

В сумме за 2 года он погашает сумму 0,25S + 0,25S = 0,5S.

В последние два года (3-й и 4-й) сумма долга сначала возрастает в 1,25 раза, а затем, погашается равными долями в x млн.рублей.

3 год

начало

S млн. рублей

4 год

начало

(1,25 S – х) млн. руб.

середина

S + 0,25 S = 1,25 S

середина

(1,25 S – х)1,25

конец

1,25 S — х

конец

1,252 S — 1,25 х

На конец 4-го года, сумма долга составляет 0 рублей. Отсюда получаем

1,252 S — 1,25 х –х = 0,

1,252 S — 2,25 х = 0, х = t1622482975ap.gif = t1622482975aq.gif

За 4 года сумма выплат составила 0,5S + 2х. По условию общая сумма выплат превышает 9 млн. рублей, то есть, 0,5S + 2t1622482975ar.gif>9, 4,5S + 12,5S > 81,

17S > 81, S > 4t1622482975as.gif . При минимальном целом значении S = 5 это неравенство выполняется, следовательно, размер кредита составил 5 млн. рублей.

Ответ: 5 000 000

Реши самостоятельно:

Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заемщика возрастает на 20% по сравнению с началом года. В конце 1-го и 2-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заемщика превысит 10 млн. рублей.

Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заемщика возрастает на 25% по сравнению с началом года. В конце 1-го и 2-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заемщика превысит 5 млн. рублей.

Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заемщика возрастает на 15% по сравнению с началом года. В конце 1-го и 2-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заемщика превысит 7 млн. рублей.

Планируется  выдать  льготный  кредит  на  целое  число  миллионов  рублей  на  четыре года. В середине каждого года действия кредита долг заёмщика возрастает на 10 %  по сравнению  с  началом  года. По договоренности с  банком в конце 1-го и 3 – го года заемщик выплачивает только проценты  по  кредиту, начисленные  за  соответствующий  текущий  год.  В  конце  2го  и  4го  годов  заёмщик  выплачивает  одинаковые  суммы,  погашая  к  концу  4го  года  весь  долг  полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 100 млн. рублей. 

Планируется выдать льготный кредит на целое число миллионов рублей на пять лет. В середине каждого года действия кредита долг заемщика возрастает на 10% по сравнению с началом года. В конце 1-го и 2-го и 3-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 4-го и 5-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наибольший размер кредита, при котором общая сумма выплат будет меньше 8 млн. рублей.

Решение банковских задач на нахождение суммы кредита

VI. В июле 2026 года планируется взять кредит в банке на три года в размере S млн. руб., где S — целое число. Условия его возврата таковы:

— каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;

-в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц, год

Июль 2026

Июль 2027

Июль 2028

Июль 2029

Долг (в млн. руб.)

S

0,8S

0,5S

0

Найдите наибольшее значение S, при котором каждая из выплат будет меньше 4 млн. рублей.

Решение:

Долг перед банком (в млн. рублей) на июль каждого года должен уменьшаться до нуля следующим образом: S; 0,8S; 0,5S; 0

По условию, в январе каждого года долг увеличивается на 25%, значит, долг в январе каждого года равен: 1,25S; 1,25∙0,8S; 1,25∙0,5S

Следовательно, выплаты с февраля по июнь каждого года составляют:

1,25S — 0,8S = 0,45S 1,25∙0,8S — 0,5S = 0,5S 1,25∙0,5S – 0 = 0,725S

По условию, каждая из выплат должна быть меньше 4 млн. рублей. Это будет верно, если максимальная из выплат меньше 4 млн.рублей, т. е.

0,725S< 4; S< 6,4 S = 6

Наибольшее целое решение этого неравенства – число 6. Значит, искомый размер кредита 6 млн. рублей.

Ответ: 6 млн. рублей.

Реши самостоятельно:

В июле 2026 года планируется взять кредит в банке на три года в размере S млн. руб., где S — целое число. Условия его возврата таковы:

— каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;

-в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц, год

Июль 2026

Июль 2027

Июль 2028

Июль 2029

Долг (в млн. руб.)

S

0,7S

0,4S

0

Найдите наименьшее значение S, при котором каждая из выплат будет больше 5 млн. рублей.

В июле 2020 года планируется взять кредит в банке на три года в размере S млн. руб., где S — целое число. Условия его возврата таковы:

— каждый январь долг увеличивается на 15% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;

-в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц, год

Июль 2020

Июль 2021

Июль 2022

Июль 2023

Долг (в тыс. руб.)

S

0,7S

0,4S

0

Найдите наименьшее значение S, при котором каждая из выплат будет составлять целое число тысяч рублей.

В июле планируется взять кредит в банке в размере S тыс. рублей (S – натуральное число) сроком на 3 года. Условия возврата кредита таковы: каждый январь долг увеличивается на 22,5% по сравнению с концом предыдущего года; в июне каждого года необходимо выплатить одним платежом часть долга; в июле каждого года величина долга задается таблицей

Месяц, год

2018

2019

2020

2021

Долг (в тыс. руб.)

S

0,7S

0,4S

0

Найдите наименьшее значение S, при котором каждая из выплат будет составлять целое число тысяч рублей.

В июле 2016 года планируется взять кредит в банке на четыре года в размере S млн. рублей, где S — целое число. Условия его возврата таковы:

каждый январь долг увеличивается на 15% по сравнению с концом предыдущего года;

с февраля по июнь каждого года необходимо выплатить часть долга;

в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц, год

Июль 2016

Июль 2017

Июль 2018

Июль 2019

Июль 2020

Долг (в млн. руб.)

S

0,8S

0,5S

0,1 S

0

Найдите наибольшее значение S, при котором общая сумма выплат будет меньше 50 млн. рублей.

В июле 2016 года планируется взять кредит в банке на четыре года в размере S млн. рублей, где S — натуральное число. Условия его возврата таковы:

каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;

с февраля по июнь каждого года необходимо выплатить часть долга;

в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц, год

Июль 2016

Июль 2017

Июль 2018

Июль 2019

Июль 2020

Долг (в млн. руб.)

S

0,7S

0,5S

0,3 S

0

Найдите наименьшее значение S, при котором общая сумма выплат будет составлять целое число миллионов рублей.

Решение банковских задач на нахождение суммы вклада

VII. 15-го января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:

1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;

со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Известно, что в течении первого года кредитования нужно вернуть банку 466,5 тыс. руб. Какую сумму планируется взять в кредит?

Решение:

Обозначим через Х размер кредита, взятого в банке. Во втором месяце долг увеличивается на 3% и, затем, осуществляется выплата так, чтобы долг уменьшался на одну и ту же величину, т.е. в первый раз выплата будет составлять t1622482975at.gif, и сумма долга во втором месяце составит:

1,03х – (t1622482975at.gif) = х — t1622482975au.gif = t1622482975av.gif. Аналогично для следующего месяца, только долг теперь будет составлятьt1622482975av.gif получаем остаток долга в размере

1,03·t1622482975av.gif – (t1622482975aw.gif) = t1622482975av.gif t1622482975au.gif = t1622482975ax.gif.

Вторая выплата будет равна: t1622482975aw.gif

Аналогично третья выплата: t1622482975ay.gif

Аналогично четвертая выплата: t1622482975az.gif и т.п.

………………………………………………………..

12- тая выплата: t1622482975ba.gif

Сумма выплат за первые 12 месяцев составит:

t1622482975bb.gif+ 13) =

В скобках получилась арифметическая прогрессия сумму, которой находим по формуле t1622482975bc.gif= t1622482975bd.gif

=t1622482975be.gif + t1622482975bf.gif= t1622482975bg.gif = t1622482975bh.gif.

По условию в течении первого года нужно выплатить 466,5 тыс. руб.

t1622482975bi.gif = 466,5 Х= t1622482975bj.gif Х= 600 тыс. руб. или это 600000 руб.

Ответ: 600000 руб.

Реши самостоятельно:

15-го января планируется взять кредит в банке на 20 месяца. Условия его возврата таковы:

1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;

со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Известно, что за первые 10 месяцев нужно вернуть банку 1179 тыс. руб. Какую сумму планируется взять в кредит?

15-го января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:

1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;

со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Известно, что за последние 12 месяцев нужно вернуть банку 1597,5 тыс. руб. Какую сумму планируется взять в кредит?

15-го января планируется взять кредит в банке на 16 месяца. Условия его возврата таковы:

1-го числа каждого месяца долг возрастает на 4% по сравнению с концом предыдущего месяца;

со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Известно, что за первые 8 месяцев нужно вернуть банку 900 тыс. руб. Какую сумму планируется взять в кредит?

5-го января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:

1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;

со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного его погашения равнялась 1 млн рублей?

5)15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Известно, что в течение второго года кредитования нужно вернуть банку 339 тыс. рублей. Какую сумму нужно вернуть банку в течение первого года кредитования?

VIII. 15-го января планируется взять кредит в банке на 26 месяцев. Условия его возврата таковы:

1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;

со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

15-го числа каждого месяца с 1- го по 25 – й месяц долг должен быть на 40 тыс. руб. меньше долга на 15-е число предыдущего месяца.

к 15 – му числу 26 – го месяца кредит должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1924 тыс. руб.

Решение:

Обозначим через S исходную сумму кредита. В течение первого месяца эта сумма возрастает на 3%, становится равной S+0,03S = 1,03 S. Выплату нужно сделать так, чтобы исходная сумма S уменьшилась на 40 тыс. рублей, то есть, нужно выплатить

0,03S+40 тыс. рублей.

Оставшаяся сумма S-40 в следующем месяце снова увеличивается на 3%, становится равной 1,03(S-40), и следует выплатить0,03(S-40) + 40 тыс. руб., Таким образом, в течении 25-ти месяцев, сумма выплат составит:

0,03S+40 + (0,03(S-40) + 40) + (0,03(S-2·40) + 40) + (0,03(S-2·40) + 40) +… + (0,03(S-24·40) + 40) = 0,03S·25 + 40·25 – 0,03·40·( 1 + 2 + 3 +… + 24) =

S24 = 1 + 2 + 3 +… + 24 = t1622482975bk.gif  24 = 25·12 = 300

= 0,75 S + 1000 – 360 =0,75 S + 640

В последний 26-й месяц выплачивается остаток  1,03(S -25·40) = 1,03(S – 1000)

В сумме за 26 месяцев имеем: 0,75 S + 640 +1,03(S – 1000). По условию общая сумма выплат после полного его погашения составит 1924 тыс. руб. Составим и решим уравнение: 0,75 S + 640 +1,03(S – 1000) = 1924

1,78 S = 1924 + 390

S = 2314/ 1,78

S = 1300 тыс.руб.

Ответ: 1300000 руб.

Реши самостоятельно:

15-го де­каб­ря пла­ни­ру­ет­ся взять кре­дит в банке на 11 ме­ся­цев. Усло­вия воз­вра­та та­ко­вы:

1-го числа каж­до­го ме­ся­ца долг воз­рас­та­ет на 3% по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

со 2-го по 14-е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

15-го числа каж­до­го ме­ся­ца с 1-го по 10-й долг дол­жен быть на 80 тысяч руб­лей мень­ше долга на 15-е число преды­ду­ще­го ме­ся­ца;

к 15-му числу 11-го ме­ся­ца кре­дит дол­жен быть пол­но­стью по­га­шен.

Какой долг будет 15-го числа 10-го ме­ся­ца, если общая сумма вы­плат после пол­но­го по­га­ше­ния кре­ди­та со­ста­вит 1198 тысяч руб­лей?

15-го де­каб­ря пла­ни­ру­ет­ся взять кре­дит в банке на сумму 300 тысяч руб­лей на 21 месяц. Усло­вия воз­вра­та та­ко­вы:

1-го числа каж­до­го ме­ся­ца долг воз­рас­та­ет на 2% по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

со 2-го по 14-е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

15-го числа каж­до­го ме­ся­ца с 1-го по 20-й долг дол­жен быть на одну и ту же сумму мень­ше долга на 15-е число преды­ду­ще­го ме­ся­ца;

15-го числа 20-го ме­ся­ца долг со­ста­вит 100 тысяч руб­лей;

к 15-му числу 21-го ме­ся­ца кре­дит дол­жен быть пол­но­стью по­га­шен.

Най­ди­те общую сумму вы­плат после пол­но­го по­га­ше­ния кре­ди­та.

15-го декабря планируется взять кредит в банке на 21 месяц. Условия возврата таковы:

— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца;

— к 15-му числу 21-го месяца кредит должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1604 тысяч рублей?

Ответы:

1) 84 млн. руб., 2) 69 млн. руб., 3) 90 млн. руб., 4)53500 руб., 5) 2685000 руб.

1) 125000 руб., 2)104500 руб. 3)86600 рублей.

1) 2 2) 25

III. l. 1) 2008 2) 2005

1) 6 месяцев 2) 6 месяцев 3) 9 месяцев 4) 6 месяцев

IV.1. 1) 3703860 рублей 2) 155520 рублей 3) 1064800 рублей

IV.2. 1) 20% 2) 20% 3) 20% 4) 10%

1) 6 млн. руб., 2) 3 млн. руб., 3) 5 млн. руб., 4) 77 млн. руб.,

5 млн. руб.

VI. 1) 11млн.руб. 2) 200 тыс. руб. 3) 400 тыс. руб. 4) 36 млн.руб.

5) 8 млн.руб.

VII. 1) 1200000руб. 2) 3000000 руб. 3) 1200000руб. 4) 0,8 млн. руб.

5) 411000 руб.

VIII. 1) 200000 руб. 2) 384000 руб. 3) 1100000 руб.

Используемая литература:

Шестаков С.А. ЕГЭ 2017. Математика. Задачи с экономическим содержанием. Задачи 17(профильный уровень)/Под ред.И.В.Ященко.-М.:МЦНМЩ, 2017

30 тренировочных вариантов ЕГЭ под редакцией И. В. Ященко» – 2021.

Краткая
теория решения банковских задач

(математика
профильного уровня, ЕГЭ №17)

I.                 
Задачи на дифференцированные платежи

Одной из основных
целей при решении «банковских» задач является то, что нужно выбрать к какому
виду относится данная задача. Для этого нужно выделить «ключевую» фразу: долг
уменьшается на одну и ту же величину, каждый раз клиент выплачивает набежавшие
проценты за период и 1/
n часть основного
долга(
n
срок, на который берется кредит).

Чаще всего 
периодом является месяц, причем

-если кредит взят
на 1 год, то выплачиваются проценты за период и 1/12 часть основного долга;

— если кредит взят
на 2 года, то выплачивается  1/24 часть основного долга.

Получается, что
наибольший платеж приходится на первый месяц и разумеется, наименьший платеж –
на последний месяц. Можно легко  вычислить, как будет погашаться основной 
долг. Надо сумму кредита разделить на число месяцев. Например, если кредит
составляет 1200000 рублей на два года, то получим 1200000:24 = 50000 руб.
ежемесячное погашение основного долга. Но к этой сумме нужно еще прибавить
набежавшие проценты. Если кредит взят под 10% годовых, то проценты будут 
1200000 · 0,1 = 120000  рублей. Отсюда получим сумму наибольшего платежа 50000 +
120000 = 170000 рублей.

Схема
решения

А- первоначальная сумма кредита (основной
долг)

n-период (количество
месяцев , лет)

р- проценты (годовая ставка)

S— сумма  платежей за
определенный период

Таблица

Период

Основной
долг,   А

Набежавший
%             
S%

Платежи

Остаток

1

А

Ар

2

3

————

————

—————-

——————

—————-

n

0

Формула

S%=

S=

Запомнить
следующие формулы

Формула
1

Нахождение
суммы , выплаченных

процентов

S%=

Формула
2

Нахождение
количества месяцев

кредита

n=

Формула
3

Нахождение
процентной ставки

P=

Формула
4

Нахождение
первоначальной суммы кредита

A=

1.Для того, чтобы найти  сумму всех
процентов выплаченных по кредиту, нужно найти сумму в столбике «Набежавшие %».

2.Прибыль банка
будет равна сумме выплаченных процентов.

3.Для того , чтобы
найти  сумму  всех выплат по кредиту, нужно найти сумму в столбике «Платежи»
(Можно сделать проще: к«Набежавшим %» прибавить основной долг.

4. Для того, чтобы
найти  наибольший или наименьший платеж, нужно знать, что  максимальный платеж
это первый платеж, а минимальный платеж это последний платеж.

Задача 1.

Анна взяла в
кредит 12 млн. руб. на 24 месяца. По договору она должна возвращать часть денег
в конце каждого месяца. Каждый месяц общая сумма долга должна возрастать на 3%,
а затем уменьшаться на сумму, оплаченной Анной банку в конце месяца. Суммы,  выплачиваемые
Анной, подбираются так, что сумма долга уменьшалась равномерно, т.е. на одну и
ту же величину каждый месяц. На сколько рублей больше Анна вернет банку в
течение первого года кредитования по сравнению со вторым годом?

Дано:

А=12

P=3%

n=24

Решение:

Период

Основной
долг   А

Набежавший
%             
S%

Платежи

Остаток

1

А

Ар

2

3

————

——————

————————

——————

—————-

12

————

—————-

————————

—————

———

24

0

1.Найдем сумму
процентов за первый год по сумме третьего столбца «Набежавший %»

  Ар + +  + ——+  =A р (1+++——-+)=    = = A p= = =3,33  за первый год.

24+23+22+——+13  сумма арифметической
прогрессии (
=)

2 найдем, используя
формулу
S%==  (за 24 месяца)

=4,5-3,33=1,17 за второй
год.

Разница 3,33-1,17=2,16

Ответ:2,16

2.Задачи
на  аннуитетные платежи

Аннуитетные
платежи
– это гашение долга равными порциями, в
эту сумму входит набежавший процент за определенный период времени и плюс
гашение основного долга . В результате должна получиться  одна и та же сумма.
Этот кредит не очень выгоден, т.к. основной долг погашается очень медленно. В
первую очередь снимают набежавшие проценты, а во вторую очередь часть основного
долга, дополняющую до некоторой суммы , поэтому проценты погашаются большие. Но
банки должны предупреждать об этом клиентов и клиент  выбирает вид платежа.

 Аннуитетный
платеж имеет и плюсы, т.к. клиент платит каждый месяц некоторую  умеренную
сумму, например 3000 рублей, а при дифференцированном  — в первый месяц 5000
рублей, а потом постепенно уменьшается.

Схема
решения

Долг

Остаток

Кредит

А

A

Платеж

ежегодный
(ежемесячный)

S

S

Процент

Р

1год

А(1+р)

А(1+р)-S

2год

А-S(1+р)

АS(1+p)-S

згод

-(1+p+

-(1+p+

——-

——-

———————-

n год

-(1+p+

0

Используем формулу из таблицы «столбик» —
долг:

-(1+p+  и

обозначим (1+р)=g
,то получим формулу:

Это формула для нахождения:

 n
– срок кредита,
S – ежегодная сумма
выплаты кредита, А-сумма взятого кредита.

Задача 1. Определение срока кредитования

Кате  нужно взять
в кредит 100000 рублей. Погашение происходит 1 раз в год равными платежами  
(кроме последнего) после начисления процента  (ставка – 10% годовых). На какое
максимальное количества лет может она взять кредит, чтобы платить не более
24000 рублей?

Дано:

А=100000

Р=10%

S24000

Найти: n

Решение:

Применим    формулу для нахождения  — n
из таблицы:

        

               

   . Пусть =Х, тогда получим
уравнение

                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

 

 ;  ; n=6                                                                                                
                                                                                                                                                                                                                                            

      Ответ: 6                                                                                                                                                                                                                                                                                                                                       

Некоторые

 Задачи
на дифференцированные платежи.

Задача 1. Определение суммы кредита

 Источник:
ЕГЭ 2017. Математика. 50 вариантов экзаменационных
работ. Профильный уровень. Под ред. Ященко И.В./ М.: Издательство «Экзамен»,
2017.- 247 с.

Вариант 2.

15-го января
планируется взять кредит в банке на  15 месяцев. Условия его возврата таковы:

— 1-го числа
каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;

-со 2-го по14 –е 
число каждого месяца необходимо выплатить часть долга;

-15-го числа
каждого месяца долг должен быть на одну и ту же величину меньше долга на 15 –е
число предыдущего месяца.

Известно, что
восьмая выплата составила 108 тыс. рублей. Какую сумму нужно вернуть банку в
течение всего срока кредитования?

Дано:

Р
=1%

n=15

Найти: S.

 Решение

 1 способ

Пользуясь таблицей — столбик «платежи»
восьмой выплаты имеем:

 тыс.

А(8р+1)=1620тыс.

А==1500тыс=1500000 руб.
взят кредит 1,5 млн. руб.

Пользуясь таблицей — столбик «платежи»
суммой всех выплат имеем:

S=A

S=1,5+ = 1,5+0,12=1,62млн. руб.
выплата банку в течении всего срока кредитования.

Ответ: 1620000 руб.

 2-й способ

Пусть ежемесячные
выплаты по кредиту (без процентов) составляют Х рублей.
Тогда сумма кредита  составляет 15Х рублей (без процентов).
Процентная ставка
p% составляет
1% или 0,01.

 S-сумма выплаты кредита в
течение всего срока

S=15Х+(15Х+14Х+13Х+….+Х)·0,01=15Х+
+15·0,01·(15Х+Х)/2)
=15Х+1,2Х=16,2Х, где

15Х+14Х+13Х+….+Х
сумма
арифметической прогрессии
(=)

Пусть S8– сумма,
которую составляют проценты на восьмой месяц кредитования.

Тогда по условию задачи восьмая
выплата будет равна: 108 000 = Х + 
S8,

За восемь месяцев сумма кредита
составит 8Х руб.

На восьмой месяц проценты
составят 
S8 =
8Х·0,01 = 0,08Х
 (руб.).

Тогда 108 000 = Х +
0,08Х
;

 108 000 = 1,08Х;

Х =
100 000 (руб.)
составляет сумма ежемесячных выплат (без процентов).

Сумма кредита составляет
100 000·15 = 1 500 000(руб.)

3) Следовательно,
S=16,2·X=16,2·1000000=1620000 руб.

Ответ: 1620 000

Задача 2. Определение процентной ставки
банка

Источник: ЕГЭ
2017. Математика. 50 вариантов экзаменационных работ. Профильный уровень. Под
ред. Ященко И.В./ М.: Издательство «Экзамен», 2017.- 247.

Вариант 3

31 декабря 2014 года Евгений взял в банке 
1млн. в кредит. Схема выплаты кредита следующая – 31 декабря каждого следующего
года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает
долг на
a%),
затем Евгений переводит очередной транш. Евгений выплатил кредит за два транша,
переведя в первый раз 540 тыс. рублей, во второй 649,6 тыс. рублей. Найдите 
a.

Дано:

А=1 млн. рублей

1 выплата =540 тыс. рублей

2 выплата=649,6 тыс. рублей

n=2

Найти: a

Решение:

1.     К
концу первого года долг  становится: 1000000+1000000·0,01
a
– 540000= 1000000+10000
a— 540000=460000 +
10000
a.

2.     Через
год остаток после выплаты будет: (460000 + 10000
a)
+ ( 460000 + 10000
a)·0,01a
– 649600=0

460000+10000 a+4600a+100— 649600 =0

100+14600a-189600 =0

+146a -1896=0

-73 ± = -73±= -73 ±85

=12

Задача 3.Определение срока кредитования

В июле планируется
взять кредит на сумму 16 млн. рублей на некоторый срок (целое число лет). Условия
возврата таковы:

— 1-го числа
каждого месяца долг возрастает на 25% по
cравнению
данных предыдущего года;

— с февраля по
июнь каждого месяца необходимо выплатить часть долга;

—  в июле каждого
года долг должен быть на одну и ту же величину меньше долга на июль предыдущего
года.

На сколько лет
планируется взять кредит, если известно, что выплаченная за весь срок
кредитования сумма выплат составит 38 млн.                                      рублей?

Дано:

А=16 млн.

Р=25%

Найти: n

Решение:

Пользуясь таблицей — столбик «платежи»
всей выплаты кредита имеем:

S=

38=16+

38=16+2n+2

n= 10

Ответ:10
лет

2.Задачи
на  аннуитетные платежи

Задача 1. Определение
процентной ставки банка

Источник: ЕГЭ
2017. Математика. 50 вариантов экзаменационных работ. Профильный уровень. Под
ред. Ященко И.В./ М.: Издательство «Экзамен», 2017.- 247.

Вариант 11.

31 декабря 2014 года Олег взял в
банке некоторую сумму в кредит под некоторый процент  годовых.  Схема выплаты
кредита следующая – 31 декабря каждого следующего года банк начисляет проценты
на оставшуюся сумму долга (то есть увеличивает долг на
a%), затем Олег
переводит очередной транш. Если он будет платить каждый год по 328050 рублей,
то выплатит долг за 4 года. Если по 587250 рублей, то за 2 года. Найдите 
a.

Дано:

1)    Платеж- 
328050 рублей

n=4

Найти:a

2)    Платеж-  587250 рублей

n=2

Найти:a

Решение:

  — формула из
таблицы,

  Применим эту    формулу для нахождения a
при 
n=4
и при
n=2

,где  A-основной долг ( то есть кредит) и g=1+a ,то есть a=g-1.

1)    n=4, то

  

    

  

2)    n=2, то

 . Получим систему:

Умножим обе части первого уравнения
на . Получим систему:

Получили уравнение:

259200

g=1,125

a=g-1

a=1,125-1

a=0,125

Ответ: 12,5%     

Задача2.  Определение
срока кредитования

  Источник: ЕГЭ 2017.
Математика. 50 вариантов экзаменационных работ. Профильный уровень. Под ред.
Ященко И.В./ М.: Издательство «Экзамен», 2017.- 247.

        Вариант
36                                                                                                                                                                                                                                                     
                                                                                                     

1 января 2015 года
Александр Сергеевич взял в банке 1,1 млн. рублей в кредит. Схема выплаты
кредита следующая — 1 числа каждого следующего месяца банк начисляет 1 процент
на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Александр
Сергеевич переводит в банк платёж. На какое минимальное количество месяцев
Александр Сергеевич может взять кредит, чтобы ежемесячные выплаты были не более
275 тыс. рублей?

Дано:

А=1,1 млн. рублей

Р=1%

S275000 рублей

Найти: n

Решение:

100%+1%=101%=1,01

Долг

Остаток

Кредит

1100000

1месяц

1100000·1,01=1111000

1111000-275000=836000

2 месяц

836000·1,01=844360

844360-275000=569360

3 месяц

569360·1,01=575053,6

575053,6-275000=300053,6

4 месяц

300053,6·1,01=303054,136

303054,136-275000=28054,136

5 месяц

28054,136·1,01=28334,67736

0

Ответ: 5 месяцев

Блок 1. Экономические задачи. Кредиты

1. 31 декабря 2013 года Сергей взял в банке 9 930 000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Сергей переводит в банк определённую сумму ежегодного платежа. Какой должна быть сумма ежегодного платежа, чтобы Сергей выплатил долг тремя равными ежегодными платежами? Смотреть видеоразбор
2. Фермер получил кредит в банке под определенный процент годовых. Через год фермер в счет погашения кредита вернул в банк 3/4 от всей суммы, которую он должен банку к этому времени, а еще через год в счет полного погашения кредита он внес в банк сумму, на 21% превышающую величину полученного кредита. Каков процент годовых по кредиту в данном банке? Смотреть видеоразбор
3. 31 декабря 2014 года Пётр взял в банке некоторую сумму в кредит под некоторый процент годовых. Схема выплаты кредита следующая — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на а%), затем Пётр переводит очередной транш. Если он будет платить каждый год по 2 592 000 рублей, то выплатит долг за 4 года. Если по 4 392 000 рублей, то за 2 года. Под какой процент Пётр взял деньги в банке? Смотреть видеоразбор

Блок 2. Экономические задачи. Вклады, сбережения, депозиты

1. Известно, что вклад, находящийся в банке с начала года, возрастает к концу года на определенный процент, свой для каждого банка. В начале года Степан положил 60% некоторой суммы денег в первый банк, а оставшуюся часть суммы во второй банк. К концу года сумма этих вкладов стала равна 590 000 руб., а к концу следующего года 701 000 руб. Если бы Степан первоначально положил 60% своей суммы во второй банк, а оставшуюся часть в первый, то по истечении одного года сумма вкладов стала бы равной 610 000 руб. Какова была бы сумма вкладов в этом случае к концу второго года? Смотреть видеоразбор
2. Гражданин Петров по случаю рождения сына открыл 1 сентября 2008 года в банке счёт, на который он ежегодно кладет 1000 рублей. По условиям вклада банк ежегодно начисляет 20% на сумму, находящуюся на счёте. Через 6 лет у гражданина Петрова родилась дочь, и 1 сентября 2014 года он открыл в другом банке счёт, на который ежегодно кладёт по 2200 рублей, а банк начисляет 44% в год. В каком году после очередного пополнения суммы вкладов сравняются, если деньги со счетов не снимают? Смотреть видеоразбор
3. Семен Кузнецов планировал вложить все свои сбережения на сберегательный счет в банк «Навроде» под 500%, рассчитывая через год забрать А рублей. Однако крах банка «Навроде» изменил его планы, предотвратив необдуманный поступок. В результате часть денег г-н Кузнецов положил в банк «Первый Муниципальный», а остальные – в банку из-под макарон. Через год «Первый Муниципальный» повысил процент выплат в два с половиной раза, и г-н Кузнецов решил оставить вклад еще на год. В итоге размер суммы, полученной в «Первом Муниципальном», составил frac{1}{6}A рублей. Определите, какой процент за первый год начислил банк «Первый Муниципальный», если в банку из-под макарон Семен «вложил» frac{2}{27}A рублей Смотреть видеоразбор
4. В январе 2000 года ставка по депозитам в банке «Возрождение» составила х % годовых, тогда как в январе 2001 года — у % годовых, причем известно, что x + y = 30%. В январе 2000 года вкладчик открыл счет в банке «Возрождение», положив на него некоторую сумму. В январе 2001 года, по прошествии года с того момента, вкладчик снял со счета пятую часть этой суммы. Укажите значение х при котором сумма на счету вкладчика в январе 2002 года станет максимально возможной. Смотреть видеоразбор

Блок 3. Экономические задачи. Равномерное погашение долга и кредита

Равномерное погашение долга и кредита: теория, вывод необходимых формул Смотреть видеоразбор
1. Сергей взял кредит в банке на срок 9 месяцев. В конце каждого месяца общая сумма оставшегося долга увеличивается на 12%, а затем уменьшается на сумму, уплаченную Сергеем. Суммы, выплачиваемые в конце каждого месяца, подбираются так, чтобы в результате сумма долга каждый месяц уменьшалась равномерно, то есть на одну и ту же величину. Сколько процентов от суммы кредита составила общая сумма, уплаченная Сергеем банку (сверх кредита)? Смотреть видеоразбор
2. В июле планируется взять кредит в банке на сумму 16 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:

  • каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
  • с февраля по июнь каждого года необходимо выплатить часть долга;
  • в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.

На сколько лет был взят кредит, если известно, что общая сумма выплат после его погашения равнялась 40 млн рублей?

Смотреть видеоразбор
3. В июле планируется взять кредит в банке на сумму 6 млн рублей на срок 15 лет. Условия его возврата таковы:

  • каждый январь долг возрастает на х% по сравнению с концом предыдущего года;
  • с февраля по июнь каждого года необходимо выплатить часть долга;
  • в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.

Найти х, если известно, что наибольший годовой платеж по кредиту составит не более 1,9 млн рублей, а наименьший — не менее 0,5 млн рублей

Смотреть видеоразбор
4. Савелий хочет взять в кредит 1,4 млн рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка процента 10% годовых. На какое минимальное количество лет может Савелий взять кредит, чтобы ежегодные выплаты были не более 330 тысяч рублей? Смотреть видеоразбор

Блок 4. Экономические задачи. Задачи на проценты

1. Два брокера купили акции одного достоинства на сумму 3640 р. Когда цена на эти акции возросла, они продали часть акций на сумму 3927 р. Первый брокер продал 75% своих акций, а второй 80% своих. При этом сумма от продажи акций, полученная вторым брокером, на 140% превысила сумму, полученную первым брокером. На сколько процентов возросла цена одной акции? Смотреть видеоразбор
2. Незадолго до выборов социологический опрос показал, что 60% избирателей уже решили, за кого из двух кандидатов они будут голосовать. При этом 55% из них решили голосовать за кандидата А. Какой процент из тех, кто еще не определил своего избранника, должен голосовать за кандидата А, чтобы за него проголосовала по крайней мере половина избирателей. Смотреть видеоразбор
3. В 1-е классы поступает 45 человек: 20 мальчиков и 25 девочек. Их распределили по двум классам: в одном должно получиться 22 человека, а в другом ― 23. После распределения посчитали процент девочек в каждом классе и полученные числа сложили. Каким должно быть распределение по классам, чтобы полученная сумма была наибольшей? Смотреть видеоразбор

Блок 5. Задачи на оптимизацию. Производительность

1. Владимир является владельцев двух заводов в разных городах. На заводах производятся абсолютно одинаковые товары, но на заводе, расположенном во втором городе, используется более совершенное оборудование. В результате, если рабочие на заводе, расположенном в первом городе, трудятся суммарно t2 часов в неделю, то за эту неделю они производят 2t единиц товара; если рабочие на заводе, расположенном во втором городе, трудятся суммарно t2 часов в неделю, то за эту неделю они производят 5t единиц товара.
За каждый час работы (на каждом из заводов) Владимир платит рабочему 500 рублей. Владимиру нужно каждую неделю производить 580 единиц товара. Какую наименьшую сумму придется тратить еженедельно на оплату труда рабочих?
Смотреть видеоразбор
2. Антон является владельцев двух заводов в разных городах. На заводах производятся абсолютно одинаковые товары, но на заводе, расположенном во втором городе, используется более совершенное оборудование. Если рабочие на одном из заводов трудятся суммарно t2 часов в неделю, то за эту неделю они производят t единиц товара. За каждый час работы на заводе, расположенном в первом городе, Антон платит рабочему 250 рублей, а на заводе, расположенном во втором городе, — 200 рублей. Антон готов выделять 900000 в неделю на оплату труда. Какое наибольшее количество единиц товара можно произвести за неделю на этих двух заводах? Смотреть видеоразбор
3. В двух шахтах добывают алюминий и никель. В первой шахте имеется 60 рабочих, каждый из которых готов трудиться 5 часов в день. При этом один рабочий за час добывает 2 кг алюминия или 1 кг никеля. Во второй шахте имеется 100 рабочих, каждый из которых готов трудиться 5 часов в день. При этом один рабочий за час добывает 1 кг алюминия или 2 кг никеля.
Обе шахты поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 2 кг алюминия приходится 1 кг никеля. При этом шахты договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод?
Смотреть видеоразбор
4. Предприниматель купил здание и собирается открыть в нем отель. В отеле могут быть стандартные номера площадью 30 квадратных метров и номера «люкс» площадью 40 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 940 квадратных метров. Предприниматель может определить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 4000 рублей в сутки, а номер «люкс» – 5000 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своем отеле предприниматель? Смотреть видеоразбор

Блок 6. Задачи на оптимизацию. Функция прибыли

1. Строительство нового завода стоит 78 млн рублей. Затраты на производство х тыс. ед. продукции на таком заводе равны 0,5х2+2x+6 млн рублей в год. Если продукцию завода продать по цене р тыс. рублей за единицу, то прибыль фирмы (в млн рублей) за один год составит px-(0,5×2+2x+6). Когда завод будет построен, фирма будет выпускать продукцию в таком количестве, чтобы прибыль была наибольшей. При каком наименьшем значении р строительство завода окупится не более, чем за 3 года? Смотреть видеоразбор
2. Зависимость объема Q (в шт) купленного у фирмы товара от цены Р (в руб. за шт.) выражается формулой Q=15000-P, 1000≤P≤15000. Доход от продажи товара составляет PQ рублей. Затраты на производство Q единиц товара составляют 3000Q+5000000 рублей.
Прибыль равна разности дохода от продажи товара и затрат на его производство.
Стремясь привлечь внимание покупателей, фирма уменьшила цену продукции на 20%, однако ее прибыль не изменилась. На сколько процентов следует увеличить сниженную цену, чтобы добиться наибольшей прибыли?
Смотреть видеоразбор
3. Консервный завод выпускает фруктовые компоты в двух видах тары — стеклянной и жестяной. Производственные мощности завода позволяют выпускать в день 90 центнеров компотов в стеклянной таре или 80 центнеров в жестяной таре. Для выполнения условий ассортиментности, которые предъявляются торговыми сетями, продукции в каждом из видов тары должно быть выпущено не менее 20 центнеров. В таблице приведены себестоимость и отпускная цена завода за 1 центнер продукции для обоих видов тары.

Вид тары Себстоимость, 1 ц Отпускная цена, 1 ц
стеклянная 1500 руб 2100 руб
жестяная 1100 руб 1750 руб

Предполагая, что вся продукция завода находит спрос (реализуется без остатка), найдите максимально возможную прибыль завода за один день (прибылью называется разница между отпускной стоимостью всей продукции и её себестоимостью).

Смотреть видеоразбор

Понравилась статья? Поделить с друзьями:
  • Балтинформ итоговое сочинение
  • Балтинформ егэ результаты 2022
  • Балтинформ егэ 2020
  • Балтинформ егэ 2019
  • Балт результаты егэ