Биология как наука ее достижения методы познания живой природы роль биологии в формировании егэ

Биология как наука, ее достижения, методы познания живой природы. Роль биологии в формировании современной естественнонаучной картины мира

Биология как наука

Биология (от греч. биос — жизнь, логос — слово, наука) — это комплекс наук о живой природе.

Предметом биологии являются все проявления жизни: строение и функции живых существ, их разнообразие, происхождение и развитие, а также взаимодействие с окружающей средой. Основная задача биологии как науки состоит в истолковании всех явлений живой природы на научной основе, учитывая при этом, что целостному организму присущи свойства, в корне отличающиеся от его составляющих.

Термин «биология» встречается в трудах немецких анатомов Т. Роозе (1779) и К. Ф. Бурдаха (1800), однако только в 1802 году он был впервые употреблен независимо друг от друга Ж. Б. Ламар ком и Г. Р. Тревиранусом для обозначения науки, изучающей живые организмы.

Биологические науки

В настоящее время в состав биологии включают целый ряд наук, которые можно систематизировать по таким критериям: по предмету и преобладающим методам исследования и по изучаемому уровню организации живой природы. По предмету исследования биологические науки делят на бактериологию, ботанику, вирусологию, зоологию, микологию.

Ботаника — это биологическая наука, комплексно изучающая растения и растительный покров Земли. Зоология — раздел биологии, наука о многообразии, строении, жизнедеятельности, распространении и взаимосвязи животных со средой обитания, их происхождении и развитии. Бактериология — биологическая наука, изучающая строение и жизнедеятельность бактерий, а также их роль в природе. Вирусология — биологическая наука, изучающая вирусы. Основным объектом микологии являются грибы, их строение и особенности жизнедеятельности. Лихенология — биологическая наука, изучающая лишайники. Бактериология, вирусология и некоторые аспекты микологии часто рассматриваются в составе микробиологии — раздела биологии, науке о микроорганизмах (бактериях, вирусах и микроскопических грибах). Систематика, или таксономия, — биологическая наука, которая описывает и классифицирует по группам все живые и вымершие существа.

В свою очередь, каждая из перечисленных биологических наук подразделяется на биохимию, морфологию, анатомию, физиологию, эмбриологию, генетику и систематику (растений, животных или микроорганизмов). Биохимия — это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности. Морфология — биологическая наука, изучающая форму и строение организмов, а также закономерности их развития. В широком смысле она включает в себя цитологию, анатомию, гистологию и эмбриологию. Различают морфологию животных и растений. Анатомия — это раздел биологии (точнее — морфологии), наука, изучающая внутреннее строение и форму отдельных органов, систем и организма в целом. Анатомия растений рассматривается в составе ботаники, анатомия животных — в составе зоологии, а анатомия человека является отдельной наукой. Физиология — биологическая наука, изучающая процессы жизнедеятельности растительных и животных организмов, их отдельных систем, органов, тканей и клеток. Существуют физиология растений, животных и человека. Эмбриология (биология развития) — раздел биологии, наука об индивидуальном развитии организма, в том числе развитии зародыша.

Объектом генетики являются закономерности наследственности и изменчивости. В настоящее время это одна из наиболее динамично развивающихся биологических наук.

По изучаемому уровню организации живой природы выделяют молекулярную биологию, цитологию, гистологию, органологию, биологию организмов и надорганизменных систем. Молекулярная биология является одним из наиболее молодых разделов биологии, наука, изучающая, в частности, организацию наследственной информации и биосинтез белка. Цитология, или клеточная биология, — биологическая наука, объектом изучения которой являются клетки как одноклеточных, так и многоклеточных организмов. Гистология — биологическая наука, раздел морфологии, объектом которой является строение тканей растений и животных. К сфере органологии относят морфологию, анатомию и физиологию различных органов и их систем.

Биология организмов включает все науки, предметом которых являются живые организмы, например, этологию — науку о поведении организмов.

Биология надорганизменных систем подразделяется на биогеографию и экологию. Распространение живых организмов изучает биогеография, тогда как экология — организацию и функционирование надорганизменных систем различных уровней: популяций, биоценозов (сообществ), биогеоценозов (экосистем) и биосферы.

По преобладающим методам исследования можно выделить описательную (например, морфологию), экспериментальную (например, физиологию) и теоретическую биологию.

Выявление и объяснение закономерностей строения, функционирования и развития живой природы на различных уровнях ее организации является задачей общей биологии. К ней относят биохимию, молекулярную биологию, цитологию, эмбриологию, генетику, экологию, эволюционное учение и антропологию. Эволюционное учение изучает причины, движущие силы, механизмы и общие закономерности эволюции живых организмов. Одним из его разделов является палеонтология — наука, предметом которой являются ископаемые останки живых организмов. Антропология — раздел общей биологии, наука о происхождении и развитии человека как биологического вида, а также разнообразии популяций современного человека и закономерностях их взаимодействия.

Прикладные аспекты биологии отнесены к сфере биотехнологии, селекции и других быстроразвивающихся наук. Биотехнологией называют биологическую науку, изучающую использование живых организмов и биологических процессов в производстве. Она широко применяется в пищевой (хлебопечение, сыроделие, пивоварение и др.) и фармацевтической промышленностях (получение антибиотиков, витаминов), для очистки вод и т. п. Селекция — наука о методах создания пород домашних животных, сортов культурных растений и штаммов микроорганизмов с нужными человеку свойствами. Под селекцией понимают и сам процесс изменения живых организмов, осуществляемый человеком для своих потребностей.

Прогресс биологии тесно связан с успехами других естественных и точных наук, таких как физика, химия, математика, информатика и др. Например, микроскопирование, ультразвуковые исследования (УЗИ), томография и другие методы биологии основываются на физических закономерностях, а изучение структуры биологических молекул и процессов, происходящих в живых системах, было бы невозможным без применения химических и физических методов. Применение математических методов позволяет, с одной стороны, выявить наличие закономерной связи между объектами или явлениями, подтвердить достоверность полученных результатов, а с другой — смоделировать явление или процесс. В последнее время все большее значение в биологии приобретают компьютерные методы, например моделирование. На стыке биологии и других наук возник целый ряд новых наук, таких как биофизика, биохимия, бионика и др.

Достижения биологии

Наиболее важными событиями в области биологии, повлиявшими на весь ход ее дальнейшего развития, являются: установление молекулярной структуры ДНК и ее роли в передаче информации в живой материи (Ф. Крик, Дж. Уотсон, М. Уилкинс); расшифровка генетического кода (Р. Холли, Х. Г. Корана, М. Ниренберг); открытие структуры гена и генетической регуляции синтеза белков (А. М. Львов, Ф. Жакоб, Ж. Л. Моно и др.); формулировка клеточной теории (М. Шлейден, Т. Шванн, Р. Вирхов, К. Бэр); исследование закономерностей наследственности и изменчивости (Г. Мендель, Х. де Фриз, Т. Морган и др.); формулировка принципов современной систематики (К. Линней), эволюционной теории (Ч. Дарвин) и учения о биосфере (В. И. Вернадский).

Значимость открытий последних десятилетий еще предстоит оценить, однако наиболее крупными достижениями биологии были признаны: расшифровка генома человека и других организмов, определение механизмов контроля потока генетической информации в клетке и формирующемся организме, механизмов регуляции деления и гибели клеток, клонирование млекопитающих, а также открытие возбудителей «коровьего бешенства» (прионов).

Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, привели нас к пониманию того, что у человека имеется около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество участков и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы значительного количества людей, и тогда станет понятно, в чем же все-таки их различие. Эти цели поставлены перед целым рядом ведущих лабораторий всего мира, работающих над реализацией программы «ENCODE».

Биологические исследования являются фундаментом медицины, фармации, широко используются в сельском и лесном хозяйстве, пищевой промышленности и других отраслях человеческой деятельности.

Хорошо известно, что только «зеленая революция» 1950-х годов позволила хотя бы частично решить проблему обеспечения быстро растущего населения Земли продуктами питания, а животноводство — кормами за счет внедрения новых сортов растений и прогрессивных технологий их выращивания. В связи с тем, что генетически запрограммированные свойства сельскохозяйственных культур уже почти исчерпаны, дальнейшее решение продовольственной проблемы связывают с широким введением в производство генетически модифицированных организмов.

Производство многих продуктов питания, таких как сыры, йогурты, колбасы, хлебобулочные изделия и др., также невозможно без использования бактерий и грибов, что является предметом биотехнологии.

Познание природы возбудителей, процессов течения многих заболеваний, механизмов иммунитета, закономерностей наследственности и изменчивости позволили существенно снизить смертность и даже полностью искоренить ряд болезней, таких, например, как черная оспа. С помощью новейших достижений биологической науки решается и проблема репродукции человека.

Значительная часть современных лекарственных препаратов производится на основе природного сырья, а также благодаря успехам генной инженерии, как, например, инсулин, столь необходимый больным сахарным диабетом, в основном синтезируется бактериями, которым перенесен соответствующий ген.

Не менее значимы биологические исследования для сохранения окружающей среды и разнообразия живых организмов, угроза исчезновения которых ставит под сомнение существование человечества.

Наибольшее значение среди достижений биологии имеет тот факт, что они лежат даже в основе построения нейронных сетей и генетического кода в компьютерных технологиях, а также широко используются в архитектуре и других отраслях. Вне всякого сомнения, наступивший XXI век является веком биологии.

Методы познания живой природы

Как и любая другая наука, биология имеет свой арсенал методов. Помимо научного метода познания, применяемого в других отраслях, в биологии широко используются такие методы, как исторический, сравнительно-описательный и др.

Научный метод познания включает в себя наблюдение, формулировку гипотез, эксперимент, моделирование, анализ результатов и выведение общих закономерностей.

Наблюдение — это целенаправленное восприятие объектов и явлений с помощью органов чувств или приборов, обусловленное задачей деятельности. Основным условием научного наблюдения является его объективность, т. е. возможность проверки полученных данных путем повторного наблюдения или применения иных методов исследования, например эксперимента. Полученные в результате наблюдения факты называются данными. Они могут быть как качественными (описывающими запах, вкус, цвет, форму и т. д.), так и количественными, причем количественные данные являются более точными, чем качественные.

На основе данных наблюдений формулируется гипотеза — предположительное суждение о закономерной связи явлений. Гипотеза подвергается проверке в серии экспериментов. Экспериментом называется научно поставленный опыт, наблюдение исследуемого явления в контролируемых условиях, позволяющих выявить характеристики данного объекта или явления. Высшей формой эксперимента является моделирование — исследование каких-либо явлений, процессов или систем объектов путем построения и изучения их моделей. По существу это одна из основных категорий теории познания: на идее моделирования базируется любой метод научного исследования — как теоретический, так и экспериментальный.

Результаты эксперимента и моделирования подвергаются тщательному анализу. Анализом называют метод научного исследования путем разложения предмета на составные части или мысленного расчленения объекта путем логической абстракции. Анализ неразрывно связан с синтезом. Синтез — это метод изучения предмета в его целостности, в единстве и взаимной связи его частей. В результате анализа и синтеза наиболее удачная гипотеза исследования становится рабочей гипотезой, и если она способна устоять при попытках ее опровержения и по-прежнему удачно предсказывает ранее необъясненные факты и взаимосвязи, то она может стать теорией.

Под теорией понимают такую форму научного знания, которая дает целостное представление о закономерностях и существенных связях действительности. Общее направление научного исследования состоит в достижении более высоких уровней предсказуемости. Если теорию не способны изменить никакие факты, а встречающиеся отклонения от нее регулярны и предсказуемы, то ее можно возвести в ранг закона — необходимого, существенного, устойчивого, повторяющегося отношения между явлениями в природе.

По мере увеличения совокупности знаний и совершенствования методов исследования гипотезы и прочно укоренившиеся теории могут оспариваться, видоизменяться и даже отвергаться, поскольку сами научные знания по своей природе динамичны и постоянно подвергаются критическому переосмыслению.

Исторический метод выявляет закономерности появления и развития организмов, становления их структуры и функции. В ряде случаев с помощью этого метода новую жизнь обретают гипотезы и теории, ранее считавшиеся ложными. Так, например, произошло с предположениями Ч. Дарвина о природе передачи сигналов по растению в ответ на воздействия окружающей среды.

Сравнительно-описательный метод предусматривает проведение анатомо-морфологического анализа объектов исследования. Он лежит в основе классификации организмов, выявления закономерностей возникновения и развития различных форм жизни.

Мониторинг — это система мероприятий по наблюдению, оценке и прогнозу изменения состояния исследуемого объекта, в частности биосферы.

Проведение наблюдений и экспериментов требует зачастую применения специального оборудования, такого как микроскопы, центрифуги, спектрофотометры и др.

Микроскопия широко применяется в зоологии, ботанике, анатомии человека, гистологии, цитологии, генетике, эмбриологии, палеонтологии, экологии и других разделах биологии. Она позволяет изучить тонкое строение объектов с использованием световых, электронных, рентгеновских и других типов микроскопов.

Устройство светового микроскопа. Световой микроскоп состоит из оптических и механических частей. К первым относятся окуляр, объективы и зеркало, а ко вторым — тубус, штатив, основание, предметный столик и винт.

Общее увеличение микроскопа определяется по формуле:

увеличение объектива $×$ увеличение окуляра $-$ увеличение микроскопа.

Например, если объектив увеличивает объект в $8$ раз, а окуляр — в $7$, то общее увеличение микроскопа равно $56$.

Дифференциальное центрифугирование, или фракционирование, позволяет разделить частицы по их размерам и плотности под действием центробежной силы, что активно используется при изучении строения биологических молекул и клеток.

Арсенал методов биологии постоянно обновляется, и в настоящее время охватить его полностью практически невозможно. Поэтому некоторые методы, используемые в отдельных биологических науках, будут рассмотрены далее.

Роль биологии в формировании современной естественнонаучной картины мира

На этапе становления биология еще не существовала отдельно от других естественных наук и ограничивалась лишь наблюдением, изучением, описанием и классификацией представителей животного и растительного мира, т. е. была описательной наукой. Однако это не помешало античным естествоиспытателям Гиппократу (ок. 460–377 гг. до н. э.), Аристотелю (384–322 гг. до н. э.) и Теофрасту (настоящее имя Тиртам, 372–287 гг. до н. э.) внести значительный вклад в развитие представлений о строении тела человека и животных, а также о биологическом разнообразии животных и растений, заложив тем самым основы анатомии и физиологии человека, зоологии и ботаники.

Углубление познаний о живой природе и систематизация ранее накопленных фактов, происходившие в XVI–XVIII веках, увенчались введением бинарной номенклатуры и созданием стройной систематики растений (К. Линней) и животных (Ж. Б. Ламарк).

Описание значительного числа видов со сходными морфологическими признаками, а также палеонтологические находки стали предпосылками к развитию представлений о происхождении видов и путях исторического развития органического мира. Так, опыты Ф. Реди, Л. Спалланцани и Л. Пастера в XVII–ХIХ веках опровергли гипотезу спонтанного самозарождения, выдвинутую еще Аристотелем и бытовавшую в Средние века, а теория биохимической эволюции А. И. Опарина и Дж. Холдейна, блестяще подтвержденная С. Миллером и Г. Юри, позволила дать ответ на вопрос о происхождении всего живого.

Если процесс возникновения живого из неживых компонентов и его эволюция сами по себе уже не вызывают сомнений, то механизмы, пути и направления исторического развития органического мира все еще до конца не выяснены, поскольку ни одна из двух основных соперничающих между собой теорий эволюции (синтетическая теория эволюции, созданная на основе теории Ч. Дарвина, и теория Ж. Б. Ламарка) все еще не могут предъявить исчерпывающих доказательств.

Применение микроскопии и других методов смежных наук, обусловленное прогрессом в области других естественных наук, а также внедрение практики эксперимента позволило немецким ученым Т. Шванну и М. Шлейдену еще в XIX веке сформулировать клеточную теорию, позднее дополненную Р. Вирховым и К. Бэром. Она стала важнейшим обобщением в биологии, которое краеугольным камнем легло в основу современных представлений о единстве органического мира.

Открытие закономерностей передачи наследственной информации чешским монахом Г. Менделем послужило толчком к дальнейшему бурному развитию биологии в ХХ–ХХI веках и привело не только к открытию универсального носителя наследственности — ДНК, но и генетического кода, а также фундаментальных механизмов контроля, считывания и изменчивости наследственной информации.

Развитие представлений об окружающей среде привело к возникновению такой науки, как экология, и формулировке учения о биосфере как о сложной многокомпонентной планетарной системе связанных между собой огромных биологических комплексов, а также химических и геологических процессов, происходящих на Земле (В. И. Вернадский), что в конечном итоге позволяет хотя бы в небольшой степени уменьшить негативные последствия хозяйственной деятельности человека.

Таким образом, биология сыграла немаловажную роль в становлении современной естественнонаучной картины мира.

Уровневая организация и эволюция. Основные уровни организации живой природы: клеточный, организменный, популяционно-видовой, биогеоценотический, биосферный. Биологические системы. Общие признаки биологических систем: клеточное строение, особенности химического состава, обмен веществ и превращения энергии, гомеостаз, раздражимость, движение, рост и развитие, воспроизведение, эволюция

Уровневая организация и эволюция

Живая природа — не однородное образование, подобное кристаллу, она представлена бесконечным разнообразием составляющих ее объектов (одних только видов организмов в настоящее время описано около 2 млн). Вместе с тем это разнообразие не является и свидетельством хаоса, царящего в ней, поскольку организмы имеют клеточное строение, организмы одного вида образуют популяции, все популяции, обитающие на одном участке суши или воды, образуют сообщества, а во взаимодействии с телами неживой природы формируют биогеоценозы, в свою очередь составляющие биосферу.

Таким образом, живая природа является системой, компоненты которой можно расположить в строгом порядке: от низших к высшим. Данный принцип организации позволяет выделить в живой природе отдельные уровни и дает комплексное представление о жизни как о природном явлении. На каждом из уровней организации определяют элементарную единицу и элементарное явление. В качестве элементарной единицы рассматривают структуру или объект, изменения которых составляют специфический для соответствующего уровня вклад в процесс сохранения и развития жизни, тогда как само это изменение является элементарным явлением.

Формирование такой многоуровневой структуры не могло произойти мгновенно — это результат миллиардов лет исторического развития, в процессе которого происходило прогрессивное усложнение форм жизни: от комплексов органических молекул к клеткам, от клеток — к организмам и т. д. Однажды возникнув, эта структура поддерживает свое существование за счет сложной системы регуляции и продолжает развиваться, причем на каждом из уровней организации живой материи происходят соответствующие эволюционные преобразования.

Основные уровни организации живой природы: клеточный, организменный, популяционно-видовой, биогеоценотический, биосферный

В настоящее время выделяют несколько основных уровней организации живой материи: клеточный, организменный, популяционно-видовой, биогеоценотический и биосферный.

Клеточный уровень

Хотя проявления некоторых свойств живого обусловлены уже взаимодействием биологических макромолекул (белков, нуклеиновых кислот, полисахаридов и др.), все же единицей строения, функций и развития живого является клетка, способная осуществлять и сопрягать процессы реализации и передачи наследственной информации с обменом веществ и превращения энергии, обеспечивая тем самым функционирование более высоких уровней организации. Элементарной единицей клеточного уровня организации является клетка, а элементарным явлением — реакции клеточного метаболизма.

Организменный уровень

Организм — это целостная система, способная к самостоятельному существованию. По количеству клеток, входящих в состав организмов, их делят на одноклеточные и многоклеточные. Клеточный уровень организации у одноклеточных организмов (амебы обыкновенной, эвглены зеленой и др.) совпадает с организменным. В истории Земли был период, когда все организмы были представлены только одноклеточными формами, но они обеспечивали функционирование как биогеоценозов, так и биосферы в целом. Большинство многоклеточных организмов представлено совокупностью тканей и органов, в свою очередь также имеющих клеточное строение. Органы и ткани приспособлены для выполнения определенных функций. Элементарной единицей данного уровня является особь в ее индивидуальном развитии, или онтогенезе, поэтому организменный уровень также называют онтогенетическим. Элементарным явлением данного уровня являются изменения организма в его индивидуальном развитии.

Популяционно-видовой уровень

Популяция — это совокупность особей одного вида, свободно скрещивающихся между собой и проживающих обособленно от других таких же групп особей.

В популяциях происходит свободный обмен наследственной информацией и ее передача потомкам. Популяция является элементарной единицей популяционно-видового уровня, а элементарным явлением в данном случае являются эволюционные преобразования, например мутации и естественный отбор.

Биогеоценотический уровень

Биогеоценоз представляет собой исторически сложившееся сообщество популяций разных видов, взаимосвязанных между собой и окружающей средой обменом веществ и энергии.

Биогеоценозы являются элементарными системами, в которых осуществляется вещественно-энергетический круговорот, обусловленный жизнедеятельностью организмов. Сами биогеоценозы — это элементарные единицы данного уровня, тогда как элементарные явления — это потоки энергии и круговороты веществ в них. Биогеоценозы составляют биосферу и обусловливают все процессы, протекающие в ней.

Биосферный уровень

Биосфера — оболочка Земли, населенная живыми организмами и преобразуемая ими.

Биосфера является самым высоким уровнем организации жизни на планете. Эта оболочка охватывает нижнюю часть атмосферы, гидросферу и верхний слой литосферы. Биосфера, как и все другие биологические системы, динамична и активно преобразуется живыми существами. Она сама является элементарной единицей биосферного уровня, а в качестве элементарного явления рассматривают процессы круговорота веществ и энергии, происходящие при участии живых организмов.

Как уже было сказано выше, каждый из уровней организации живой материи вносит свою лепту в единый эволюционный процесс: в клетке не только воспроизводится заложенная наследственная информация, но и происходит ее изменение, что приводит к возникновению новых сочетаний признаков и свойств организма, в свою очередь подвергающихся действию естественного отбора на популяционно-видовом уровне и т. д.

Биологические системы

Биологические объекты различной степени сложности (клетки, организмы, популяции и виды, биогеоценозы и саму биосферу) рассматривают в настоящее время в качестве биологических систем.

Система — это единство структурных компонентов, взаимодействие которых порождает новые свойства по сравнению с их механической совокупностью. Так, организмы состоят из органов, органы образованы тканями, а ткани формируют клетки.

Характерными чертами биологических систем являются их целостность, уровневый принцип организации, о чем говорилось выше, и открытость. Целостность биологических систем в значительной степени достигается за счет саморегуляции, функционирующей по принципу обратной связи.

К открытым системам относят системы, между которыми и окружающей средой происходит обмен веществ, энергии и информации, например, растения в процессе фотосинтеза улавливают солнечный свет и поглощают воду и углекислый газ, выделяя кислород.

Общие признаки биологических систем: клеточное строение, особенности химического состава, обмен веществ и превращения энергии, гомеостаз, раздражимость, движение, рост и развитие, воспроизведение, эволюция

Биологические системы отличаются от тел неживой природы совокупностью признаков и свойств, среди которых основными являются клеточное строение, особенности химического состава, обмен веществ и превращения энергии, гомеостаз, раздражимость, движение, рост и развитие, воспроизведение и эволюция.

Элементарной структурно-функциональной единицей живого является клетка. Даже вирусы, относящиеся к неклеточным формам жизни, неспособны к самовоспроизведению вне клеток.

Различают два типа строения клеток: прокариотические и эукариотические. Прокариотические клетки не имеют сформированного ядра, их генетическая информация сосредоточена в цитоплазме. К прокариотам относят прежде всего бактерии. Генетическая информация в эукариотических клетках хранится в особой структуре — ядре. Эукариотами являются растения, животные и грибы. Если в одноклеточных организмах клетке присущи все проявления живого, то у многоклеточных происходит специализация клеток.

В живых организмах не встречается ни одного химического элемента, которого бы не было в неживой природе, однако их концентрации существенно различаются в первом и во втором случаях. Преобладают в живой природе такие элементы, как углерод, водород и кислород, которые входят в состав органических соединений, тогда как для неживой природы в основном характерны неорганические вещества. Важнейшими органическими соединениями являются нуклеиновые кислоты и белки, которые обеспечивают функции самовоспроизведения и самоподдержания, но ни одно из этих веществ не является носителем жизни, поскольку ни по отдельности, ни в группе они не способны к самовоспроизведению — для этого необходим целостный комплекс молекул и структур, которым и является клетка.

Все живые системы, в том числе клетки и организмы, являются открытыми системами. Однако, в отличие от неживой природы, где в основном происходит перенос веществ с одного места в другое или изменение их агрегатного состояния, живые существа способны к химическому превращению потребляемых веществ и использованию энергии. Обмен веществ и превращения энергии связаны с такими процессами, как питание, дыхание и выделение.

Под питанием обычно понимают поступление в организм, переваривание и усвоение им веществ, необходимых для пополнения энергетических запасов и построения тела организма. По способу питания все организмы делят на автотрофов и гетеротрофов.

Автотрофы — это организмы, которые способны сами синтезировать органические вещества из неорганических.

Гетеротрофы — это организмы, которые потребляют в пищу готовые органические вещества. Автотрофы делятся на фотоавтотрофов и хемоавтотрофов. Фотоавтотрофы используют для синтеза органических веществ энергию солнечного света. Процесс преобразования энергии света в энергию химических связей органических соединений называется фотосинтезом. К фотоавтотрофам относится подавляющее большинство растений и некоторые бактерии (например, цианобактерии). В целом фотосинтез не слишком продуктивный процесс, вследствие чего большинство растений вынуждено вести прикрепленный образ жизни. Хемоавтотрофы извлекают энергию для синтеза органических соединений из неорганических соединений. Этот процесс называется хемосинтезом. Типичными хемоавтотрофами являются некоторые бактерии, в том числе серобактерии и железобактерии.

Остальные организмы — животные, грибы и подавляющее большинство бактерий — относятся к гетеротрофам.

Дыханием называют процесс расщепления органических веществ до более простых, при котором выделяется энергия, необходимая для поддержания жизнедеятельности организмов.

Различают аэробное дыхание, требующее кислорода, и анаэробное, протекающее без участия кислорода. Большинство организмов является аэробами, хотя среди бактерий, грибов и животных встречаются и анаэробы. При кислородном дыхании сложные органические вещества могут расщепляться до воды и углекислого газа.

Под выделением обычно понимают выведение из организма конечных продуктов метаболизма и избытка различных веществ (воды, солей и др.), поступивших с пищей или образовавшихся в нем. Особенно интенсивно процессы выделения протекают у животных, тогда как растения чрезвычайно экономны.

Благодаря обмену веществ и энергии обеспечивается взаимосвязь организма с окружающей средой и поддерживается гомеостаз.

Гомеостаз — это способность биологических систем противостоять изменениям и поддерживать относительное постоянство химического состава, строения и свойств, а также обеспечивать постоянство функционирования в изменяющихся условиях окружающей среды. Приспособление же к изменяющимся условиям среды называется адаптацией.

Раздражимость — это универсальное свойство живого реагировать на внешние и внутренние воздействия, которое лежит в основе приспособления организма к условиям окружающей среды и их выживания. Реакция растений на изменения внешних условий заключается, например, в повороте листовых пластинок к свету, а у большинства животных она имеет более сложные формы, имеющие рефлекторный характер.

Движение — неотъемлемое свойство биологических систем. Оно проявляется не только в виде перемещения тел и их частей в пространстве, например, в ответ на раздражение, но и в процессе роста и развития.

Новые организмы, появляющиеся в результате репродукции, получают от родителей не готовые признаки, а определенные генетические программы, возможность развития тех или иных признаков. Эта наследственная информация реализуется во время индивидуального развития. Индивидуальное развитие выражается, как правило, в количественных и качественных изменениях организма. Количественные изменения организма называются ростом. Они проявляются, например, в виде увеличения массы и линейных размеров организма, что основано на воспроизведении молекул, клеток и других биологических структур.

Развитие организма — это появление качественных различий в структуре, усложнение функций и т. д., что базируется на дифференцировании клеток.

Рост организмов может продолжаться всю жизнь или заканчиваться на каком-то определенном ее этапе. В первом случае говорят о неограниченном, или открытом росте. Он характерен для растений и грибов. Во втором случае мы имеем дело с ограниченным, или закрытым ростом, присущим животным и бактериям.

Продолжительность существования отдельной клетки, организма, вида и других биологических систем ограничена во времени в основном из-за воздействия факторов окружающей среды, поэтому требуется постоянное воспроизведение этих систем. В основе воспроизведения клеток и организмов лежит процесс самоудвоения молекул ДНК. Размножение организмов обеспечивает существование вида, а размножение всех видов, населяющих Землю, обеспечивает существование биосферы.

Наследственностью называют передачу признаков родительских форм в ряду поколений.

Однако, если бы при воспроизведении признаки сохранялись, приспособление к меняющимся условиям окружающей среды было бы невозможным. В связи с этим появилось противоположное наследственности свойство — изменчивость.

Изменчивость — это возможность приобретения в течение жизни новых признаков и свойств, которое обеспечивает эволюцию и выживание наиболее приспособленных видов.

Эволюция — это необратимый процесс исторического развития живого.

Она базируется на прогрессивном размножении, наследственной изменчивости, борьбе за существование и естественном отборе. Действие этих факторов привело к огромному разнообразию форм жизни, приспособленных к различным условиям среды обитания. Прогрессивная эволюция прошла ряд ступеней: доклеточных форм, одноклеточных организмов, все усложняющихся многоклеточных вплоть до человека.

Генетика, ее задачи. Наследственность и изменчивость — свойства организмов.
Методы генетики. Основные генетические понятия и символика. Хромосомная теория
наследственности. Современные представления о гене и геноме

Генетика, ее задачи

Успехи естествознания и клеточной биологии в XVIII–XIX веках позволили ряду ученых высказать предположения о существовании неких наследственных факторов, определяющих, например, развитие наследственных болезней, однако эти предположения не были подкреплены соответствующими доказательствами. Даже сформулированная Х. де Фризом в 1889 году теория внутриклеточного пангенеза, которая предполагала существование в ядре клетки неких «пангенов », определяющих наследственные задатки организма, и выход в протоплазму только тех из них, которые определяют тип клетки, не смогла изменить ситуацию, как и теория «зародышевой плазмы» А. Вейсмана, согласно которой приобретенные в процессе онтогенеза признаки не наследуются.

Лишь труды чешского исследователя Г. Менделя (1822–1884) стали основополагающим камнем современной генетики. Однако, несмотря на то, что его труды цитировались в научных изданиях, современники не обратили на них внимания. И лишь повторное открытие закономерностей независимого наследования сразу тремя учеными — Э. Чермаком, К. Корренсом и Х. де Фризом — вынудило научную общественность обратиться к истокам генетики.

Генетика — это наука, изучающая закономерности наследственности и изменчивости и методы управления ими.

Задачами генетики на современном этапе являются исследование качественных и количественных характеристик наследственного материала, анализ структуры и функционирования генотипа, расшифровка тонкой структуры гена и методов регуляции генной активности, поиск генов, вызывающих развитие наследственных болезней человека и методов их «исправления», создание нового поколения лекарственных препаратов по типу ДНК-вакцин, конструирование с помощью средств генной и клеточной инженерии организмов с новыми свойствами, которые могли бы производить необходимые человеку лекарственные препараты и продукты питания, а также полная расшифровка генома человека.

Наследственность и изменчивость — свойства организмов

Наследственность — это способность организмов передавать свои признаки и свойства в ряду поколений.

Изменчивость — свойство организмов приобретать новые признаки в течение жизни.

Признаки — это любые морфологические, физиологические, биохимические и иные особенности организмов, по которым одни из них отличаются от других, например цвет глаз. Свойствами же называют любые функциональные особенности организмов, в основе которых лежит определенный структурный признак или группа элементарных признаков.

Признаки организмов можно разделить на качественные и количественные. Качественные признаки имеют два-три контрастных проявления, которые называют альтернативными признаками, например голубой и карий цвет глаз, тогда как количественные (удойность коров, урожайность пшеницы) не имеют четко выраженных различий.

Материальным носителем наследственности является ДНК. У эукариот различают два типа наследственности: генотипическую и цитоплазматическую. Носители генотипической наследственности локализованы в ядре и далее речь пойдет именно о ней, а носителями цитоплазматической наследственности являются находящиеся в митохондриях и пластидах кольцевые молекулы ДНК. Цитоплазматическая наследственность передается в основном с яйцеклеткой, поэтому называется также материнской.

В митохондриях клеток человека локализовано небольшое количество генов, однако их изменение может оказывать существенное влияние на развитие организма, например приводить к развитию слепоты или постепенному снижению подвижности. Пластиды играют не менее важную роль в жизни растений. Так, в некоторых участках листа могут присутствовать бесхлорофильные клетки, что приводит, с одной стороны, к снижению продуктивности растения, а с другой — такие пестролистные организмы ценятся в декоративном озеленении. Воспроизводятся такие экземпляры в основном бесполым способом, так как при половом размножении чаще получаются обычные зеленые растения.

Методы генетики

1. Гибридологический метод, или метод скрещиваний, заключается в подборе родительских особей и анализе потомства. При этом о генотипе организма судят по фенотипическим проявлениям генов у потомков, полученных при определенной схеме скрещивания. Это старейший информативный метод генетики, который наиболее полно впервые применил Г. Мендель в сочетании со статистическим методом. Данный метод неприменим в генетике человека по этическим соображениям.

2. Цитогенетический метод основан на исследовании кариотипа: числа, формы и величины хромосом организма. Изучение этих особенностей позволяет выявить различные патологии развития.

3. Биохимический метод позволяет определять содержание различных веществ в организме, в особенности их избыток или недостаток, а также активность целого ряда ферментов.

4. Молекулярно-генетические методы направлены на выявление вариаций в структуре и расшифровку первичной последовательности нуклеотидов исследуемых участков ДНК. Они позволяют выявить гены наследственных болезней даже у эмбрионов, установить отцовство и т. д.

5. Популяционно-статистический метод позволяет определить генетический состав популяции, частоту определенных генов и генотипов, генетический груз, а также наметить перспективы развития популяции.

6. Метод гибридизации соматических клеток в культуре позволяет определить локализацию определенных генов в хромосомах при слиянии клеток различных организмов, например, мыши и хомяка, мыши и человека и т. д.

Основные генетические понятия и символика

Ген — это участок молекулы ДНК, или хромосомы, несущий информацию об определенном признаке или свойстве организма.

Некоторые гены могут оказывать влияние на проявление сразу нескольких признаков. Такое явление называется плейотропией. Например, ген, обусловливающий развитие наследственного заболевания арахнодактилии (паучьи пальцы), вызывает также искривление хрусталика, патологии многих внутренних органов.

Каждый ген занимает в хромосоме строго определенное место — локус. Так как в соматических клетках большинства эукариотических организмов хромосомы парные (гомологичные), то в каждой из парных хромосом находится по одной копии гена, отвечающего за определенный признак. Такие гены называются аллельными.

Аллельные гены чаще всего существуют в двух вариантах — доминантном и рецессивном. Доминантной называют аллель, которая проявляется вне зависимости от того, какой ген находится в другой хромосоме, и подавляет развитие признака, кодируемого рецессивным геном. Доминантные аллели обозначаются обычно прописными буквами латинского алфавита (A, B, C и др.), а рецессивные — строчными (a, b, c и др.). Рецессивные аллели могут проявляться только в том случае, если они занимают локусы в обеих парных хромосомах.

Организм, у которого в обеих гомологичных хромосомах находятся одинаковые аллели, называется гомозиготным по данному гену, или гомозиготой (AA, aa, ААBB, ааbb и т. д.), а организм, у которого в обеих гомологичных хромосомах находятся разные варианты гена — доминантный и рецессивный — называется гетерозиготным по данному гену, или гетерозиготой (Aa, АаBb и т. д.).

Ряд генов может иметь три и более структурных варианта, например группы крови по системе AB0 кодируются тремя аллелями — IA, IB, i. Такое явление называется множественным аллелизмом. Однако даже в этом случае каждая хромосома из пары несет только одну аллель, то есть все три варианта гена у одного организма не могут быть представлены.

Геном — совокупность генов, характерная для гаплоидного набора хромосом.

Генотип — совокупность генов, характерная для диплоидного набора хромосом.

Фенотип — совокупность признаков и свойств организма, которая является результатом взаимодействия генотипа и окружающей среды.

Поскольку организмы отличаются между собой многими признаками, установить закономерности их наследования можно только при анализе двух и более признаков в потомстве. Скрещивание, при котором рассматривается наследование и проводится точный количественный учет потомства по одной паре альтернативных признаков, называется моногибридным, по двум парам — дигибридным, по большему количеству признаков — полигибридным.

По фенотипу особи далеко не всегда можно установить ее генотип, поскольку как гомозиготный по доминантному гену организм (АА), так и гетерозиготный (Аа) будет иметь в фенотипе проявление доминантной аллели. Поэтому для проверки генотипа организма с перекрестным оплодотворением применяют анализирующее скрещивание — скрещивание, при котором организм с доминантным признаком скрещивается с гомозиготным по рецессивному гену. При этом гомозиготный по доминантному гену организм не будет давать расщепления в потомстве, тогда как в потомстве гетерозиготных особей наблюдается равное количество особей с доминантным и рецессивным признаками.

Для записи схем скрещиваний чаще всего применяются следующие условные обозначения:

Р (от лат. парента — родители) — родительские организмы;

$♀$ (алхимический знак Венеры — зеркало с ручкой) — материнская особь;

$♂$ (алхимический знак Марса — щит и копье) — отцовская особь;

$×$ — знак скрещивания;

F1, F2, F3 и т. д. — гибриды первого, второго, третьего и последующих поколений;

Fа — потомство от анализирующего скрещивания.

Хромосомная теория наследственности

Основоположник генетики Г. Мендель, равно как и его ближайшие последователи, не имели ни малейшего представления о материальной основе наследственных задатков, или генов. Однако уже в 1902–1903 годах немецкий биолог Т. Бовери и американский студент У. Сэттон независимо друг от друга предположили, что поведение хромосом при созревании клеток и оплодотворении позволяет объяснить расщепление наследственных факторов по Менделю, т. е., по их мнению, гены должны быть расположены в хромосомах. Данные предположения стали краеугольным камнем хромосомной теории наследственности.

В 1906 году английские генетики У. Бэтсон и Р. Пеннет обнаружили нарушение менделевского расщепления при скрещивании душистого горошка, а их соотечественник Л. Донкастер в экспериментах с бабочкой крыжовенной пяденицей открыл сцепленное с полом наследование. Результаты этих экспериментов явно противоречили менделевским, но если учесть, что к тому времени уже было известно о том, что количество известных признаков для экспериментальных объектов намного превышало количество хромосом, а это наводило на мысль, что каждая хромосома несет более одного гена, а гены одной хромосомы наследуются совместно.

В 1910 году начинаются эксперименты группы Т. Моргана на новом экспериментальном объекте — плодовой мушке дрозофиле. Результаты этих экспериментов позволили к середине 20-х годов XX века сформулировать основные положения хромосомной теории наследственности, определить порядок расположения генов в хромосомах и расстояния между ними, т. е. составить первые карты хромосом.

Основные положения хромосомной теории наследственности:

  1. Гены расположены в хромосомах. Гены одной хромосомы наследуются совместно, или сцепленно, и называются группой сцепления. Число групп сцепления численно равно гаплоидному набору хромосом.
  2. Каждый ген занимает в хромосоме строго определенное место — локус.
  3. Гены в хромосомах расположены линейно.
  4. Нарушение сцепления генов происходит только в результате кроссинговера.
  5. Расстояние между генами в хромосоме пропорционально проценту кроссинговера между ними.
  6. Независимое наследование характерно только для генов негомологичных хромосом.

Современные представления о гене и геноме

В начале 40-х годов ХХ века Дж. Бидл и Э. Тейтум, анализируя результаты генетических исследований, проведенных на грибе нейроспоре, пришли к выводу, что каждый ген контролирует синтез какого-либо фермента, и сформулировали принцип «один ген — один фермент».

Однако уже в 1961 году Ф. Жакобу, Ж. Л. Моно и А. Львову удалось расшифровать структуру гена кишечной палочки и исследовать регуляцию его активности. За это открытие им в 1965 году была присуждена Нобелевская премия по физиологии и медицине.

В процессе исследования, кроме структурных генов, контролирующих развитие определенных признаков, им удалось выявить и регуляторные, основной функцией которых является проявление признаков, кодируемых другими генами.

Структура прокариотического гена. Структурный ген прокариот имеет сложное строение, поскольку в его состав входят регуляторные участки и кодирующие последовательности. К регуляторным участкам относятся промотор, оператор и терминатор. Промотором называют участок гена, к которому прикрепляется фермент РНК-полимераза, обеспечивающий синтез иРНК в процессе транскрипции. С оператором, располагающимся между промотором и структурной последовательностью, может связываться белок-репрессор, не позволяющий РНК-полимеразе начать считывание наследственной информации с кодирующей последовательности, и только его удаление позволяет начать транскрипцию. Структура репрессора закодирована обычно в регуляторном гене, находящемся в другом участке хромосомы. Считывание информации заканчивается на участке гена, который называется терминатором.

Кодирующая последовательность структурного гена содержит информацию о последовательности аминокислот в соответствующем белке. Кодирующую последовательность у прокариот называют цистроном, а совокупность кодирующих и регуляторных участков гена прокариот — опероном. В целом прокариоты, к которым относится и кишечная палочка, имеют сравнительно небольшое количество генов, расположенных в единственной кольцевой хромосоме.

Цитоплазма прокариот может содержать также дополнительные небольшие кольцевые или незамкнутые молекулы ДНК, которые называются плазмидами. Плазмиды способны встраиваться в хромосомы и передаваться от одной клетки к другой. Они могут нести информацию о половых признаках, патогенности и устойчивости к антибиотикам.

Структура эукариотического гена. В отличие от прокариот, гены эукариот не имеют оперонной структуры, поскольку не содержат оператора, и каждый структурный ген сопровождается только промотором и терминатором. Кроме того, в генах эукариот значащие участки (экзоны) чередуются с незначащими (интронами), которые полностью переписываются на иРНК, а затем вырезаются в процессе их созревания. Биологическая роль интронов состоит в снижении вероятности мутаций в значащих участках. Регуляция генов эукариот намного сложнее, нежели описанная для прокариот.

Геном человека. В каждой клетке человека в 46 хромосомах находится около 2 м ДНК, плотно упакованной в двойную спираль, которая состоит примерно из 3,2 $×$ 109 нуклеотидных пар, что обеспечивает около 101900000000 возможных уникальных комбинаций. К концу 80-х годов ХХ века было известно расположение примерно 1500 генов человека, однако их общее количество оценивали примерно в 100 тыс., поскольку только наследственных болезней у человека имеется примерно 10 тыс., не говоря уже о количестве разнообразных белков, содержащихся в клетках.

В 1988 году стартовал международный проект «Геном человека», который к началу XXI века закончился полной расшифровкой последовательности нуклеотидов. Он дал возможность понять, что два разных человека на 99,9 % имеют сходные последовательности нуклеотидов, и лишь остающиеся 0,1 % определяют нашу индивидуальность. Всего было обнаружено примерно 30–40 тыс. структурных генов, однако затем их количество было снижено до 25–30 тыс. Среди этих генов имеются не только уникальные, но и повторяющиеся сотни и тысячи раз. Тем не менее данные гены кодируют гораздо большее количество белков, например десятки тысяч защитных белков — иммуноглобулинов.

97 % нашего генома является генетическим «мусором», который существует только потому, что умеет хорошо воспроизводиться (РНК, которые транскрибируются на этих участках, никогда не покидают ядро). Например, среди наших генов есть не только «человеческие» гены, но и 60 % генов, похожих на гены мушки дрозофилы, а с шимпанзе нас роднит до 99 % генов.

Параллельно с расшифровкой генома происходило и картирование хромосом, вследствие этого удалось не только обнаружить, но и определить расположение некоторых генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов.

Расшифровка генома человека пока не дает прямого эффекта, поскольку мы получили своеобразную инструкцию по сборке такого сложного организма, как человек, но не научились изготавливать его или хотя бы исправлять погрешности в нем. Тем не менее эра молекулярной медицины уже на пороге, во всем мире идет разработка так называемых генопрепаратов, которые смогут блокировать, удалять или даже замещать патологические гены у живых людей, а не только в оплодотворенной яйцеклетке.

Не следует забывать и о том, что в эукариотических клетках ДНК содержится не только в ядре, но также в митохондриях и пластидах. В отличие от ядерного генома, организация генов митохондрий и пластид имеет много общего с организацией генома прокариот. Несмотря на то что эти органеллы несут менее 1 % наследственной информации клетки и не кодируют даже полного набора белков, необходимых для их собственного функционирования, они способны существенно влиять на некоторые признаки организма. Так, пестролистность у растений хлорофитума, плюща и других наследует незначительное число потомков даже при скрещивании двух пестролистных растений. Это обусловлено тем, что пластиды и митохондрии передаются большей частью с цитоплазмой яйцеклетки, поэтому такая наследственность называется материнской, или цитоплазматической, в отличие от генотипической, которая локализуется в ядре.

Видеоурок:  

Лекция:  

Биология как наука

Отдельной наукой биология стала в 19-м веке, когда термин «биология» начали использовать сразу несколько ученых – Жан Батист Ламарк и Готфрид Рейнхольд Тревиранус в 1802 г и Фридрих Бурдах в 1800. До этого изучением некоторых аспектов живого занимались естественная история и медицина.

Объектом изучения биологии является жизнь в любых ее проявлениях – эволюция, распределение живого на планете, его структура, процессы функционирования, классификация, взаимоотношения организмов между собой и с окружающей средой.

Основой современной биологии являются 5 базовых принципов:

  • клеточная теория;

  • генетика;

  • эволюция;

  • гомеостаз;

  • энергия.

Методы биологии

Методами биологии называются приемы, используемые учеными для приобретения новых знаний о живых организмах. 

Основным правилом для любого ученого является принцип «ничего не принимать на веру» – каждое явление должно быть точно изучено и о нем должно быть получено достоверное знание.

Методами биологии называют приемы, с помощью которых строится система точного научного знания. К ним относятся:

  • Наблюдение. Первое столкновение ученых с чем-то еще не изученным.

  • Описание явления, нового организма, его особенностей;

  • Систематизация. Это процесс соотнесения нового знания с уже имеющимися системами – определение места вновь открытого организма на древе эволюции, его химического строения, особенностей размножения и других свойств с уже имеющимися системами знания;

  • Сравнение. Поиск похожих явлений, изучение уже встречавшихся подобных свидетельств других ученых, описаний и неоконченных исследований;

  • Эксперимент. Проведение серий экспериментов для подтверждения или опровержения новой теории или гипотезы.

  • Аналитический метод. Подразумевает сбор и сравнение всей информации по какому-либо вопросу.

  • Исторический метод. Позволяет изучить закономерности исторического развития организмов, обращаясь к уже имеющемуся знанию.

  • Моделирование. Построение и расчет возможных вариантов строения организма, функционирования его органов, его взаимодействия с другими живыми организмами. Это могут быть компьютерные модели, трехмерные модели строения, математический метод. 

Используются универсальные, общие для всех наук правила построения научных теорий:

  • наблюдение какого-либо явления, свойства живого организма, его особенности;

  • выдвижение гипотезы – как и почему возможен наблюдаемый феномен, его предварительное объяснение на базе ранее известных знаний;

  • эксперимент – постоянно ли явление или имеет случайный характер, одинаково ли проявляется при изменении условий эксперимента, какие конкретно условия оказывают на него влияние;

  • после экспериментального подтверждения гипотеза становится теорией;

  • для проверки теории и поиска точных ответов на вопросы, ученые проводят дополнительные эксперименты.

А также применяются методы, свойственные каждой конкретной науке, для биологии это:

  • генеалогический. Поиск предков, соотнесение вновь открытого организма с возможными родственными на древе эволюции;

  • культура тканей. Для изучения физиологических особенностей организма, влияния на него различных факторов проводятся исследования образцов его тканей;

  • эмбриологический. Изучение процесса развития живого организма до его рождения;

  • цитогенетический. Исследования генома и строения клеток;

  • биохимический. Химические исследования клеточного содержимого, тканей, внутренней среды и выделений организма.

Биологических методов очень много, кроме вышеперечисленных в науке широко используются: гибридизация, палеонтологический, центрифугирование и многие другие.

Роль биологии в формировании естественнонаучной картины мира

Знания о биосфере помогают человечеству делать прогнозы долгосрочных и краткосрочных процессов на Земле и стараться управлять ими. Так, зная о роли зеленых растений в формировании кислородной среды планеты – человек понимает важность сохранения лесов. Владея знаниями о взаимоотношениях организмов – в настоящее время человечество уже не допускает опасных экспериментов по внесению в устойчивую экосистему новых животных и растений, это даже прописано в международном законодательстве. Таких ошибок, как завоз кроликов в Австралию или енотовидной собаки на Дальний Восток СССР человек уже не допускает. В настоящее время в Калифорнии проблемой стали заносные виды растений, угнетающие реликтовые ценные виды местной флоры.

Биологические науки позволяют решить многие проблемы с обеспечение продовольственной безопасности. Выведение новых сортов растений и видов животных, позволяют повысить урожайность, защитить посевы от вредителей, увеличить производительность сельского хозяйства.  

Генетика и физиология на настоящий момент играют очень важную роль в получении медицинских знаний, способствуя развитию новых методов лечения, созданию лекарств, позволяя победить считавшиеся неизлечимыми заболевания и патологии, а также заранее предупредить и остановить их развитие.

С помощью микробиологии разрабатываются вакцины и сыворотки, новые сорта пищевых продуктов и напитков. 

Дендрология и экология позволяют обеспечить восполняемым природным ресурсом – древесиной строительную и целлюлозно-бумажную отрасли промышленности.

Энтомология и ботаника – помогают разработать и улучшить уже известные виды тканей.

Любая из биологических наук, включая палеонтологию и прочие, кажущиеся неважными – оказывает сильное влияние на представление знаний об истории развития планеты, месте человека среди живых организмов, помогает повысить качество жизни и защитить от влияния вредных факторов внешней среды.

Тема 1. Биология как наука, ее
достижения, методы познания живой природы. Роль биологии в формировании
современной естественнонаучной картины мира. Уровневая организация и эволюция.
Основные уровни организации живой природы: клеточный, организменный,
популяционно-видовой, биогеоценотический, биосферный. Биологические системы.
Общие признаки биологических систем: клеточное строение, особенности
химического состава, обмен веществ и превращения энергии, гомеостаз,
раздражимость, движение, рост и развитие, воспроизведение, эволюция.

Биология (от греч. биос — жизнь, логос —
слово, наука) — это комплекс наук о живой природе.

Термин «биология» встречается в трудах немецких анатомов Т. Роозе (1779) и К.
Ф. Бурдаха (1800), однако только в 1802 году он был впервые употреблен
независимо друг от друга Ж. Б. Ламар ком и Г. Р. Тревиранусом для обозначения
науки, изучающей живые организмы.

Предмет
строение и функции живых существ, их разнообразие, происхождение и развитие, а
также взаимодействие с окружающей средой.

Задача
истолковании всех явлений живой природы на научной основе, учитывая при этом,
что целостному организму присущи свойства, в корне отличающиеся от его
составляющих.

Биологические науки

1.      Ботаника

Биологическая наука, комплексно изучающая
растения и растительный покров Земли.

2.      Зоология

Раздел биологии, наука о многообразии,
строении, жизнедеятельности, распространении и взаимосвязи животных со средой
обитания, их происхождении и развитии.

3.      Бактериология

Биологическая наука, изучающая строение и
жизнедеятельность бактерий, а также их роль в природе.

4.      Вирусология

Биологическая наука, изучающая вирусы.

5.      Микология

Основным объектом микологии являются грибы, их
строение и особенности жизнедеятельности.

6.      Лихенология

Биологическая наука, изучающая лишайники.

7.      Микробиология

Раздела биологии, науке о микроорганизмах
(бактериях, вирусах и микроскопических грибах). 

8.      Систематика, или таксономия

Биологическая наука, которая описывает и классифицирует
по группам все живые и вымершие существа.

9.      Фенология

Наука о развитии живой природы

10.  Медицина

Область научной и практической деятельности по
исследованию нормальных и патологических процессов в организме человека,
различных заболеваний и патологических состояний, их лечению, сохранению и
укреплению здоровья людей

11.  Биохимия

Наука о химическом составе живой материи,
химических процессах, происходящих в живых организмах и лежащих в основе их
жизнедеятельности.

12.  Морфология

Биологическая наука, изучающая форму и строение
организмов, а также закономерности их развития. В широком смысле она включает
в себя цитологию, анатомию, гистологию и эмбриологию. Различают морфологию
животных и растений. 

13.  Анатомия

Раздел биологии (точнее — морфологии), наука,
изучающая внутреннее строение и форму отдельных органов, систем и организма в
целом. Анатомия растений рассматривается в составе ботаники, анатомия
животных — в составе зоологии, а анатомия человека является отдельной наукой.

14.  Физиология

Наука, изучающая процессы жизнедеятельности
растительных и животных организмов, их отдельных систем, органов, тканей и
клеток. Существуют физиология растений, животных и человека.

15.  Эмбриология (биология развития) 

Раздел биологии, наука об индивидуальном
развитии организма, в том числе развитии зародыша.

16.  Генетика

Изучает закономерности наследственности и
изменчивости. В настоящее время это одна из наиболее динамично развивающихся
биологических наук.

17.  Молекулярная биология

Наука, изучающая, в частности, организацию
наследственной информации и биосинтез белка. 

18.  Цитология, или клеточная биология

Наука, объектом изучения которой являются
клетки как одноклеточных, так и многоклеточных организмов. 

19.  Гистология

Наука, раздел морфологии, объектом которой
является строение тканей растений и животных.

20.  Этология

Наука о поведении организмов.

21.  Биогеография

Изучает распространение живых организмов.

22.  Экология

Изучает организацию и функционирование
надорганизменных систем различных уровней: популяций, биоценозов (сообществ),
биогеоценозов (экосистем) и биосферы.

23.  Синэкология

раздел экологии, изучающий взаимоотношения
организмов различных видов внутри сообщества организмов.

24.  Аутоэкология

раздел экологии, изучающий взаимоотношения
организма с окружающей средой.

25.  Общая биология

Выявление и объяснение закономерностей
строения, функционирования и развития живой природы на различных уровнях ее
организации.

26.  Эволюционное учение

Изучает причины, движущие силы, механизмы и
общие закономерности эволюции живых организмов.

27.  Палеонтология

Наука, предметом которой являются ископаемые
останки живых организмов.

28.  Антропология

Наука о происхождении и развитии человека как
биологического вида, а также разнообразии популяций современного человека и
закономерностях их взаимодействия.

29.  Биотехнология

Наука, изучающую использование живых организмов
и биологических процессов в производстве. Она широко применяется в пищевой
(хлебопечение, сыроделие, пивоварение и др.) и фармацевтической
промышленностях (получение антибиотиков, витаминов), для очистки вод и т. п.

30.  Селекция

Наука о методах создания пород домашних
животных, сортов культурных растений и штаммов микроорганизмов с нужными
человеку свойствами. Под селекцией понимают и сам процесс изменения живых
организмов, осуществляемый человеком для своих потребностей.

31.  Бионика

Наука о применении в технических
устройствах и системах принципов организации, свойств, функций и
структур 
живой природы, то есть формах живого в природе и их промышленных аналогах.

32.  Бриология

Наука о мхах

Достижения
биологии.

·        
Установление молекулярной структуры ДНК и ее роли
в передаче информации в живой материи (Ф. Крик, Дж. Уотсон, М. Уилкинс);

·        
Расшифровка генетического кода (Р. Холли, Х. Г.
Корана, М. Ниренберг);

·        
Открытие структуры гена и генетической регуляции
синтеза белков (А. М. Львов, Ф. Жакоб, Ж. Л. Моно и др.);

·        
Формулировка клеточной теории (М. Шлейден, Т.
Шванн, Р. Вирхов, К. Бэр);

·        
Исследование закономерностей наследственности и
изменчивости (Г. Мендель, Х. де Фриз, Т. Морган и др.);

·        
Формулировка принципов современной систематики
(К. Линней);

·        
Эволюционная теория (Ч. Дарвин);

·        
Учение о биосфере (В.И. Вернадский);

·        
Клонирование млекопитающих;

·        
Расшифрован ряд генов, отвечающих за развитие
наследственных заболеваний, а также генов-мишеней лекарственных препаратов;

·        
Биологические исследования являются фундаментом
медицины, фармации, широко используются в сельском и лесном хозяйстве, пищевой
промышленности и других отраслях человеческой деятельности. Значительная часть
современных лекарственных препаратов производится на основе природного сырья, а
также благодаря успехам генной инженерии, как, например, инсулин, столь
необходимый больным сахарным диабетом, в основном синтезируется бактериями,
которым перенесен соответствующий ген;

·        
Наибольшее значение среди достижений биологии имеет
тот факт, что они лежат даже в основе построения нейронных сетей и
генетического кода в компьютерных технологиях, а также широко используются в
архитектуре и других отраслях. 

Методы науки.

Моделирование

метод, при котором создается некий образ
объекта, модель с помощью которой ученые получают необходимые сведения об
объекте.

Наблюдение

метод, с помощью которого исследователь
собирает информацию об объекте.

Эксперимент (опыт)

метод, с помощью которого проверяют результаты наблюдений,
выдвинутые предположения – гипотезы. Это всегда получение новых знаний с
помощью поставленного опыта.

Проблема

вопрос, задача, требующие решения. Решение
проблемы ведет к получению нового знания. Научная проблема всегда скрывает
какое-то противоречие между известным и неизвестным. Решение проблемы требует
от ученого сбора фактов, их анализа, систематизации.

Гипотеза

предположение, предварительное решение
поставленной проблемы. Выдвигая гипотезы, исследователь ищет взаимосвязи
между фактами, явлениями, процессами. Именно поэтому гипотеза чаще всего
имеет форму предположения: «если…тогда».

Теория

это  обобщение основных идей в какой –
либо научной области знания.

Частные
методы в биологии
.

Генеалогический метод

Применяется при составлении родословных людей,
выявление характера наследования некоторых признаков

Исторический метод

Установление взаимосвязей между фактами,
процессами, явлениями, происходящими на протяжении исторически длительного
времени (несколько миллиардов лет).

Палеонтологический метод

Позволяет выяснить родство между древними
организмами, останки которых находятся в земной коре, в разных геологических
слоях.

Центрифугирование

Разделение смесей на составные части под
действием центробежной силы. Применяется при разделении органоидов клетки,
легких и тяжелых фракций органических веществ.

Цитологический или цитогенетический метод

Исследование клеточных структур с помощью
различных микроскопов. (Определение числа хромосом в кариотипе)

Микроскопия или микроскопирование

Изучать строение клетки можно с помощью
микроскопа, светового или электронного. (
Изучение строения клетки листа герани)

Биохимический метод

Исследование химических процессов, происходящих
в организме.

Близнецовый метод

Используется для выяснения степени
наследственной обусловленности исследуемых признаков. Метод дает ценные
результаты при изучении морфологических и физиологических признаков.

Гибридологический метод

Скрещивание организмов и анализ потомства

Статистический метод

Измерение, мониторинг, анализ массовых
статистических (количественных или качественных) данных и их сравнение

Популяционно-статистический метод

Дает возможность рассчитать в популяции частоту
встречаемости нормальных и патологических генов, определить соотношение
гетерозигот – носителей аномальных генов.

Хроматография

Метод основан на разной скорости движения
веществ смеси через адсорбент в зависимости от их молекулярной массы.

Ученые – биологи (Роль
биологии в формировании современной естественнонаучной картины мира)

Гиппократ

Создал научную медицинскую школу. Считал, что у каждой болезни
есть естественные причины, и их можно узнать, изучая строение и
жизнедеятельность человеческого организма.

Аристотель

Один из основателей биологии как науки, впервые обобщил
биологические знания, накопленные до него человечеством.

Теофраст

Основоположник ботаники.

Клавдий Гален

Заложил основы анатомии человека.

Авиценна

В современной анатомической номенклатуре сохранил арабские
термины.

Леонардо да Винчи

Описал многие растения, изучал строение человеческого тела,
деятельность сердца и зрительную функцию.

Андреас Визалия

Работа «О строении человеческого тела»

Уильям Гарвей

Открыл кровообращение

Карл Линней

Предложил систему классификации живой природы, ввел бинарную
номенклатуру для наименования видов.

Карл Бэр

Изучал внутриутробное развитие, установил, что зародыши всех
животных на ранних этапах развития схожи, сформулировал закон зародышевого сходства,
основатель эмбриологии.

Жан Батист Ламарк

Первым попытался создать стройную и целостную теорию эволюции
живого мира.

Жорж Кювье

Создал науку палеонтологию.

Теодор Шванн и Шлейден

Создали клеточную теорию

Ч Дарвин

Эволюционное учение.

Грегор Мендель

Основоположник генетики

Роберт Кох

Основатель микробиологии

Луи Пастер и Мечников

Основатели иммунологии.

И.М. Сеченов

Заложил основы изучения высшей нервной деятельности

И.П. Павлов

Создал учение об условных рефлексах

Гуго де Фриза

Мутационная теория

Томас Морган

Хромосомная теория наследственности

И.И. Шмальгаузен

Учение о факторах эволюции

В.И. Вернадский

Учение о биосфере

А. Флеминг

Открыл антибиотики

Д. Уотсон

Установил структуру ДНК

Д.И. Ивановский

Открыл вирусы

Н.И. Вавилов

Учение о многообразии и происхождении культурных растений

И.В. Мичурин

Селекционер

А.А. Ухтомский

Учение о доминанте

Э.Геккель и И.Мюллер

Создали биогенетический закон

С.С. Четвериков

Исследовал мутационные процессы

И.Янсен

Создал первый микроскоп

Роберт Гук

Первым обнаружил клетку

Антониа Левенгук

Увидел в микроскоп микроскопических организмов

Р.Броун

Описал ядро растительной клетки

Р.Вирхов

Теория целлюлярной патологии.

Д.И.Ивановский

Открыл возбудителя табачной мозаики (вирус)

М.Кальвин

Химическая эволюция

Г.Д.Карпеченко

Селекционер

А.О.Ковалевский

Основоположник сравнительной эмбриологии и физиологии

В.О.Ковалевский

Основоположник эволюционной палеонтологии

Н.И.Вавилов

Учение о биологических основах селекции и учение о центрах
происхождения культурных растений.

Х.Кребс

Изучал метаболизм

С.Г.Навашин

Открыл двойное оплодотворение у покрытосеменных

А.И.Опарин

Теория самозарождения жизни

Д.Холдейн

Создал учение о дыхании человека

Ф.Реди

Изучал паразитов человека и животных

А.С.Северцов

Основатель эволюционной морфологии животных

В.Н.Сукачев

Основоположник биогеоценологии

А.Уоллес

Сформулировал теорию естественного отбора, которая совпала с
Дарвином

Ф.Крик

Изучал животные организмы на молекулярном уровне

К.А.Темирязев

Раскрыл закономерности фотосинтеза

Уровни организации живого.

Живая природа является системой, компоненты которой можно
расположить в строгом порядке: от низших к высшим. Данный принцип организации
позволяет выделить в живой природе отдельные уровни и дает
комплексное представление о жизни как о природном явлении. На каждом из уровней
организации определяют элементарную единицу и элементарное явление. В
качестве элементарной единицы рассматривают структуру или
объект, изменения которых составляют специфический для соответствующего уровня
вклад в процесс сохранения и развития жизни, тогда как само это изменение
является элементарным явлением.

В настоящее время выделяют несколько основных уровней
организации живой материи: молекулярный, клеточный, тканевый, организменный,
популяционно-видовой, биогеоценотический и биосферный.

Уровни организации

Биологическая система

Компоненты, образующие
систему

Основные процессы

Молекулярный

Молекула

Отдельные биополимеры (ДНК, РНК, белки, липиды,
углеводы и др.)

На этом уровне жизни изучаются явления,
связанные с изменениями (мутациями) и воспроизведением генетического
материала, обменом веществ.

Клеточный

Клетка

Комплексы молекул химических соединений и
органоиды клетки

Синтез специфических органических веществ;
регуляция химических реакций; гомеостаз; деление клеток; вовлечение
химических элементов Земли и энергии Солнца в биосистемы

Тканевый

Ткань

Клетки и межклеточное вещество

Обмен веществ; раздражимость

Органный

Орган

Ткани разных типов

Пищеварение; газообмен; транспорт веществ;
движение и др.

Организменный

Организм

Системы органов

Обмен веществ; раздражимость; размножение; онтогенез.
Нервно-гуморальная регуляция процессов жизнедеятельности. Обеспечение
гармоничного соответствия организма его среде обитания

Популяционно-видовой

Популяция

Группы родственных особей, объединенных
определенным генофондом и специфическим взаимодействием с окружающей средой

Генетическое своеобразие; взаимодействие между
особями и популяциями; накопление элементарных эволюционных преобразований;
выработка адаптации к меняющимся условиям среды

Биогеоценотический

Биогеоценоз (экосистема)

Популяции разных видов; факторы среды;
пространство с комплексом условий среды обитания

Биологический круговорот веществ и поток
энергии, поддерживающие жизнь; подвижное равновесие между живым населением и
абиотической средой; обеспечение живого населения условиями обитания и
ресурсами

Биосферный

Биосфера

Биогеоценозы и антропогенное воздействие

Активное взаимодействие живого и неживого
(косного) вещества планеты; биологический глобальный круговорот; активное
биогеохимическое участие человека во всех процессах биосферы

Биологические системы

Биологические системы – это объекты различной сложности, имеющие несколько
уровней структурно-функциональной организации и представляющие собой
совокупность взаимосвязанных и взаимодействующих элементов. Примеры
биологических систем: клетка, ткани, органы, организмы, популяции, виды,
биоценозы, экосистемы разных рангов и биосфера.

Клеточное строение

Все существующие на Земле организмы состоят
из клеток. Исключением являются вирусы, проявляющие свойства живого только в
других организмах.

Особенности химического
состава

Главными особенностями химического состава
клетки и многоклеточного организма являются соединения углерода — белки,
жиры, углеводы, нуклеиновые кислоты. В неживой природе эти соединения не
образуются

Обмен веществ и
превращения энергии

Обмен веществ — совокупность биохимических
превращений, происходящих в организме и других биосистемах. Все живые системы
являются открытыми системами, через которые непрерывно идут потоки веществ,
энергии и информации. К открытым системам относят системы, между
которыми и окружающей средой происходит обмен веществ и энергии, например,
растения в процессе фотосинтеза улавливают солнечный свет и поглощают воду и
углекислый газ, выделяя кислород

Гомеостаз

Это способность биологических систем
противостоять изменениям и поддерживать относительное постоянство химического
состава, строения и свойств, а также обеспечивать постоянство
функционирования в изменяющихся условиях окружающей среды

Раздражимость

Способность организма реагировать на внешние
и внутренние раздражители (рефлексы у животных и тропизмы, таксисы и настии у
растений)

Движение

Возможность активного взаимодействия со
средой, в частности, перемещение с места на место, захват пищи и т. п.

Рост и развитие

Все организмы растут в течение своей жизни.
Под развитием понимают как индивидуальное развитие организма, так и
историческое развитие живой природы

Воспроизведение

Способность живых систем воспроизводить себе подобных.
В основе размножения лежит процесс удвоения молекул ДНК с последующим
делением клеток

Эволюция

естественный процесс развития живой природы,
сопровождающийся изменением генетического состава популяций, формированием
адаптаций, видообразованием и вымиранием видов, преобразованием экосистем и
биосферы в целом.

Целостность (непрерывность) и дискретность
(прерывность)
.

Любой организм представляет собой целостную
систему, которая в то же время состоит из дискретных единиц — клеточных структур,
клеток, тканей, органов, систем органов. 

Уровневая организация

Живые системы Земли, характеризующиеся
упорядоченностью и сложностью структур на всех уровнях организации, несмотря
на то, что построены из тех же химических элементов, что и неживые.

«Биология как наука, её достижения»

Код раздела ЕГЭ: 1.1. Биология как наука, ее достижения, методы познания живой природы. Роль биологии в формировании современной естественнонаучной картины мира.



Биология как наука

Биология — наука, изучающая свойства живых систем. Однако определить, что такое живая система, достаточно сложно. Именно поэтому ученые установили несколько критериев, по которым организм можно отнести к живым. Главными из этих критериев являются обмен веществ, или метаболизм, самовоспроизведение и саморегуляция.

Понятие наука определяется как «сфера человеческой деятельности по получению, систематизации объективных знаний о действительности». В соответствии с этим определением объектом науки — биологии является жизнь во всех ее проявлениях и формах, а также на разных уровнях.

Каждая наука, в том числе и биология, пользуется определенными методами исследования. Некоторые из них универсальны для всех наук, например, такие, как наблюдение, выдвижение и проверка гипотез, построение теорий. Другие научные методы могут быть использованы только определенной наукой. Например, у генетиков есть генеалогический метод изучения родословных человека, у селекционеров — метод гибридизации, у гистологов — метод культуры тканей и т.д.

Биология тесно связана с другими науками — химией, физикой, экологией, географией. Собственно, биология делится на множество частных наук, изучающих различные биологические объекты: биология растений и животных, физиология растений, морфология, генетика, систематика, селекция, микология, гельминтология и множество других наук.

Метод — это путь исследования, который проходит ученый, решая какую-либо научную задачу, проблему.

К основным методам науки относятся следующие (универсальные, общие для всех наук правила построения научных теорий):

Моделирование — метод, при котором создается некий образ объекта, модель, с помощью которой ученые получают необходимые сведения об объекте. Так, например, при установлении структуры молекулы ДНК Джеймс Уотсон и Френсис Крик создали из пластмассовых элементов модель — двойную спираль ДНК, отвечающую данным рентгенологических и биохимических исследований. Эта модель вполне удовлетворяла требованиям, предъявляемым к ДНК. (См. раздел Нуклеиновые кислоты.)

Наблюдение — метод, с помощью которого исследователь собирает информацию об объекте. Наблюдать можно визуально, например, за поведением животных. Можно наблюдать с помощью приборов за изменениями, происходящими в живых объектах: например, при снятии кардиограммы в течение суток, при замерах веса теленка в течение месяца. Наблюдать можно за сезонными изменениями в природе, за линькой животных и т.д. Выводы, сделанные наблюдателем, проверяются либо повторными наблюдениями, либо экспериментально.

Эксперимент (опыт) — метод, с помощью которого проверяют результаты наблюдений, выдвинутые предположения — гипотезы. Примерами экспериментов являются скрещивания животных или растений с целью получения нового сорта или породы, проверка нового лекарства, выявление роли какого-либо органоида клетки и т.д. Эксперимент — это всегда получение новых знаний с помощью поставленного опыта.

Проблема — вопрос, задача, требующие решения. Решение проблемы ведет к получению нового знания. Научная проблема всегда скрывает какое-то противоречие между известным и неизвестным. Решение проблемы требует от ученого сбора фактов, их анализа, систематизации. Примером проблемы может служить, например, такая: «Как возникает приспособленность организмов к окружающей среде?» или «Каким образом можно подготовиться к серьезным экзаменам в максимально короткие сроки?».
Сформулировать проблему бывает достаточно сложно, однако всегда, когда есть затруднение, противоречие, появляется проблема.

Гипотеза — предположение, предварительное решение поставленной проблемы. Выдвигая гипотезы, исследователь ищет взаимосвязи между фактами, явлениями, процессами. Именно поэтому гипотеза чаще всего имеет форму предположения: «если… тогда…». Например, «Если растения на свету выделяют кислород, то мы сможем его обнаружить с помощью тлеющей лучины, т.к. кислород должен поддерживать горение». Гипотеза проверяется экспериментально. (См. раздел Гипотезы происхождения жизни на Земле.)

Теория — это обобщение основных идей в какой-либо научной области знания. Например, теория эволюции обобщает все достоверные научные данные, полученные исследователями на протяжении многих десятилетий. Со временем теории дополняются новыми данными, развиваются. Некоторые теории могут опровергаться новыми фактами. Верные научные теории подтверждаются практикой. Так, например, генетическая теория Г. Менделя и хромосомная теория Т. Моргана подтвердились многими экспериментальными исследованиями в разных странах мира. Современная эволюционная теория хотя и нашла множество научно доказанных подтверждений, до сих пор встречает противников, т.к. не все ее положения можно на современном этапе развития науки подтвердить фактами.

Частными научными методами в биологии являются:

  • Генеалогический метод — применяется при составлении родословных людей, выявлении характера наследования некоторых признаков.
  • Исторический метод — установление взаимосвязей между фактами, процессами, явлениями, происходившими на протяжении исторически длительного времени (несколько миллиардов лет). Эволюционное учение развивалось в значительной мере благодаря этому методу.
  • Палеонтологический метод — метод, позволяющий выяснить родство между древними организмами, останки которых находятся в земной коре, в разных геологических слоях.
  • Центрифугирование — разделение смесей на составные части под действием центробежной силы. Применяется при разделении органоидов клетки, легких и тяжелых фракций (составляющих) органических веществ и т.д.
  • Цитологический, или цитогенетический, — исследование строения клетки, ее структур с помощью различных микроскопов.
  • Биохимический — исследование химических процессов, происходящих в организме.

Каждая частная биологическая наука (ботаника, зоология, анатомия и физиология, цитология, эмбриология, генетика, селекция, экология и другие) пользуется своими более частными методами исследования.

У каждой науки есть свой объект и свой предмет исследования. У биологии объектом исследования является ЖИЗНЬ. Носители жизни — живые тела. Все, что связано с их существованием, изучает биология. Предмет изучения науки всегда несколько уже, ограниченнее, чем объект. Так, например, кого-то из ученых интересует обмен веществ организмов. Тогда объектом изучения будет жизнь, а предметом изучения — обмен веществ. С другой стороны, обмен веществ тоже может быть объектом исследования, но тогда предметом исследования будет одна из его характеристик, например, обмен белков, или жиров, или углеводов.

Достижения биологии

Достижения современной биологии нашли практическое применение в промышленном биологическом синтезе аминокислот, кормовых белков, ферментов, витаминов, стимуляторов роста и средств защиты растений, органических кислот и др.

С помощью методов генной инженерии биологами созданы организмы с новыми комбинациями наследственных признаков и свойств, например растения с повышенной устойчивостью к заболеваниям, засолению почв, способностью к фиксации атмосферного азота и др. Кроме того, генная инженерия положена в основу разработки принципов биотехнологии, связанной с производством биологически активных веществ (инсулин, антибиотики, интерферон, новые вакцины для профилактики инфекционных заболеваний человека и животных).

Теоретические достижения биологии широко применяются в медицине. Именно успехи и открытия в биологии определили современный уровень медицинской науки. В частности, генетические исследования позволяют разрабатывать методы ранней диагностики, лечения и .профилактики многих наследственных болезней человека (альбинизм, гемофилия, бесплодие и др.). С ними во многом связан и дальнейший прогресс медицины.

Решение таких важных проблем современности, как охрана окружающей среды, рациональное использование природных ресурсов и повышение продуктивности растительного мира, возможны только на основе биологических исследований. Они предусматривают выявление и устранение отрицательных последствий воздействия человека на природу (загрязнение среды многочисленными вредными веществами), определение режимов рационального использования резервов биосферы. Кроме того, задачей биологии является обеспечение сохранности биосферы и способности природы к самовоспроизведению.

Вторую половину XX столетия справедливо называют веком биологии. Такая оценка роли биологии в жизни человечества представляется еще более оправданной для приближающегося XXI в. К настоящему времени наукой о жизни получены важные результаты в области изучения наследственности, фотосинтеза, фиксации растениями атмосферного азота, синтеза гормонов и других регуляторов жизненных процессов.


Читайте также другие конспекты, относящиеся к разделу ЕГЭ 1.1:

  • Методы познания живой природы,
  • Роль биологии в формировании современной естественнонаучной картины мира.

1. Основные признаки жизни

Реализация жизни происходит через конкретные физические и химические процессы, а сама жизнь может существовать только при определенных физических и химических условиях.

Приведем основные признаки жизни, синтез которых, их совокупность и взаимосвязь с той или иной степенью надежности позволяют отнести организмы к живым или неживым.

Специфические особенности живых систем, отличающие их от систем неживых, определяются следующими качествами:

1. Единство химического состава и высокий уровень организации веществ, образующих биологическую систему. Живые системы состоят из тех же химических элементов, что и объекты неживой природы. Но их соотношение неодинаково. В живых организмах всего 6 элементов составляют около 98% химического состава. Это кислород, углерод, водород, азот, фосфор и кальций. Живые организмы содержат такие сложные органические вещества, как белки, нуклеиновые кислоты (ДНК и РНК), ферменты, которых нет в неживой природе.

2. Живые системы – открытые системы, используют внешние источники энергии в виде пищи, света и т.п. Через них проходит поток веществ и энергии, благодаря чему в живых организмах осуществляется обмен веществ – метаболизм. Метаболизм состоит из двух противоположных процессов:

  • анаболизм или ассимиляция – синтез веществ;
  • катаболизм или диссимиляция – распад сложных веществ пищи на простые с выделением энергии, которая используется для биосинтеза веществ, специфичных для данного организма.

3. Живые системы – самоуправляющиеся, саморегулирующиеся, самоорганизующиеся системы.

  • Саморегуляция – свойство живых систем устанавливать и поддерживать на определенном уровне физиологические или другие показатели. Такое состояние динамического равновесия системы называется гомеостаз.
  • Самоорганизация – свойство живой системы приспосабливаться к изменяющимся условиям внешней среды за счет изменения внутренней структуры управления. Управляющие факторы возникают в самой системе в процессе переработки информации, которой живая система обменивается с внешней средой. Это означает, что живые организмы — самоуправляющиеся системы.

4. Живые системы – самовоспроизводящиеся системы. Это ихсвойство сохраняет жизнь вида на длительное время. В основе само воспроизводства лежит генетическая программа, которая задает алгоритм образования новых молекул и сложных структур. Благодаряэтому живое существо всегда воспроизводит себе подобное, передавая потомкам информацию о способе существования и приспособляемости к внешним условиям. Генетический материал определяет направление развития организма.

5. Изменчивость. Рождающиеся потомки не только похожи на родителей, но и отличаются от них. Изменения появляются уже на самых ранних стадиях эмбрионального развития, так как информация в процессе передачи несколько видоизменяется, искажается. Благодаря изменчивости организм приобретает новые признаки и свойства.

6. Живые организмы растут и развиваются. Рост — увеличение в размерах и массе с сохранением общих черт строения.Развитие сопровождается возникновением новых черт и качеств. Так, у растения или животного появляются новые ветки или новые органы.

7. Раздражимость — неотъемлемая черта всего живого. Раздражимость связана с передачей информации из внешней среды живой системе и проявляется в виде ответной реакции системы. Способность реагировать на внешние раздражения — это универсальное свойствовсех живых существ, как растений, так и животных.

8. Реакция на среду и приспособление к ней. Живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни. Строение птицы, рыбы, дождевого червя полностью соответствует условиям, в которых они живут.

9. Способность к образованию относительно самостоятельных надорганизменных образований (биогеоценозов и экосистем).

10. Реализация инстинктивных и приобретенных форм поведения.

11. Конечность существования (смертность).

12. Дискретность и целостность. Живые системы в природе относительно обособлены друг от друга (особи, популяции, виды). Любая особь многоклеточного животного состоит из клеток, а любая клетка и одноклеточные существа – из определенных органелл. Органеллы состоят из дискретных, обычно высокомолекулярных органических веществ, которые, в свою очередь, состоят из дискретных атомов и т.д.

В то же время сложная организация немыслима без взаимодействия ее частей и структур, т. е. без целостности. Целостность — это несводимость свойств системы к сумме свойств ее элементов. Целостность биологических систем качественно отличается от целостности неживого тем, что поддерживается в процессе развития. Живые системы — это открытые системы, обменивающиеся веществом, энергией и информацией со средой. Важная особенность живых систем заключается в том, что такой обмен осуществляется под контролем специальных механизмов реализации генетической информации и внутреннего управления, которые позволяют избежать «термодинамической» смерти путем использования энергии, извлекаемой из внешней среды.

13 (см. п. 4). Способность к конвариантной редупликации — к самовоспроизведению ДНК (основных управляющих систем) на основе матричного принципа синтеза макромолекул. Благодаря способности к самовоспроизведению молекулы ДНК исполняют роль носителя наследственной информации. Ошибка в репликации ДНК ведет к мутациям, т.е. к изменениям наследственной основы организма. Последние суть фундаментальное свойство жизни и исходная предпосылка эволюции. Мутации являются элементарным эволюционным материалом, на котором работает естественный отбор.

Ни один из перечисленных признаков (а их можно привести еще 10-20) не является самым главным, определяющим. Только все признаки вместе взятые позволяют провести границу между живым и неживым в природе.

Примечание. Для закрепления можно посмотреть запись открытого мероприятия, на котором мы с помощью мини-проекта доказывали свойства живого.

1.

Подготовка к ЕГЭ
БИОЛОГИЯ
Преподаватель:
Сионова Марина Николаевна,
(кандидат биологических наук, доцент)

2.

Код
элемента
Элементы содержания, проверяемые на ЕГЭ
Биология как наука. Методы научного познания
1
1.1.
Биология как наука, ее достижения, методы
познания живой природы. Роль биологии в
формировании современной естественнонаучной
картины мира.
1.2.
Уровневая организация и эволюция. Основные
уровни организации живой природы: клеточный,
организменный, популяционно-видовой,
биогеоценотический, биосферный. Биологические
системы. Общие признаки биологических систем:
клеточное строение, особенности химического
состава, обмен веществ и превращение энергии,
гомеостаз, раздражимость, движение, рост и
развитие, воспроизведение, эволюция.

3.

Блок 1. Биология – наука о живой природе
Содержание этого блока проверялось только одним заданием
базового уровня в части 1.
Эти задания не вызвали особых затруднений у участников,
их выполнение составило в интервале от 58 до 92%.
Наиболее сложным оказалось задание, где требовалось
указать, на каком уровне организации жизни фенотипически
проявляются геномные мутации (организменном). Его
выполнили 43% участников экзамена.

4. БИОЛОГИЯ (от греч. bios — жизнь, logos — наука): 1) наука о жизни, изучающая общие закономерности существования и развития живых существ; 2)  совокуп

БИОЛОГИЯ (от греч. bios — жизнь, logos — наука):
1) наука о жизни, изучающая общие закономерности
существования и развития живых существ;
2) совокупность или система наук о живых
системах.
Биология – естественная наука (как и химия, и физика)
Предмет изучения биологии
все проявления жизни:
• строение и функции живых существ и их природных сообществ;
• распространение, происхождение и развитие новых существ и их
сообществ;
• связи живых существ и их сообществ друг с другом и с неживой
природой.
Задача биологии — изучение всех биологических
закономерностей и раскрытии сущности жизни.

5. Биология как наука

Систематика
Морфология
Физиология (растений,
животных, человека)
Анатомия (растений,
животных, человека)
Палеонтология
Биология
Ботаника
Зоология
Генетика
Селекция
Молекулярная биология
Генная инженерия
Клеточная инженерия
Цитология
Гистология
Эмбриология
Экология
Фенология
Вирусология
Микология
Лихенология
Бактериология
Ихтиология
Орнитология
Герпетология
И др.

6. Методы биологических исследований

Описательный
Сравнительный
Исторический
Экспериментальный

7. Современное определение понятия «ЖИЗНЬ»

«Жизнь есть способ существования белковых тел, и этот
способ существования состоит по своему существу в
постоянном самообновлении химических составных частей
этих тел» (Ф. Энгельс)
Современный всеобщий
методологический подход к
пониманию сущности жизни
— понимание жизни в
качестве процесса,
конечный результат
которого – самообновление,
проявляющееся в
самовоспроизведении.
«Жизнь – это
специфичная
структура,
способная к
самовоспроизведению
(размножению) и
самоподдержанию с
затратой энергии»

8. Современное определение понятия «ЖИЗНЬ»

Жизнь — «особая, очень сложная форма
движения материи» (А.И.Опарин)
Жизнь – особая форма движения материи, высшая по
сравнению с физической и химической формой
существования.
Живые организмы резко отличаются от неживых систем
(объектов физики и химии) своей исключительной
сложностью и высокой специфичностью, структурной и
функциональной упорядоченностью.
Эти отличия придают жизни качественно новые свойства,
вследствие чего живое представляет собой особую ступень
развития материи.

9. Живые системы (биосистемы) – целостные сложные системы, состоящие из простых элементов.

ПРИЗНАКИ БИОСИСТЕМ:
1. Биосистемам присуща иерархичность. Это означает, что
система одного уровня организации может
рассматриваться как элемент системы высшего ранга.
2. Каждый элемент биосистемы выполняет определенные
функции.
3. Живые системы устойчивы, саморазвиваются,
эволюционируют.
4. Живым системам свойственна адаптация, т. е.
приспособленность к среде обитания

10. Свойства живого

1. Единство химического
состава.
2. Обмен веществ
(метаболизм).
3. Саморегуляция
(авторегуляция).
4. Самовоспроизведение
(репродукция).
5. Наследственность
6. Изменчивость
7. Рост и развитие
8. Специфичность организации
9. Упорядоченность структуры
10. Энергозависимость
(потребление энергии)
11. Ритмичность
12. Движение
13. Раздражимость
14. Дискретность
15. Специфичность
взаимоотношений со средой
Между свойствами, характеризующими живое, существует
диалектическое единство, проявляющееся во времени и
пространстве на протяжении всего органического мира,
на всех уровнях организации живого.

11. Уровни организации живой материи — иерархически соподчиненные уровни организации биосистем, отражающие уровни их усложнения.

Уровни организации живой материи —
иерархически соподчиненные уровни
организации биосистем, отражающие уровни их
усложнения.
Чаще всего выделяют шесть
основных структурных
уровней жизни:
1. Молекулярный
2. Клеточный
3. Организменный
4. Популяционно-видовой
5. Биогеоценотический
6. Биосферный
Уровень организации –
это функциональное место биологической структуры определенной
степени сложности в общей «системе систем» живого.

12. Молекулярно-генетический уровень

Представлен разнообразными молекулами, находящимися
в живой клетке.
Компоненты
• Молекулы
неорганических и
органических
соединений
• Молекулярные
комплексы
химических
соединений
(мембрана и др.)
Основные процессы
• Объединение молекул в
особые комплексы
• Осуществление физикохимических реакций в
упорядоченном виде
• Копирование ДНК,
кодирование и передача
генетической
информации
Науки, ведущие исследования на этом уровне:
Биохимия
Молекулярная биология
Биофизика
Молекулярная генетика

13. Клеточный уровень

Представлен свободно живущими клетками и клетками,
входящими в многоклеточные организмы.
Компоненты
• Комплексы
молекул
химических
соединений
• Органоиды клет
ки
Основные процессы
• Биосинтез, фотосинтез
• Регуляция химических
реакций
• Деление клеток
• Вовлечение химических
элементов Земли и
энергии Солнца в
биосистемы
Науки, ведущие исследования на этом уровне:
Цитогенетика
Генная инженерия
Цитология
Эмбриология

14. Организменный уровень

Представлен одноклеточными и многоклеточными
организмами растений, животных, грибов и бактерий.
Основные процессы
Компоненты
• Обмен
веществ (метаболизм)
• Раздражимость
• Размножение
• Онтогенез
• Нервногуморальная регуляци
я процессов
жизнедеятельности
• Гомеостаз
• Клетка — основной
структурный
компонент
организма.
• Ткани и органы
многоклеточного
организма
Науки, ведущие исследования на этом уровне:
Анатомия
Гигиена
Биометрия
Морфология
Биоэнергетика
Физиология

15. Популяционно-видовой уровень

Представлен огромным разнообразием видов и их
популяций.
Компоненты
Основные процессы
Группы родственных
особей, объединённых
определённым генофо
ндом и
специфическим и
особенностями
взаимодействия с
окружающей средой
Науки, ведущие исследования на этом
уровне:
Генетика популяций
Эволюция
Экология
•Генетическое своеобразие
•Взаимодействие между
особями и популяциями
•Накопление элементарных
эволюционных
преобразований
•Осуществление микроэвол
юции и выработка
адаптаций к
изменяющейся среде
•Видообразование
•Увеличение
биоразнообразия

16. Биогеоценотический уровень

Представлен разнообразием естественных и культурных
биогеоценозов во всех средах жизни.
Компоненты
•Популяции различных видов
•Факторы среды
•Пищевые сети, потоки веществ и энергии
Основные процессы
•Биохимический круговорот веществ и
поток энергии, поддерживающие жизнь.
•Подвижное равновесие между живыми
организмами и абиотической средой
(гомеостаз).
•Обеспечение живых организмов
условиями обитания и ресурсами (пищей
и убежищем).
Науки, ведущие
исследования на этом
уровне:
Биогеография
Экология
Биоценология

17. Биосферный уровень

Представлен высшей, глобальной формой организации
биосистем — биосферой.
Компоненты
•Биогеоценозы
•Антропоэкосисте
мы
Науки, ведущие
исследования на
этом уровне:
• Глобальная
экология
Космическая
экология
• Социальная
экология
Основные процессы
•Активное взаимодействие
живого и неживого
вещества планеты
•Биологический
глобальный круговорот
веществ и энергии
•Активное
биогеохимическое участие
человека во всех процессах
биосферы, его
хозяйственная и
этнокультурная
деятельность

18. Биологическое разнообразие – совокупность проявлений жизни на всех уровнях ее организации

Уровни
организации
живой
материи
Гены,
молекулы
Биоценозы
Экосистемы
Клетки
Виды
Биосфера
Ткани
Популяции
Органы
Организмы

19. Биология как наука

1. Ископаемые остатки вымерших организмов изучает наука
1) систематика 2) экология 3) физиология 4) палеонтология
2. Какая наука позволяет ориентироваться в огромном многообразии
организмов?
1) экология 2) систематика 3) биология 4) ботаника
3. Влияние условий среды обитания на формирование признаков
организма изучает наука
1) систематика 2) генетика 3) селекция 4) анатомия
4. Наука, изучающая роль митохондрий в метаболизме
1) генетика 2) селекция 3) органическая химия 4) молекулярная биология
5. Генная инженерия, в отличие от клеточной, включает исследования,
связанные с 1) культивированием клеток высших организмов
2) гибридизацией соматических клеток 3) пересадкой генов
4) пересадкой ядра из одной клетки в другую
6. Методы выведения новых пород животных разрабатывает наука
1) генетика 2) цитология 3) селекция 4) систематика
7. Строение и функции органоидов клетки изучает наука
1) генетика 2) цитология 3) селекция 4) фенология

  • Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
  • 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
  • До 7 класса: Алгоритмика, Кодланд, Реботика.
  • Английский: Инглекс, Puzzle, Novakid.

Биология как наука, её достижения, методы познания живой природы. Роль биологии в формировании современной естественно-научной картины мира

Окружающая нас живая природа – предмет изучения науки биологии. До XIX века изучением жизни во всех ее проявлениях занималась естественная история и медицина. Термин «Биология» был введен такими учеными, как Жан Батист Ламарк, Готфрид Тревиранус, Фридрих Бурдах.

В основу теории биологии как науки легли следующие принципы:

  • клеточной теории;
  • генетики;
  • эволюции;
  • гомеостаза;
  • энергии.

Основные задачи биологии как науки состоят в следующем:

  1. Раскрыть общие свойства живых организмов и объяснить причины многообразия видов.
  2. Выявить связи между строением живого организма и условиями его обитания.
  3. Определить законы развития жизни на Земле, опираясь на исторические факты и закономерности.

Биология подразделяется на ряд научных дисциплин, каждая из которых подробно изучает одну из форм живого мира. Ботаника – растения, зоология – животных. Выделены такие разделы, как медицина, вирусология, микробиология, микология.

Методы познания живой природы

Как любая наука, биология пользуется для изучения объектов живой природы определенными приёмами, или методами.

Чтобы построить систему точных знаний, необходимо владеть приёмами:

  • наблюдения;
  • описания;
  • систематизации;
  • эксперимента;
  • моделирования.

Не обходится при изучении живых организмов без обращения к историческим данным. Вся информация, полученная с помощью научных методов, подвергается анализу, сравнению. В каждом из разделов биологии доминирует тот или иной научный метод. Так, для создания молекулы ДНК, определения структуры двойной спирали нужно пользоваться методом моделирования.

Любой живой объект требует наблюдения за собой. По итогам наблюдений в реальной действительности или с помощью современной аппаратуры делают выводы о процессах, происходящих в природе или внутри живых организмов. Получить новые знания нельзя без проведения опытов, экспериментов. Биологи в своих исследованиях опираются на частные, характерные для науки о познании живой природы, методы:

  1. Биохимический прием изучения состоит в том, чтобы понять, какие химические процессы протекают в организмах, какие вещества в них участвуют.
  2. Цитогенетический – каково строение клетки, как создаётся генетический фонд.
  3. Генеалогический – как наследуются наследственные признаки с отслеживанием родословной.
  4. Эмбриологический – каковы закономерности эмбрионального развития, основанные на законах биогенетического плана, зародышевого сходства.
  5. Гистологический – каковы отличия структуры и функции тканей у разных живых организмов.
  6. Палеонтологический – какова связь современных живых существ с древними ископаемыми.

Разделы биологии – ботаника, зоология, генетика, селекция, эмбриология и другие – пользуются частными методами, чтобы точно и подробно изучить объект живой природы.

Достижения биологии как науки

Веком биологии называют вторую половину XX века, и недаром. В это время произошли важнейшие открытия, позволяющие определить основные законы наследования, излечивать заболевания, несущие страдания многим людям.

Среди достижений биологов в последние 40–50 лет можно выделить следующие:

  1. Установлен контроль над действиями патогенов, вызывающих ряд серьёзных заболеваний. Для этого молекулами двухцепочечной РНК смогли отключить необходимые гены после их транскрипции.
  2. Проведены успешные эксперименты по клонированию домашних животных, в частности, овец. Так появилась известная овечка Долли, способная расти, размножаться естественным путем.
  3. Создана карта генома человека, где показано расположение каждой из хромосом, содержащей генетическую информацию человека.
  4. Изменено «программирование» эпителиальных клеток. Любые из них могут действовать как стволовые.
  5. Разработана точная техника, благодаря которой могут быть заменены основания ДНК и РНК, несущие конкретные мутации, связанные с заболеваниями.
  6. Создан новый препарат, способный симулировать работу иммунной системы у больных с меланомой.
  7. Введен метод генной терапии для детей, страдающих спинальной мышечной атрофией 1-го типа. В нейроны спинного мозга внутривенно вводили ген белка, который у этих больных отсутствует. Лечение привело к тому, что дети начинали сидеть самостоятельно, передвигаться.
  8. Сделан важный шаг в лечении сахарного диабета. Получение человеческого инсулина помогло облегчить жизнь многим людям.
  9. Выращены первые трансгенные растения. В основу процессов легла универсальная природа ДНК с генетической информацией большинства растений. Для выведенных гибридов характерным является устойчивость к заболеваниям, вредителям, позднее созревание, модифицированный аминокислотный состав.

Благодаря открытиям в биологии прояснились вопросы, связанные с эволюционными процессами. Знания об окружающем мире стали общедоступны, они не замыкаются в рамках исследователя.

Роль биологии в формировании современной естественно-научной картины мира

Знания о биосфере необходимы каждому жителю планеты Земля. Это помогает делать прогнозы жизни как на короткое время, так и на длительное, управляя ими. Зная о том, какую роль играют зелёные насаждения в нашей жизни, человек стремится не истреблять бездумно лес, а сохранять его. Каждый должен понимать, что природа требует от нас разумных действий, а не безумных проектов. Нельзя поворачивать реки вспять или заселять земли животными или растениями, которые могут разрушить жизнь организмов, населяющих этот участок планеты.

Новые открытия в биологии помогают решить проблему обеспечения безопасным продовольствием. Селекция растений дает возможность повысить урожайность, чтобы обеспечить население планеты жизненно важными продуктами питания. Развитие областей медицины, появление новых лекарств и методов лечения позволяет бороться с неизлечимыми ранее болезнями. Технологии в области диагностики способствуют своевременному выявлению патологий.

В разработке новых лекарственных средств, продуктов питания активно участвует микробиологи.

Исследования в области дендрологии позволили создать новые материалы для строительства и целлюлозно-бумажной промышленности. Энтомологи и ботаники работают над выведением насекомых и растений для производства новых видов ткани.

Люди должны понимать значение биологии как науки в улучшении качества жизни человека, в его безопасном существовании, укреплении здоровья.

  • Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
  • 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
  • До 7 класса: Алгоритмика, Кодланд, Реботика.
  • Английский: Инглекс, Puzzle, Novakid.

Понравилась статья? Поделить с друзьями:
  • Биология как наука егэ теория 1 задание
  • Биология как наука егэ список
  • Биология как наука все для егэ
  • Биология как комплексная наука егэ
  • Биология история егэ куда поступить