Безжизненный азот сочинение

Азот — газ, простое химическое вещество, неметалл, элемент Азоттаблицы Менделеева. Латинское название Nitrogenium переводится как «рождающий селитры».

Название «азот» и созвучные ему используются во многих странах: во Франции, Италии, России, Турции, в некоторых восточнославянских и в странах бывшего СССР. По основной версии, название «азот» происходит от греческого слова azoos — «безжизненный», так как не пригоден для дыхания.

Азот в основном встречается как газ — в воздухе его около 78% (по объему). Месторождения полезных ископаемых, а которых он содержится — например, чилийской селитры (нитрат натрия), индийской селитры (нитрат калия) большей частью уже истощены, поэтому в промышленных масштабах реактив добывают химическим синтезом прямо из атмосферы.

Свойства

В нормальных условиях N2 — газ без вкуса, цвета и запаха. Не горит, пожаро- и взрывобезопасен, плохо растворяется в воде, спиртах, не токсичен. Плохо проводит тепло и электричество. При температуре ниже -196 °С становится сначала жидким, потом твердым. Жидкий азот — прозрачная, подвижная жидкость.

АзотМолекула азота очень стабильна, поэтому химреактив в основном инертен, взаимодействует в нормальных условиях только с литием, цезием и комплексами переходных металлов. Для проведения реакций с другими веществами требуются особые условия: очень высокая температура и давление, а иногда и катализатор. Не вступает в реакции с галогенами, серой, углеродом, кремнием, фосфором.

Элемент крайне важен для жизни всего живого. Он является неотъемлемой частью белков, нуклеиновых кислот, гемоглобина, хлорофилла и многих других биологически важных соединений. Играет основную роль в обмене веществ живых клеток и организмов.

Азот выпускается в виде сжатого при 150 атмосфер газа, поставляется в баллонах черного цвета с крупной и четкой надписью желтого цвета. Жидкий реагент хранят в сосудах Дьюара (термос с двойными стенками, с серебрением изнутри и вакуумом между стенок).

Опасность азота

В обычных условиях азот не вреден для человека и животных, но при повышенном давлении вызывает наркотическое опьянение, а при нехватке кислорода — удушье. С азотом и его воздействием на кровь человека при резком снижении давления связана очень опасная кессонная болезнь.

Это интересно

Вероятно, все хотя бы однажды видели в фильмах или сериалах, Азоткак жидким азотом мгновенно замораживают людей или замки на решетке, сейфе и т. п., после чего они становятся хрупкими и легко разбиваются. На самом деле жидкий азот замораживает достаточно медленно, ввиду своей малой теплоемкости. Именно поэтому с его помощью нельзя замораживать людей для последующей разморозки — не получается равномерно и одномоментно заморозить все тело и органы.

Азот относится к пниктогенам — химическим элементам той же подгруппы таблицы Менделеева, что и он сам. Кроме азота к пниктогенам относят фосфор, мышьяк, сурьму, висмут и искусственно полученный московий.

Жидкий азот — идеальный материал для тушения пожаров, особенно с ценными объектами. После тушения азотом не остается ни воды, ни пены, ни порошка, а газ просто выветривается.

Применение

— Три четверти всего выпускаемого в мире азота идет на производство аммиака, из которого, в свою очередь, производят широко использующуюся в разных сферах промышленности азотную кислоту.
— В сельском хозяйстве соединения азота используются как удобрения, а сам азот — для лучшей сохранности овощей в овощехранилищах.
— Для производства взрывчатых веществ, детонаторов, топлива для космических аппаратов (гидразина).
— Для изготовления красителей, медикаментов.
— При перекачке горючих веществ по трубам, в шахтах, в электронных приборах.
— Для тушения кокса в металлургии, для создания нейтральной атмосферы в промышленных процессах.
— Для продувки труб и резервуаров; распирания пластов в горнодобыче; прокачки топлива в ракетах.
— Для закачки в самолетные шины, иногда — в автомобильные.
— Для производства особой керамики — нитрида кремния, обладающего повышенной механической, термической, химической стойкостью и многими другими полезными характеристиками.
— Пищевую добавку Е941 используют для создания в упаковках консервирующей среды, исключающей окисление и развитие микроорганизмов. Жидкий азот используют при разливе напитков и масел.

Жидкий азот применяется как:

— Хладагент в криостатах, вакуумных установках и т. п.
— В криогенной терапии в косметологии и медицине, для проведения некоторых видов диагностики, для хранения образцов биоматериалов, спермы, яйцеклеток.
— В криогенной резке.
— Для тушения пожаров. Испаряясь, реагент образует массу газа в 700 раз большую, чем объем жидкости. Этот газ оттесняет кислород от пламени, и оно тухнет.

Азотом химики называют газ, входящий в состав воздуха.

Он был открыт Ломоносовым в 1756 году. Но лишь тридцать один год спустя особая комиссия ученых дала газу греческое имя — «азот». В переводе на русский язык это означает «безжизненный». Почему же газу дали такое название? Вспомните, как ведет себя азот в воздухе, и вы сами ответите на этот вопрос. Ведь он никакого участия в дыхании не принимает. Мы вдыхаем его, но выдыхаем совершенно неизмененным. В горении он тоже не участвует. Одним словом, безжизненный…

И все же это название не совсем точно. Оно было дано в то время, когда науке еще не были известны другие, интересные особенности азота. А они стали известны только после того, как ученые детально исследовали все органические вещества, и в том числе белки.

До недавнего времени белки оставались загадочными веществами. Но теперь и они разгаданы. Ученые нашли белки всюду, где есть жизнь. Ученые теперь достоверно знают: белок — основа жизни.

Любая клеточка тела человека, животного, растения содержит белок. Он составляет главную часть тела и мельчайших одноклеточных организмов — микробов.

Больше того, есть живые существа еще меньше микробов. Их называют вирусами. Они не имеют клеточного строения. Это просто крошечный живой комочек, который можно увидеть только в электронный микроскоп, увеличивающий в сорок тысяч раз. Но и эти живые бесклеточные комочки оказались белковыми.

Когда химики тщательно изучили, из чего состоят белки, то оказалось, что все они обязательно содержат в себе азот.

Без белка нет жизни — значит, и без азота нет жизни!

Какое нее из двух противоречивых определений более правильно? Что же такое азот? «Безжизненный» газ или «вещество, необходимое для жизни»?

Очевидно, оба определения правильны.

В воздухе азот ведет себя как «безжизненный» газ. А как главная составная часть белков он жизненно необходим.

Он всюду: в наших мышцах, в нашей крови, в семенах растений, в листьях. Он — необходимейшая составная часть хлорофилла.

Нелегко химикам было изучить белок. Некоторые ученые сравнивали белок с очень сложным архитектурным сооружением, у которого множество «пристроек», «этажей», больших и маленьких «балкончиков».

И если нелегко изучить такое сложно устроенное вещество, то понятно, что получить его искусственно в лаборатории еще труднее.

Но работы ведутся. Многое уже достигнуто, и, несомненно, недалеко то время, когда газеты принесут нам радостную весть: «Химики получили искусственный белок».

А пока известна только одна «лаборатория», где создаются все «материалы» жизни и в том числе белковые. Эта «лаборатория» — зеленое растение.

Соединения азота — селитра, азотная кислота, аммиак — были известны задолго до получения азота в свободном состоянии. В 1772 г. Д. Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, показал, что остающийся после сгорания газ, названный им “удушливым воздухом”, не поддерживает дыхания и горения. В 1787 году А. Лавуазье установил, что “жизненный” и “удушливый” газы, входящие в состав воздуха, это простые вещества, и предложил название “азот”.

Азот — один из самых распространенных элементов на Земле, причем основная его масса (около 4*1015 т.)сосредоточена в свободном состоянии в атмосфере. В воздухе свободный азот (в виде молекул N2 ) составляет 78,09% по объему ( или 75,6% по массе ), не считая незначительных примесей его в виде аммиака и окислов. Среднее содержание азота в литосфере 1,9*10-3% по массе. Природные соединения азота — хлористый аммоний NH4CI и различные нитраты. Крупные скопления селитры характерны для сухого пустынного климата ( Чили, Средняя Азия ).

Внешняя электронная оболочка атома азота состоит из 5 электронов ( одной неподеленной пары и трех неспаренных — конфигурация 2s22p3 ). Чаще всего азот в соединениях 3-ковалентен за счет неспаренных электронов ( как в аммиаке NH3 ). Наличие неподеленной пары электронов может приводить к образованию еще одной ковалентной связи, и азот становится 4-ковалентным ( как в ионе аммония NH4+ ). 

 Азотная кислота. Чистая азотная кислота HNO—бесцвет­ная жидкость плотностью 1,51 г/см при — 42 °С застывающая в прозрачную кристаллическую массу. На воздухе она, подобно кон­центрированной соляной кислоте, «дымит», так как пары ее обра­зуют с ‘влагой воздуха мелкие капельки тумана,

Азотная кислота не отличается прочностью, Уже под влиянием света она постепенно разлагается:

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Выделяющийся диоксид азота растворяется в кислоте и придает ей бурую окраску.

Азотная кислота принадлежит к числу наиболее сильных кис­лот; в разбавленных растворах она полностью распадается на ионы Н и- NO.

Сочинение: «Азот как составной элемент атмосферы Земли»

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №6»

Реферат по химии по теме:

«Азот как составной элемент атмосферы Земли»

Выполнил ученик 8-г класса: Кирьянов Дмитрий

Научный руководитель: Корнышова С.С.

2010-2011 учебный год

Содержание

1.Введение. Характеристика. ……………………………………………….……2

2.Историческая справка. История открытия азота. ………………………….3-4

3.Распространение азота в природе. ………………………………………….5-6

4.Изотопы, атом и молекула азота……………………………………………..7

5.Физические свойства азота. ……………………………………………………8

6.Химические свойства азота. ………………………………………………..9-10

7.Получение азота. ………………………………………………………………11

8.Применение азота. …………………………………………………………….12

9.Азот в организме. ………………………………………………………….13-14

10.Значение соединений азот. Соединения азота. ………………………… 15-17

11.Исследовательская работа. ……………………………………….…..18

12.Литература………………………………………………………………..19

Введение. Характеристика азота.

Азот — химический элемент V группы периодической системы элементов.

Атомный номер 7

Атомная масса 14,007

Плотность, кг/м³ 1,251

Температура плавления, °С -210

Температура кипения, °С -195,8

Теплоемкость, кДж/(кг·°С) 1,034

Электроотрицательность 3,0

Ковалентный радиус, Å 0,74

1-й ионизац. потенциал, эв 14,53

Цель: изучить свойства азота и природных его соединений, совершенствовать знания о строении атомов

Задачи:

· Определить особенности строения азота, значение соединений и их практическом применении.

· Выделить значение азота как биогенного элемента

· Определить основные области промышленности, где используется азот

Историческая справка

История открытия азота

Азот (англ. Nitrogen, франц. Azote, нем. Stickstoff) был открыт почти одновременно несколькими исследователями.

Впервые азот изучен Даниэлем Резерфордом. После того как Д. Блек открыл реакцию взаимодействия углекислого газа с известковой водой, Резерфордом исследовал изменения состава воздуха, после того как в нём жило и погибало живое существо (в закрытом объёме). После того как углекислый газ поглощался щёлочью, оставшаяся часть газа не поддерживает горение, да и живые существа мгновенно погибали.

В 1777 году Генри Кавендиш провёл следующий опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. Кавендиш писал: «Я переводил обыкновенный воздух из одного сосуда через раскаленные угли в другой, потом через свежий горящий уголь – в следующий сосуд, поглощая каждый раз образующийся фиксируемый воздух (углекислый газ) кусковой известью. Удельный вес полученного газа оказался лишь незначительно разнящимся от удельного веса обыкновенного воздуха: из обоих газов азот несколько легче воздуха. Он гасит пламя и делает обыкновенный воздух неспособным возбуждать горение, так же как и фиксируемый воздух (CO2), но в меньшей степени». Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.

Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным — не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным). Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота.

Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.

Ученые-химики Г. Кавендиш и К. Шееле, в отличие от Д. Резерфорда поняли, что азот – это лишь составная часть воздуха.

Из-за того, что в азоте погибали организмы, А. Лавуазье назвал его азотом. Согласно Лавуазье, «азот» означает «безжизненный», и слово это произведено от греческого «а» – отрицание и «зоэ» – жизнь. Такое название сохранилось в русском и французском языках, а в англосаксонских азот называют Nitrogen – «рождающий селитру», немцы же дали азоту название Stickstoff – «удушающая материя».

Д. Резерфорд

Г.Кавендиш

К.Шееле

Д.Пристли

А. Лавуазье

Распространение азота в природе.

Азот — один из самых распространенных элементов на Земле, причем основная его масса (около 4·1015 т) сосредоточена в свободном состоянии в атмосфере. В воздухе свободный азот (в виде молекул N2) составляет 78,09% по объему (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и оксидов. Среднее содержание азота в литосфере 1,9·10-3% по массе. Природные соединения азота — хлористый аммоний NH4Cl и различные нитраты. Крупные скопления селитры характерны для сухого пустынного климата (Чили, Средняя Азия). Долгое время селитры были главным поставщиком азота для промышленности (сейчас основные значение для связывания азота имеет промышленный синтез аммиака из азота воздуха и водорода). Небольшие количества связанного азота находятся в каменном угле (1-2,5%) и нефти (0,02-1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1%) и в живых организмах (0,3%).

Хотя название «Азот» означает «не поддерживающий жизни», на самом деле это — необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16-17% азота. В организмах плотоядных животных белок образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические. Значит, количества азот поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный Азот воздуха в соединения азота.

В природе осуществляется круговорот азота, главную роль в котором играют микроорганизмы — нитрофицирующие, денитрофицирующие, азотфиксирующие и другие. Однако в результате извлечения из почвы растениями огромного количества связанного азота (особенно при интенсивном земледелии) почвы оказываются обедненными азотом. Дефицит азота характерен для земледелия почти всех стран, наблюдается дефицит азота и в животноводстве («белковое голодание»). На почвах, бедных доступным азотом, растения плохо развиваются. Азотные удобрения и белковая подкормка животных — важнейшее средство подъема сельского хозяйства. Хозяйственная деятельность человека нарушает круговорот азота. Так, сжигание топлива обогащает атмосферу азотом, а заводы, производящие удобрения, связывают азот воздуха. Транспортировка удобрений и продуктов сельского хозяйства перераспределяет азот на поверхности земли. Азот — четвертый по распространенности элемент Солнечной системы (после водорода, гелия и кислорода).

Изотопы, атом и молекула азота.

Природный азот состоит из двух стабильных изотопов: 14N (99,635%) и 15N (0,365%). Изотоп 15N применяют в химических и биохимических исследованиях в качестве меченого атома. Из искусственных радиоактивных изотопов азота наибольший период полураспада имеет 13N (T½ = 10,08 мин), остальные весьма короткоживущие. В верхних слоях атмосферы, под действием нейтронов космического излучения, 14N превращается в радиоактивный изотоп углерода 14С. Этот процесс используют и в ядерных реакциях для получения 14С. Внешняя электронная оболочка атома азота состоит из 5 электронов (одной неподеленной пары и трех неспаренных — конфигурация 2s22р3). Чаще всего азот в соединениях 3-ковалентен за счет не спаренных электронов (как в аммиаке NН3). Наличие неподеленной пары электронов может приводить к образованию еще одной ковалентной связи, и азот становится 4-ковалентным (как в ионе аммония NH4). Степени окисления азот меняются от +5 (в N2O5) до -3 (в NH3). В обычных условиях в свободном состоянии азот образует молекулу N2, где атомы N связаны тремя ковалентными связями. Молекула азота очень устойчива: энергия диссоциации ее на атомы составляет 942,9 кдж/моль (225,2 ккал/моль), поэтому даже при t около 3300°С степень диссоциации азот составляет лишь около 0,1%.

Физические свойства азота.

При нормальных условиях азот это бесцветный газ, не имеет запаха, мало растворим в воде (2,3 мл/100г при 0 °C, 0,8 мл/100 г при 80 °C). Азот растворим в некоторых углеводородах.

Азот немного легче воздуха, его плотность 1,2506 кг/м³ (при н.у.).

В жидком состоянии (темп. кипения −195,8 °C) – бесцветная, подвижная, как вода, жидкость. Плотность жидкого азота 808 кг/м³. При контакте с воздухом поглощает из него кислород.

При −209,86 °C(температура плавления) азот переходит в твердое состояние в виде снегоподобной массы или больших белоснежных кристаллов. При контакте с воздухом поглощает из него кислород, при этом плавится, образуя раствор кислорода в азоте.

Азот сжижается с трудом: его критическая температуpa довольно низка (-147,1°С) а критическое давление высоко 3,39 Мн/м2 (34,6 кгс/см2 );

Известны три кристаллические модификации твёрдого азота.

Химические свойства азота

Из-за наличия прочной тройной связи молекулярный азот малоактивен, а соединения азота термически малоустойчивы и относительно легко разлагаются при нагревании с образованием свободного азота.

1. Взаимодействие с металлами

При обычных условиях молекулярный азот реагирует лишь с некоторыми сильными восстановителями, например, литием:

6Li + N2 = 2Li3 N.

Для образования нитрида магния из простых веществ требуется нагревание до 300 °С:

3Mg + N2 = Mg3 N2 .

Нитриды активных металлов представляют собой ионные соединения, которые гидролизуются водой с образованием аммиака.

2. Взаимодействие с кислородом

Только под действием электрического разряда азот реагирует с кислородом:

O2 + N2 = 2NO.

3. Взаимодействие с водородом

Реакция с водородом протекает при температуре порядка 400 °С и давлении 200 атм в присутствии катализатора – металлического железа:

3H2 + N2 = 2NH3 .

4. Взаимодействие с другими неметаллами

При высоких температурах реагирует с другими неметаллами, например, с бором:

2B + N2 = 2BN.

Азот непосредственно не взаимодействует с галогенами и серой, но галогениды и сульфиды могут быть получены косвенным путем. С водой, кислотами и щелочами азот не взаимодействует.

Получение азота.

В лаборатории азот легко может быть получен при нагревании концентрированного раствора нитрита аммония: NH4NO2 = N2 + 2H2O. Технический способ получения азот основан на разделении предварительно сжиженного воздуха, который затем подвергается разгонке.

Применение азота.

Основная часть добываемого свободного азота используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т. д. Помимо прямого синтеза аммиака из элементов, промышленное значение для связывания азот воздуха имеет разработанный в 1905 году цианамидный метод, основанный на том, что при 1000°С карбид кальция (получаемый накаливанием смеси извести и угля в электрической печи) реагирует со свободным азотом: СаС2 + N2 = CaCN2 + С. Образующийся цианамид кальция при действии перегретого водяного пара разлагается с выделением аммиака: CaCN2 + 3H2O = CaCO3 + 2NH3.

Свободный азот применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д. Жидкий азот находит применение в различных холодильных установках. Его хранят и транспортируют в стальных сосудах Дьюара, газообразный азот в сжатом виде — в баллонах. Широко применяют многие соединения азота. Производство связанного азота стало усиленно развиваться после 1-й мировой войны и сейчас достигло огромных масштабов.

Азот в организме.

Азот один из основных биогенных элементов, входящих в состав важнейших веществ живых клеток — белков и нуклеиновых кислот. Однако количество азота в организме невелико (1-3% на сухую массу). Находящийся в атмосфере молекулярный азот могут усваивать лишь некоторые микроорганизмы и сине-зеленые водоросли.

Значительные запасы азота сосредоточены в почве в форме различных минеральных (аммонийные соли, нитраты) и органических соединений (азот белков, нуклеиновых кислот и продуктов их распада, то есть еще не вполне разложившиеся остатки растений и животных). Растения усваивают азот из почвы как в виде неорганических, так и некоторых органических соединений. В природных условиях для питания растений большое значение имеют почвенные микроорганизмы (аммонификаторы), которые минерализуют органический азот почвы до аммонийных солей. Нитратный азот почвы образуется в результате жизнедеятельности открытых С. Н. Виноградским в 1890 нитрифицирующих бактерий, окисляющих аммиак и аммонийные соли до нитратов. Часть усвояемого микроорганизмами и растениями нитратного азота теряется, превращаясь в молекулярный азот под действием денитрифицирующих бактерий. Растения и микроорганизмы хорошо усваивают как аммонийный, так и нитратный азот, восстанавливая последний до аммиака и аммонийных солей. Микроорганизмы и растения активно превращают неорганический аммонийный азот в органические соединения азота — амиды (аспарагин и глутамин) и аминокислоты. Как показали Д. Н. Прянишников и В. С. Буткевич, азот в растениях запасается и транспортируется в виде аспарагина и глутамина. При образовании этих амидов обезвреживается аммиак, высокие концентрации которого токсичны не только для животных, но и для растений. Амиды входят в состав многих белков как у микроорганизмов и растений, так и у животных. Синтез глутамина и аспарагина путем ферментативного амидированияглутамвиовой и аспарагиновой кислот осуществляется не только у микроорганизмов и растений, но в определенных пределах и у животных.

Синтез аминокислот происходит путем восстановительного аминирования ряда альдегидокислот и кетокислот, возникающих в результате окисления углеводов, или путем ферментативного переаминирования. Конечными продуктами усвоения аммиака микроорганизмами и растениями являются белки, входящие в состав протоплазмы и ядра клеток, а также отлагающиеся в виде запасных белков. Животные и человек способны лишь в ограниченной мере синтезировать аминокислоты. Они не могут синтезировать восемь незаменимых аминокислот (валин, изолейцин, лейцин, фенилаланин, триптофан, метионин, треонин, лизин), и потому для них основным источником азота являются белки, потребляемые с пищей, то есть, в конечном счете, — белки растений и микроорганизмов.

Белки во всех организмах подвергаются ферментативному распаду, конечными продуктами которого являются аминокислоты. На следующем этапе в результате дезаминирования органический азот аминокислот вновь превращается в неорганический аммонийный азот. У микроорганизмов и, особенно у растений аммонийный азот может использоваться для нового синтеза амидов и аминокислот. У животных обезвреживание аммиака, образующегося при распаде белков и нуклеиновых кислот, осуществляется путем синтеза мочевой кислоты (у пресмыкающихся и птиц) или мочевины (у млекопитающих, в том числе и у человека), которые затем выводятся из организма. С точки зрения обмена азота растения, с одной стороны, и животные (и человек), с другой, отличаются тем, что у животных утилизация образующегося аммиака осуществляется лишь в слабой мере — большая часть его выводится из организма; у растений же обмен азота «замкнут» — поступивший в растение азот возвращается в почву лишь вместе с самим растением.

Значение соединений азота

Соединения азота

Степени окисления азота в соединениях −3, −2, −1, +1, +2, +3, +4, +5.

  • Соединения азота в степени окисления −3 представлены нитридами, из которых практически наиболее важен аммиак ;
  • Соединения азота в степени окисления −2 менее характерны, представлены пернитридами, из которых самый важный пернитрид водорода N2 H4 или гидразин (существует также крайне неустойчивый пернитрид водорода N2 H2, диимид);
  • Соединения азота в степени окисления −1 NH2 OH (гидроксиламин ) — неустойчивое основание, применяющееся, наряду с солями гидроксиламмония, в органическом синтезе;
  • Соединения азота в степени окисления +1 оксид азота(I) N2 O (закись азота, веселящий газ);
  • Соединения азота в степени окисления +2 оксид азота(II) NO (монооксид азота);
  • Соединения азота в степени окисления +3 оксид азота(III) N2 O3, азотистая кислота, производные аниона NO2−, трифторид азота (NF3 );
  • Соединения азота в степени окисления +4 оксид азота(IV) NO2 (диоксид азота, бурый газ);
  • Соединения азота в степени окисления +5 оксид азота(V) N2 O5, азотная кислота и её соли — нитраты, и др.

НИТРАТЫ — соли азотной кислоты HNO3, твердые хорошо растворимые в воде вещества. Традиционное русское название некоторых нитратов щелочных и щелочноземельных металлов и аммония — селитры (аммонийная селитра NH4NO3, калийная селитра КNO3, кальциевая селитра Са (NO3) 2 и др.

НИТРИДЫ — химические соединения азота с более электроположительными элементами. Нитриды алюминия, бора, кремния, вольфрама, титана (AlN, BN, Si3N4, W2N, TiN) и многие другие — тугоплавкие, химические стойкие кристаллические вещества. Компоненты жаропрочных сплавов используются в полупроводниковых приборах (напр., полупроводниковых лазерах, светоизлучающих диодах), как абразивы. Действием азота или аммиака на металлы при 500-600 °С получают нитридные покрытия (высокотвердые, износо- и коррозионностойкие).

ОКСИДЫ АЗОТА: гемиоксид N2O и монооксид NO (бесцветные газы), сесквиоксид N2O3 (синяя жидкость), диоксид NO2 (бурый газ, при обычных условиях смесь NO2 и его димера N2O4), оксид N2O5 (бесцветные кристаллы). N2O и NO — несолеобразующие оксиды, N2O3 с водой дает азотистую кислоту, N2O5 — азотную, NO2 — их смесь. Все оксиды азота физиологически активны. N2O — средство для наркоза («веселящий газ»), NO и NO2 — промежуточные продукты в производстве азотной кислоты, NO2 — окислитель в жидком ракетном топливе, смесевых ВВ, нитрующий агент.

Аммиак

NH3 M=17,03

Применяется для производства азотной кислоты, нитрата и сульфата аммония, жидких удобрений (аммиакатов), мочевины, соды, в органическом синтезе, при крашении тканей, светокопировании (на диазониевой бумаге), в качестве хладагента в холодильниках, при серебрении зеркал.

Нитрит натрия

NaNO2М = 69,00

Применяется в производстве органических красителей; в пищевой промышленности; для пассивирования стальных изделий; в резиновой и текстильной промышленности, в гальванотехнике. Получается абсорбцией раствором соды нитрозных газов производства азотной кислоты и очисткой, упариванием и кристаллизацией полученной емки нитрита и нитрата натрия.

.Натриевая селитра, чилийская селитра.

NaNO3 М = 84.99

Применяется как удобрение; в пищевой, стекольной, металлообрабатывающей промышленности; для получения взрывчатых веществ, ракетного топлива и пиротехнических смесей.

Нитрит калия

KNO2 M=85,ll

Применяется в производстве азотокрасителей и некоторых органических соединений.

Токсическое действие, по-видимому, сходно с действием NaNO2 .

Калийная селитра.

KNO3 М=101,ll

Применяется как удобрение, а также в производстве порохов, в пиротехнике, в пищевой и стекольной промышленности. Получается конверсией NaNO3 и KCl при 80-122°С.

Нитрат кальция

(Кальциевая селитра, норвежская селитра)

Ca (NO3 ) 2 М=164.09

Применяется как удобрение.

Исследовательская работа

Цели работы: изучить качественную реакцию на азотную кислоту и общее свойство азотной кислоты.

Оборудование: метилоранж,Ca(OH)2 , CuO ,Cu, спиртовка, HNO3 , пробирки.

Опыт 1:

1. В пробирку нальём HNO3

2. Добавим Cu

3. Нагреем пробирку

Наблюдение:

1.Выделяется бурый газ

Cu+4HNO 3 =Cu (NO3 )2 + 2NO2 + 2H2 O

Опыт 2:

1. В пробирку нальём HNO3

2. Добавим CuO

Наблюдение:

1. Раствор окрасился в чёрный цвет.

CuО+2HNO 3 =Cu (NO3 )2 + H2 O

Опыт 3 :

1.В пробирку нальём HNO3

2. Добавим Ca(OH)2

Наблюдение:

1. Раствор остался прозрачным.

Ca (OH)2 + 2HNO3 =Ca(NO3 )2 + 2H2 O

Опыт 4:

1.В пробирку нальём HNO3

2.Добавим метилоранж

Наблюдение:

1.Раствор окрасился в красный цвет

HNO3 + метилоранж = красный цвет.

Вывод: HNO3 в любой концентрации проявляет свойства кислоты-окислителя.

Литература:

1.Книга для чтения по неорганической химии в 2-х ч.: Ч-2/ составитель В.А.Крицман.—3-е изд., перераб. – М.: Просвещение 1992-191с: ил.

2. Иванова Р.Р., Осокина Г.Н. Изучение химии в 9-10 кл. Кн.для учителя – 2-е изд., перераб. – М.: просвещение, 1983-287с., ил.

3.Рудзитис Г.Е., Фелбдман Ф.Г… Химия: Неорганическая химия. Органическая химия: Учебник для 9 кл. общеобр. Учрежд -8-е изд. – М.: просвещение, 1999-208с.

4. Энциклопедия для детей. Том 17.Химия/ глав.ред. В.А.Володин. – М.- Аванта+, 2001 – 640с.: ил.

5. Общая химия. НЛ.Глинка.—2005год.

6. Г.П.Хомченко. Пособие по химии для поступающих в вузы. «Высшая школа» — Москва.,2007-456с.

7. Кузьменко Н.Е. Химия. Для школьников ст.классов и поступающих в вузы – м.: ООО Издательский дом «Оникс 21 век»., оо издательство «Мир и образование», 2002 –544с.: ил.

Соединения азота — селитра, азотная кислота, аммиак — были известны задолго до получения азота в свободном состоянии. В 1772 г. Д. Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, показал, что остающийся после сгорания газ, названный им «удушливым воздухом», не поддерживает дыхания и горения. В 1787 году А. Лавуазье установил, что «жизненный» и «удушливый» газы, входящие в состав воздуха, это простые вещества, и предложил название «азот».

Азот — один из самых распространенных элементов на Земле, причем основная его масса (около 4*10 15 т.) сосредоточена в свободном состоянии в атмосфере. В воздухе свободный азот (в виде молекул N 2) составляет 78,09% по объему (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и окислов. Среднее содержание азота в литосфере 1,9*10 — 3 % по массе. Природные соединения азота — хлористый аммоний NH 4 CI и различные нитраты. Крупные скопления селитры характерны для сухого пустынного климата (Чили, Средняя Азия).

Внешняя электронная оболочка атома азота состоит из 5 электронов (одной неподеленной пары и трех неспаренных — конфигурация 2s 2 2p 3). Чаще всего азот в соединениях 3-ковалентен за счет неспаренных электронов (как в аммиаке NH 3). Наличие неподеленной пары электронов может приводить к образованию еще одной ковалентной связи, и азот становится 4-ковалентным (как в ионе аммония NH 4 +).

Азотная кислота. Чистая азотная кислота HNO-бесцветная жидкость плотностью 1,51 г/см при — 42 °С застывающая в прозрачную кристаллическую массу. На воздухе она, подобно концентрированной соляной кислоте, «дымит», так как пары ее образуют с ‘влагой воздуха мелкие капельки тумана,

Азотная кислота не отличается прочностью, Уже под влиянием света она постепенно разлагается:

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Выделяющийся диоксид азота растворяется в кислоте и придает ей бурую окраску.

Азотная кислота принадлежит к числу наиболее сильных кислот; в разбавленных растворах она полностью распадается на ионы Н и — NO.

Слайд 1
АЗОТ
Азот – «безжизненный» элемент или важная составная часть жизни на Земле?
МОУ

СЕРИКОВСКАЯ ООШ

АЗОТАзот – «безжизненный» элемент или важная составная часть жизни на Земле?МОУ СЕРИКОВСКАЯ ООШ


Слайд 2Тип проекта: реферативно-исследовательский, межпредметный;
Место в учебном процессе: тема «Азот»;
Формируемые компетенции: общеучебные,

информационные, исследовательские (комплексное сравнение и анализ, классификация полученных результатов, химический эксперимент, обобщение).

Тип проекта: реферативно-исследовательский, межпредметный;Место в учебном процессе: тема «Азот»;Формируемые компетенции: общеучебные, информационные, исследовательские (комплексное сравнение и анализ,


Слайд 3ЦЕЛИ:
изучить свойства азота и область его применения на основе строения атома

и молекулы;
формировать умения формулировать проблему, находить пути её решения через самостоятельный поиск информации в учебнике, в Интернете, делать выводы;
воспитание научного мировоззрения.

ЦЕЛИ:изучить свойства азота и область его применения на основе строения атома и молекулы; формировать умения формулировать проблему,


Слайд 4ПОЧЕМУ НАЗВАЛИ “АЗОТ”?
Соединения азота — селитра, азотная кислота, аммиак —

были известны задолго до получения азота в свободном состоянии. В 1772 г. Д.Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, показал, что остающийся газ не поддерживает дыхания и горения. Д.Резерфорд назвал его “удушливым воздухом”.
К.Шееле назвал этот элемент, извлеченный из воздуха,- “дурным воздухом”.
В 1787 г. А.Лавуазье установил, что “жизненный” и “удушливый” газы, входящие в состав воздуха, это простые
вещества, и предложил название “азот”. “А” — отсутствие, “зоо” — жизнь. “Безжизненный”- азот.
И не случайно: испытания проводили на лабораторных мышах, помещая их под колпак с азотом, где они погибали.

ПОЧЕМУ НАЗВАЛИ “АЗОТ”? Соединения азота - селитра, азотная кислота, аммиак - были известны задолго до получения азота


Слайд 5НАХОЖДЕНИЕ В ПРИРОДЕ.
Азот – один из распространенных элементов на Земле.
— в

атмосфере — 4•1051 по массе и 78% газообразного азота по объёму
— литосфере – 1,9•10-3 по массе
— в живых организмах — 0,3% по массе
В белке животных и человека — 16–17% азота. В организмах человека и плотоядных животных белок образуется за счёт потребляемых белковых веществ травоядных животных и в растениях.
Азот – четвертый по распространенности элемент солнечной системы (после водорода, гелия и кислорода)

НАХОЖДЕНИЕ В ПРИРОДЕ.Азот – один из распространенных элементов на Земле.- в атмосфере - 4•1051 по массе и


Слайд 7“ЖИЗНЬ — ЕСТЬ СПОСОБ СУЩЕСТВОВАНИЯ БЕЛКОВЫХ ТЕЛ НА ЗЕМЛЕ” — ПО

ОПРЕДЕЛЕНИЮ Ф.ЭНГЕЛЬСА

Д.Резерфорд –“удушливый воздух”
К. Шееле – “дурной воздух”
А.Лавуазье – “безжизненный воздух”
Д.И.Прянишников – “Нет жизни без азота, ибо он является важнейшей составляющей частью белковой молекулы”

“ЖИЗНЬ - ЕСТЬ СПОСОБ СУЩЕСТВОВАНИЯ БЕЛКОВЫХ ТЕЛ НА ЗЕМЛЕ” - ПО ОПРЕДЕЛЕНИЮ Ф.ЭНГЕЛЬСА Д.Резерфорд –“удушливый воздух”К. Шееле


Слайд 8АЗОТ (ОБЩИЕ СВЕДЕНИЯ).

АЗОТ (лат. Nitrogenium — рождающий селитры), N
(читается «эн») — химический элемент второго периода
VA группы периодической системы, атомный номер 7,
атомная масса 14,0067. В свободном виде — газ без
цвета, запаха и вкуса, плохо растворим в воде. Состоит
из двухатомных молекул N2, обладающих высокой
прочностью. Относится к неметаллам.
Природный азот состоит из стабильных нуклидов 14N (содержание в смеси 99,635% по массе) и 15N. Конфигурация внешнего электронного слоя 2 s 2 2р 3. Радиус нейтрального атома азота 0,074 нм, радиус ионов: N3- — 0,132, N3+ — 0,030 и N5+ — 0,027 нм. Энергии последовательной ионизации нейтрального атома азота равны, соответственно, 14,53, 29,60, 47,45, 77,47 и 97,89 эВ. По шкале Полинга электроотрицательность азота 3,05.

АЗОТ (ОБЩИЕ СВЕДЕНИЯ).           АЗОТ (лат. Nitrogenium —


Слайд 9ФИЗИЧЕСКИЕ СВОЙСТВА АЗОТА
Азот немного легче воздуха; плотность 1,2506 кг/м3 (при н.у.),

tпл.= — 209,8оС, tкип.= -195,8оС. Азот сжижается с трудом: плотность жидкого азота 800 кг/м3. В воде азот менее растворим чем кислород: при 0оС в 1м3 Н2О растворяется 23,3 г азота.
Азот не поддерживает дыхание и горение.

ФИЗИЧЕСКИЕ СВОЙСТВА АЗОТААзот немного легче воздуха; плотность 1,2506 кг/м3 (при н.у.), tпл.= - 209,8оС, tкип.= -195,8оС. Азот


Слайд 10ХИМИЧЕСКИЕ СВОЙСТВА АЗОТА
К металлам:
N2+6Li (об.усл.) —> 2Li3N
N2+3Mg (об.усл.) —>

Mg3N2
N2+2Al —> 2AlN

К неметаллам:
N2+3H2 2NH3

N2+O2 —>2NO-Q
N2+3F2 (эл. разряд) —> 2NF3

ХИМИЧЕСКИЕ СВОЙСТВА АЗОТА  К металлам:N2+6Li (об.усл.) —> 2Li3NN2+3Mg (об.усл.) —> Mg3N2N2+2Al   —> 2AlN


Слайд 11СОЕДИНЕНИЯ АЗОТА
НИТРАТЫ — соли азотной кислоты HNO3, твердые хорошо растворимые в

воде вещества. Традиционное русское название некоторых нитратов щелочных и щелочноземельных металлов и аммония — селитры (аммонийная селитра NH4NO3, калийная селитра КNO3, кальциевая селитра Са(NO3)2 и др.
НИТРИДЫ — химические соединения азота с более электроположительными элементами. Компоненты жаропрочных сплавов используются в полупроводниковых приборах (напр., полупроводниковых лазерах, светоизлучающих диодах), как абразивы.
ОКСИДЫ АЗОТА: гемиоксид N2O и монооксид NO (бесцветные газы), сесквиоксид N2O3 (синяя жидкость), диоксид NO2 (бурый газ, при обычных условиях смесь NO2 и его димера N2O4), оксид N2O5 (бесцветные кристаллы). N2O и NO — несолеобразующие оксиды, N2O3 с водой дает азотистую кислоту, N2O5 — азотную, NO2 — их смесь. Все оксиды азота физиологически активны. N2O — средство для наркоза («веселящий газ»), NO и NO2 — промежуточные продукты в производстве азотной кислоты, NO2 — окислитель в жидком ракетном топливе, смесевых ВВ, нитрующий агент.
АММИАК NH3 M=17,03: Применяется для производства азотной кислоты, нитрата и сульфата аммо­ния, жидких удобрений (аммиакатов), мочевины, соды, в органическом синтезе, при крашении тканей, светокопировании (надиазониевой бумаге), в качестве хладагента в холодильниках, при серебрении зеркал.
HNO3 – азотная кислота.
HNO2 – азотистая кислота.

СОЕДИНЕНИЯ АЗОТАНИТРАТЫ — соли азотной кислоты HNO3, твердые хорошо растворимые в воде вещества. Традиционное русское название некоторых


Слайд 12СПОСОБЫ ПОЛУЧЕНИЯ АЗОТА:
Лабораторный способ:
NH4NO2N2+ 2H2O
Промышленный способ:
Технический способ получения азота основан на

разделении предварительно сжиженного воздуха.
Интернет —> Азотные установки, азотные станции, генераторы азота

СПОСОБЫ ПОЛУЧЕНИЯ АЗОТА:Лабораторный способ:NH4NO2N2+ 2H2OПромышленный способ:Технический способ получения азота основан на разделении предварительно сжиженного воздуха.Интернет —> Азотные


Слайд 13ПРИМЕНЕНИЕ АЗОТА:
создание инертных сред в металлургии;
синтез аммиака и азотной

кислоты;
производство минеральных удобрений;
производство взрывчатых веществ;
жидкий азот в медицине.

ПРИМЕНЕНИЕ АЗОТА: создание инертных сред в металлургии; синтез аммиака и азотной кислоты; производство минеральных удобрений; производство взрывчатых


Слайд 14АЗОТ – ДРУГ ИЛИ ВРАГ?
Азот – “безжизненный”.
Азот – главный

элемент жизни.
Что можно сказать о хим. активности азота? Почему?
В каких реакциях азот – окислитель, в каких – восстановитель?

АЗОТ – ДРУГ ИЛИ ВРАГ? Азот – “безжизненный”. Азот – главный элемент жизни. Что можно сказать о


Парадоксальный тривиальный азот

Азот — один из самых парадоксальных химических элементов таблицы Д. И. Менделеева. С одной стороны, он входит в состав молекул многих биологически активных соединений — витаминов, белков, нуклеиновых кислот и аминокислот.
С другой стороны, азот, как простое вещество, не поддерживает горение, а помещённое в его атмосферу животное быстро погибает. Атмосферный азот N2 — молекула, состоящая из двух атомов азота, — чрезвычайно инертен. В то же время некоторые азотсодержащие соединения — например, органические нитропроизводные или неорганические нитраты — компоненты сильных взрывчатых веществ. Можно сказать, что для человека азот — источник и жизни, и смерти. Например, всем известный нитроглицерин входит в состав взрывчатки и одновременно служит лекарством. Впрочем, кажутся удивительными не только свойства азота и его соединений. Открытие элемента и происхождение его названия — одна из интригующих страниц истории химической науки

.Парадокс первый. Азот возглавляет 15-ю группу химических элементов Периодической системы Д. И. Менделеева — группу пниктогенов. Парадокс в том, что азот, фосфор, мышьяк, сурьма и висмут были открыты значительно раньше элементов соседних 16-й и 17-й групп, но долго не имели общего названия. Ещё в 1811 году немецкий химик Иоганн Кристиан Швейгер предложил называть хлор (другие элементы 17-й группы тогда ещё не были известны) галогеном, что в переводе с греческого означает «солерод». После открытия фтора, брома и иода это название стало групповым. А в 1932 году его соотечественник Вернер Фишер объединил элементы 16-й группы единым термином халькогены («рождающие руду»). Вероятно, термин «пниктогены» предложил в начале шестидесятых годов прошлого века голландский химик Антон Эдвард ван Аркель. Как-то во время одной из дискуссий он обратил внимание коллег на то, что семейство азота до сих пор остаётся без группового названия. Результатом дискуссии стало рождение нового слова «пниктогены» (в переводе с древнегреческого «удушающий»). Интересно, что сам ван Аркель никогда не использовал его в своих статьях или книгах. Международный союз чистой и прикладной химии IUPAC лишь в 2005 году утвердил термины «пниктоген» и «пниктиды» для обозначения элементов 15-й группы и их соединений с менее электроотрицательными элементами.

Результат пошуку зображень за запитом "пниктогены"

Парадокс второй. Во второй половине XVIII века открытие азота в прямом и переносном смысле витало в воздухе. Возможно, именно поэтому однозначно назвать имя его первооткрывателя очень не просто: несколько исследователей одновременно претендуют на это звание. В 1772 году англичанин Генри Кавендиш (1731—1810) выделил азот из воздуха, пропуская последний сначала над раскалённым древесным углём (при этом кислород превращался в углекислый газ), а затем (для поглощения CO2) — через раствор щёлочи. Учёный обратил внимание на происходившее во время экспериментов небольшое уменьшение объёма воздуха. Кратко описав оставшийся газ как некий мефитический (от английского mephitic — вредный) воздух, Кавендиш, к сожалению, не увидел в нём нового химического элемента. Он даже не счёл важным опубликовать результаты своих экспериментов, а просто сообщил о них в письме своему соотечественнику Джозефу Пристли (1733—1804). Последний также выделял азот, связывая кислород воздуха и удаляя образующийся углекислый газ. Но, будучи ярым сторонником теории флогистона*, он неверно интерпретировал полученные результаты, полагая, что выделил флогистированный воздух. Первым, кто уверенно предположил открытие нового элемента, был двадцатидвухлетний шотландский студент Даниэль Резерфорд (1749—1819). Ученик знаменитого Джозефа Блэка описал свойства нового газа как вредного, ядовитого воздуха в диссертации под названием «О так называемом фиксируемом и мефитическом воздухе», защищённой им в сентябре 1772 года. Впрочем, соавтором открытия можно по праву считать и шведского химика-фармацевта Карла Вильгельма Шееле (1742—1786). За несколько месяцев до представления Резерфордом диссертации он получил азот по методу Кавендиша, но, как и его английский коллега, не спешил сообщить об этом миру: его статья о проведённых экспериментах появилась лишь пять лет спустя. В отличие от Резерфорда, Карл Шееле рассматривал азот не как продукт некоего «разрушения» нормального воздуха. Он справедливо считал, что воздух представляет собой смесь двух газов: «огненного воздуха» (кислорода) и «грязного воздуха» (азота). Если бы шведский химик сразу опубликовал свои результаты, он наверняка считался бы единственным первооткрывателем азота.

Результат пошуку зображень за запитом "азот резерфорд"

Парадокс третий. Если споры о первооткрывателе азота не утихают до сих пор, то имя учёного, впервые назвавшего азот азотом, хорошо известно. Это выдающийся французский химик Антуан Лоран Лавуазье (1743—1794). Добавив к древнегреческому слову «zoe» (жизнь) отрицательную приставку «а», он составил слово, которое, по его мнению, наиболее точно отражало основное свойство атмосферного азота — его непригодность для жизни. Парадоксально, что элемент, играющий ключевую роль в живых системах, получил название «безжизненный»! Впрочем, многие современники Лавуазье считали название элемента неудачным. И в 1790 году его молодой соотечественник Жан-Антуан Шапталь (1756—1832) предложил переименовать азот в nitrogène (в переводе с французского «нитрожен» — «рождающий селитру»). Сегодня для названия азотсодержащих соединений химики используют оба варианта. Например, если соли фосфорной кислоты называются фосфатами, то соли азотной кислоты именуют нитратами. Любопытно, что в некоторых странах сохранился первоначальный вариант названия элемента. Например, по-немецки слово азот до сих пор пишется как Stickstoff, то есть «удушающее вещество». Схожие по значению названия встречаются и в славянских языках: например, хорваты и словенцы называют его Dušik («душик»).

Парадокс четвёртый. Символы химических элементов Периодической системы, как известно, состоят либо из одной (первой), либо из двух (первой и одной из последующих) букв латинского названия элемента. Азот — один из немногих элементов, который имел несколько символов. Так, в начале XIX века до утверждения международной системы символов химических элементов в некоторых странах, в том числе во Франции и в России, для обозначения азота использовался символ Az. Пример такого обозначения можно видеть в формулах изомерных пропиламина, метил(этил)амина и триметиламина в статье, написанной Александром Михайловичем Бутлеровым и опубликованной в Бюллетене французского Химического общества в 1864 году.

А. М. Бутлерову, позже переводившему эту статью на русский, пришлось заменять символ Az на уже принятый к тому времени в России символ N.

Парадокс пятый. Около 4/5 земной атмосферы составляет азот. Парадоксально: мы буквально «купаемся» в газообразном азоте, но он по большому счёту оказывается бесполезным — ни люди, ни животные не могут превращать его в какие-либо производные. Лишь немногие микроорганизмы способны извлекать из воздуха столь необходимый азот, превращая его в аммиак. К ним относятся, прежде всего, клубеньковые бактерии, находящиеся в симбиозе с бобовыми культурами, такими как соя, фасоль, горох, бобы или клевер. Биологическая фиксация азота была одновременно и парадоксом удивительно лёгкого превращения инертного азота в аммиак и его производные, и вызовом для химиков. Этот вызов принял известный немецкий химик Фриц Габер (1868—1934). В начале ХХ века он начал исследования, которые в итоге привели его к Нобелевской премии по химии 1918 года. Так Нобелевский комитет оценил работу учёного по «синтезу аммиака из составляющих его элементов». Бесспорно, получение аммиака по методу Габера выглядит несовершенным по сравнению с методом, предложенным природой: если процесс биологической фиксации азота протекает в обычных условиях, то промышленный синтез аммиака требует высоких температуры (300—600оС) и давления (свыше 200 атм). Однако для сотен миллионов людей это открытие предотвратило голод: началось производство азотных удобрений, столь необходимых для получения высоких урожаев зерновых культур. Образно говоря, Габер научил весь мир делать хлеб из воздуха. Поразительный факт: около 40% атомов азота, содержащегося в теле каждого жителя Европы и США, родом из заводских цехов, производящих аммиак по методу Габера — Боша. Нужно ли ещё какое-либо доказательство важности сделанного немецким химиком открытия для жизни на Земле?!

Результат пошуку зображень за запитом "габер и бош"

Парадокс шестой. Мы привыкли рассматривать азот исключительно как двухатомную молекулу, в которой атомы азота соединены тремя ковалентными связями. Удивительно, но в определённых условиях этот привычный азот переходит в необычный. В августе 2004 года учёные Химического института Общества Макса Планка совместно с российскими коллегами сообщили о впервые синтезированной ими аллотропной модификации азота, в которой все атомы связаны одинарными связями аналогично тому, как это происходит в структуре алмаза. Синтез был осуществлён из обычного молекулярного азота при температурах свыше 2000 К и давлении 110 ГПа (более миллиона атмосфер). Полученный полимерный азот обладает уникальными свойствами. Энергия образования одинарной связи N-N равна 160 кДж/моль, тогда как для тройной связи N≡N эта величина достигает 954 кДж/моль. Следовательно, обратное превращение полимерного азота в молекулярный будет сопровождаться высвобождением огромного количества энергии. Это делает новый материал очень ценным при создании ракетного топлива или взрывчатых веществ. Так, он в пять раз превышает по мощности все самые сильные неядерные взрывчатые материалы. Причём это вещество — экологически чистый источник энергии, поскольку единственный продукт реакции — молекулярный азот!

Парадокс седьмой. Вместе с кислородом, углеродом и водородом азот образует квартет важнейших элементов любого живого организма на Земле. Земная жизнь, как известно, основана на многообразии соединений углерода. И хотя фантасты любят придумывать экзотические формы живых существ, до недавнего времени азот всерьёз не рассматривался как основа инопланетной жизни. Ситуация изменилась, когда было обнаружено, что при определённых условиях (очень высоком давлении — до 800 ГПа) химия азотоводородов может оказаться намного богаче химии хорошо знакомых «земных» углеводородов. Причём соединения азота могут существовать в виде как устойчивых небольших молекул (NH, NH2, N, N3H, N3H7, N8H, N9H4 и т. д.), так и длинных полимерных цепей. Эти необычные молекулы имеют оригинальные кристаллические структуры и обладают удивительными, экзотическими свойствами. На первый взгляд они не вписываются ни в какие правила, сформулированные современной классической химией. Учитывая, что планеты-гиганты (Уран и Нептун) состоят преимущественно из водорода, углерода, кислорода и азота, можно осторожно предположить, что сложные химические процессы с участием азотоводородов лежат в основе разнообразия пока неизвестной нам формы жизни. Как знать, быть может, в отличие от землян, жители этих далёких планет называют седьмой элемент таблицы химических элементов «зоегеном» — «рождающим жизнь».

Комментарии к статье

* Флогистон — гипотетическая «огненная субстанция», якобы наполняющая все горючие вещества и высвобождающаяся из них при горении.

Подробнее см.: https://www.nkj.ru/archive/articles/35711/ (Наука и жизнь, Парадоксальный тривиальный азот)

Подробнее см.: https://www.nkj.ru/archive/articles/35711/ (Наука и жизнь, Парадоксальный тривиальный азот)

Понравилась статья? Поделить с друзьями:
  • Безжалостность определение для сочинения
  • Бездушие это сочинение
  • Бездушие сочинение рассуждение 9 класс
  • Бездушие определение для сочинения
  • Бездушие аргументы для сочинения