Биосинтез белка схема егэ биология

И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез
биополимеров (нуклеиновых кислот, белков) на матрице — нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.

Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом
«генетическом языке». Скоро вы все поймете — мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК
и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится — перерисуйте его себе :)

Перевод РНК в ДНК

Возьмем 3 абстрактных нуклеотида ДНК (триплет) — АТЦ. На иРНК этим нуклеотидам будут соответствовать — УАГ (кодон иРНК).
тРНК, комплементарная иРНК, будет иметь запись — АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения
будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.

Репликация ДНК — удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio — удвоение)

Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по
принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) — в Ц (цитозин).

Репликация ДНК

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них
содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между
дочерними клетками.

Транскрипция (лат. transcriptio — переписывание)

Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит
в соответствии с принципом комплементарности азотистых оснований: А — У, Т — А, Г — Ц, Ц — Г (загляните в «генетический словарик»
выше).

Транскрипция

До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК — промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух
цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.

Транскрипция осуществляется в несколько этапов:

  • Инициация (лат. injicere — вызывать)
  • Образуется несколько начальных кодонов иРНК.

  • Элонгация (лат. elongare — удлинять)
  • Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК
    быстро растет.

  • Терминация (лат. terminalis — заключительный)
  • Достигая особого участка цепи ДНК — терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.

Фазы транскрипции

Трансляция (от лат. translatio — перенос, перемещение)

Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень — в процесс трансляции.
Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность
аминокислот.

Трансляция

Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК. Трансляцию можно разделить на несколько стадий:

  • Инициация
  • Информационная РНК (иРНК, синоним — мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц.
    Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.

    Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту,
    соответствующую кодону АУГ — метионин.

  • Элонгация
  • Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз.
    Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.

    Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) — У (урацил), Г (гуанин) — Ц (цитозин).
    В основе этого также лежит принцип комплементарности.

    Трансляция

    Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу
    иРНК одновременно — образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.

    Полисома

  • Терминация
  • Синтез белка — полипептидной цепи из аминокислот — в определенный момент завершатся. Сигналом к этому служит попадание
    в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция — завершить синтез белка.

Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что
кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй — из верхнего горизонтального,
третий — из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота :)

Таблица генетического кода

Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА — Глн. Попробуйте самостоятельно найти
аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.

Кодону ГЦУ соответствует аминокислота — Ала, ААА — Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк:
это один из трех нонсенс-кодонов, завершающих синтез белка.

Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК),
приведенной вверху.

«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов
во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны
соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»

Задача на транскрипцию и трансляцию

Объяснение:

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити
ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК:
А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК:
А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что
тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет
следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется
на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону
тРНК»

Задача на транскрипцию и трансляцию

Обратите свое пристальное внимание на слова «Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой
синтезируется участок центральной петли тРНК «. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу
синтезировать с ДНК фрагмент тРНК — другой подход здесь будет считаться ошибкой.

Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было
в предыдущей задаче), поэтому не следует разделять их запятой — мы записываем их линейно через тире.

Третий триплет ДНК — АЦГ соответствует антикодону тРНК — УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК,
так что переведем антикодон тРНК — УГЦ в кодон иРНК — АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ — Тре.

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и
аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной
молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

Задача на транскрипцию и трансляцию

Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК
соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК — так что их тоже по 50.

По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%.
100% — (20%+20%) = 60% — столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то
на каждый приходится по 30%.

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? :)

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.



Скачать материал

РЕАКЦИИ МАТРИЧНОГО СИНТЕЗА. БИОСИНТЕЗ БЕЛКАПодготовка к ЕГЭ



Скачать материал

  • Сейчас обучается 103 человека из 40 регионов

  • Курс добавлен 13.12.2022

  • Курс добавлен 19.01.2023

Описание презентации по отдельным слайдам:

  • РЕАКЦИИ МАТРИЧНОГО СИНТЕЗА. БИОСИНТЕЗ БЕЛКАПодготовка к ЕГЭ

    1 слайд

    РЕАКЦИИ МАТРИЧНОГО СИНТЕЗА.
    БИОСИНТЕЗ БЕЛКА
    Подготовка к ЕГЭ

  • Особенности реакций матричного синтезаСвойственны только живым организмамОтра...

    2 слайд

    Особенности реакций матричного синтеза
    Свойственны только живым организмам
    Отражают основное свойства живого – воспроизведение себе подобных
    Обеспечивают специфическую последовательность нуклеотидов
    Способствуют высокой скорости реакции

  • К реакциям матричного синтеза относят репликацию ДНК, синтез и-РНК на ДНК (тр...

    3 слайд

    К реакциям матричного синтеза относят репликацию ДНК, синтез и-РНК на ДНК (транскрипцию) и синтез белка на и-РНК (трансляцию), а также синтез РНК или ДНК на РНК вирусов.

    Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах. В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.

  • Передача информации и синтез белка идут по матричному принципу, сравнимому с...

    4 слайд

    Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях. Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться. Этот процесс устранения ошибок называется репарацией.
    Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

  • ИнформацияИнформация о первичной структуре белка закодирована в молекуле ДНК...

    5 слайд

    Информация
    Информация о первичной структуре белка закодирована в молекуле ДНК в виде триплетов (кодонов)
    Триплет (кодон) – участок из трех нуклеотидов в молекуле ДНК
    Один триплет молекулы ДНК кодирует одну аминокислоту молекулы белка:
    1 триплет 1 аминокислота

  • ДНК:   АТГ – ГГЦ – ТГА – ГЦА – ТЦГ  Белок:тирпротреаргсерДНК:Белок:генГен – у...

    6 слайд

    ДНК: АТГ – ГГЦ – ТГА – ГЦА – ТЦГ
    Белок:
    тир
    про
    тре
    арг
    сер
    ДНК:
    Белок:
    ген
    Ген – участок молекулы ДНК, в котором закодирована информация о структуре одного белка: 1ген 1 белок
    Ген
    ген

  • Генетический код – система записи генетической информации в молекуле ДНК о ст...

    7 слайд

    Генетический код – система записи генетической информации в молекуле ДНК о строении молекулы белка
    Генетическая информация записана только в одной (кодогенной) цепи ДНК
    Генетический код
    ДНК
    и-РНК

  • Свойства генетического кодаТриплетностьИнформация закодирована в виде триплет...

    8 слайд

    Свойства генетического кода
    Триплетность
    Информация закодирована в виде триплетов
    Однозначность
    Один триплет может кодировать одну аминокислоту
    Вырожденность (избыточность)
    Для большинства аминокислот существует несколько триплетов
    Неперекрываемость
    Нуклеотид входит в состав только одного триплета
    Прерывистость
    Между генами имеются «знаки препинания»

  • Свойства генетического кодаУниверсальность Код одинаков для всех живых органи...

    9 слайд

    Свойства генетического кода
    Универсальность
    Код одинаков для всех живых организмов
    20 аминокислот
    43=64 триплета
    Стартовые и стоп-кодоны: УАГ, УГА, УАА – не кодируют аминокислоты и указывают на начало и конец синтеза молекулы белка

  • В клетках принцип матричного синтеза заключается в том, что новые молекулы бе...

    10 слайд

    В клетках принцип матричного синтеза заключается в том, что новые молекулы белков и нуклеиновых кислот синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).
    Репликация ДНК. ДНК представляет собой двухцепочечный биополимер, мономерами которого являются нуклеотиды. Если бы биосинтез ДНК происходил по принципу ксерокопирования, то неизбежно возникали бы многочисленные искажения и погрешности в наследственной информации, которые в конечном итоге привели бы к гибели новых организмов. Поэтому процесс удвоения ДНК происходит иным, полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией.В результате репликации образуются две абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной копии материнской.

  • Репликация — это процесс самоудвоения молекулы ДНК, осуществляемый под контро...

    11 слайд

    Репликация — это процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.
    Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

  • Этапы биосинтезаТранскрипцияТрансляция

    12 слайд

    Этапы биосинтеза
    Транскрипция
    Трансляция

  • I этап -  транскрипцияТранскрипция («списывание») –  процесс считывания инфор...

    13 слайд

    I этап — транскрипция
    Транскрипция («списывание») – процесс считывания информации о первичной структуре белка с молекулы ДНК молекулой и-РНК (синтез молекулы и-РНК на основе молекулы ДНК)
    Во время транскрипции происходит перенос генетической информации с молекулы ДНК на и-РНК
    Транскрипция происходит с помощью фермента ДНК-полимеразы по принципу комплементарности

  • Реакции, в которых одна молекула полимера служит матрицей (основой) для синт...

    14 слайд

    Реакции, в которых одна молекула полимера служит матрицей (основой) для синтеза другой молекулы, называются реакциями матричного типа
    ДНК служит матрицей для синтеза и-РНК
    I этап — транскрипция
    и-РНК переносит информацию из ядра на рибосомы и становится матричной РНК (м-РНК)

  • Транскрипция — это биосинтез молекул иРНК на соответствующих участках ДНК. Тр...

    15 слайд

    Транскрипция — это биосинтез молекул иРНК на соответствующих участках ДНК. Транскрипция происходит только на одной цепи ДНК, которая называется транскрибируемой, или кодирующей, в отличие от другой — смысловой, или кодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности.
    Синтезированные в процессе транскрипции в ядре молекулы иРНК покидают его через ядерные поры, а митохондриальные и пластидные иРНК остаются внутри органоидов. После транскрипции происходит процесс активации аминокислот, в ходе которой аминокислота присоединяется к соответствующей свободной тРНК.

  • Трансляция – перевод  нуклеотидной последовательности с и-РНК на аминокислотн...

    16 слайд

    Трансляция – перевод нуклеотидной последовательности с и-РНК на аминокислотную последовательность и сборка молекулы белка на рибосомах
    *В трансляции принимают участие молекулы т-РНК, все виды РНК, рибосомы, аминокислоты
    II этап — трансляция
    т-РНК
    и-РНК
    рибосома
    аминокислоты

  • Акцепторный конец – 
присоединяет аминокислотуКодовый  триплет (антикодон)*Су...

    17 слайд

    Акцепторный конец –
    присоединяет аминокислоту
    Кодовый триплет (антикодон)
    *Существует 61 тип т-РНК с разными антикодонами
    ГУЦ
    Антикодон т-РНК комплементарен триплету на и–РНК
    «Трилистник» т-РНК
    вал

  • 1. Инициация – начало биосинтеза   Малая субъединица  рибосомы нанизывается н...

    18 слайд

    1. Инициация – начало биосинтеза
    Малая субъединица рибосомы нанизывается на м-РНК и скользит до точки инициации (начала) биосинтеза – это стартовый кодон АУГ
    Данный кодон соответствует  – метиониновой т-РНК, которая связывается со стартовым кодоном с помощью водородных связей
    Стадии трансляции
    АУГ ААГ ЦГУ ГГЦ
    м – РНК:
    Затем происходит присоединение большой субъединицы рибосомы
    *Целостная рибосома, несет два активных триплета – функциональный центр

  • Функциональный центр рибосомы – ФЦР
(два триплета) А аминокислотный центр 
це...

    19 слайд

    Функциональный центр рибосомы – ФЦР
    (два триплета)
    А аминокислотный центр
    центр узнавания аминокислоты

    Р
    пептидный центр
    центр присоединения аминокислоты

  • Стадии трансляциим – РНК: АУГ – ААГ  – ЦГУ – ГГЦ …  2. Элонгация -  сборка мо...

    20 слайд

    Стадии трансляции
    м – РНК:
    АУГ – ААГ – ЦГУ – ГГЦ …
    2. Элонгация — сборка молекулы белка

  • Стадии трансляции3.Терминация – окончание биосинтеза На стоп-кодонах  синтез...

    21 слайд

    Стадии трансляции
    3.Терминация – окончание биосинтеза
    На стоп-кодонах синтез полипептида прекращается
    Рибосома вновь разделяется на субъединицы

  • Трансляция— это биосинтез полипептидной цепи на матрице иРНК, при котором про...

    22 слайд

    Трансляция— это биосинтез полипептидной цепи на матрице иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.
    Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).

  • Для начала транскрипции (инициации) к молекуле иРНК присоединяется малая субъ...

    23 слайд

    Для начала транскрипции (инициации) к молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону АУГ подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь.
    Когда рибосома передвигается на один кодон иРНК, первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется, и шаг за шагом полипептидная цепь удлиняется, то есть происходит ее элонгация.

  • Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК в...

    24 слайд

    Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.
    Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.
    Репликация ДНК и синтез белка в клетке протекают по принципу матричного синтеза, поскольку новые молекулы нуклеиновых кислот и белков синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).

  • Стадии трансляции Полисома – молекула и-РНК, на которой  находятся несколько...

    25 слайд

    Стадии трансляции
    Полисома – молекула и-РНК, на которой находятся несколько рибосом, синтезирующих одинаковые белки

  • ДНК*Содержит информацию о первичной  структуре белка *Служит матрицей для син...

    26 слайд

    ДНК
    *Содержит информацию о первичной структуре белка *Служит матрицей для синтеза и-РНК
    и-РНК
    *Переносит информацию о структуре белка из ядра на рибосомы
    *Служит матрицей для синтеза белка
    Роль участников синтеза белков
    аминокислоты
    *Служат строительным материалом для молекулы белка

  • т-РНК*С помощью ферментов присоединяет аминокислоту и транспортирует ее на ри...

    27 слайд

    т-РНК
    *С помощью ферментов присоединяет аминокислоту и транспортирует ее на рибосомы
    рибосома
    *Осуществляет сборку молекулы белка
    ферменты
    *Катализируют процессы биосинтеза
    Роль участников синтеза белков
    АТФ
    *Обеспечивает энергией процессы биосинтеза белка

  • т-РНК

  • Задачи 272021

  • Задача 1. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент м...

    33 слайд

    Задача 1. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая)
    5’-ЦГААГГТГАЦААТГТ-3’
    3’-ГЦТТЦЦАЦТГТТАЦА-5’ 

    Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

  • 1. Нуклеотидная последовательность участка тРНК (верхняя цепь по условию смыс...

    34 слайд

    1. Нуклеотидная последовательность участка тРНК (верхняя цепь по условию смысловая):
    ДНК: 3’-ГЦТ-ТЦЦ-АЦТ-ГТТ-АЦА-5’
    тРНК: 5’-ЦГА-АГГ-УГА-ЦАА-УГУ-3’ 
    2. Нуклеотидная последовательность антикодона УГА (по условию третий триплет) соответствует кодону на иРНК УЦА;
    3. По таблице генетического кода этому кодону соответствует аминокислота -Сер, которую будет переносить данная тРНК.

  • Алгоритм выполнения задания
1. По фрагменту молекулы ДНК, определяем нуклеоти...

    35 слайд

    Алгоритм выполнения задания
    1. По фрагменту молекулы ДНК, определяем нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте.
    ДНК: 3’-ГЦТ-ТЦЦ-АЦТ-ГТТ-АЦА-5’
    тРНК: 5’-ЦГА-АГГ-УГА-ЦАА-УГУ-3’  
    На ДНК с 3′ конца строится тРНК с 5′ — конца.
    2. Определяем кодон иРНК, который будет комплементарен триплету тРНК в процессе биосинтеза белка.
    Если третий триплет соответствует антикодону тРНК 5’- УГА-3’ , для нахождения иРНК сначала произведем запись в обратном порядке от 3’ → к 5’ получим 3’-АГУ- 5’, определяем иРНК: 5’–УЦА–3′.
    3. По таблице генетического кода кодону 5′-УЦА-3′ соответствует аминокислота -Сер, которую будет переносить данная тРНК.
    Пояснение к строению ДНК в условии:
    Двойная спираль ДНК. Две антипараллельные ( 5’- конец одной цепи располагается напротив 3’- конца другой) комплементарные цепи полинуклеотидов, соединенной водородными связями в парах А-Т и Г-Ц, образуют двухцепочечную молекулу ДНК. Молекула ДНК спирально закручена вокруг своей оси. На один виток ДНК приходится приблизительно 10 пар оснований.
    Смысловая цепь ДНК — Последовательность нуклеотидов в цепи кодирует наследственную информацию.

  • Задача 2. Фрагмент начала гена имеет следующую последовательность нуклеотидов...

    36 слайд

    Задача 2. Фрагмент начала гена имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
    5’ − ТААТГАЦЦГЦАТАТАТЦЦАТ −3’
    3’ − АТТАЦТГГЦГТАТАТАГГТА −5’

    Ген содержит информативную и неинформативную части для трансляции. Информативная часть гена начинается с триплета, кодирующего аминокислоту Мет. С какого нуклеотида начинается информативная часть гена? Определите последовательность аминокислот во фрагменте полипептидной цепи. Ответ поясните. Для выполнения задания используйте таблицу генетического кода.

  • 1. По принципу комплементарности находим цепь иРНК:
5’ − УААУГАЦЦГЦАУАУАУЦЦАУ...

    37 слайд

    1. По принципу комплементарности находим цепь иРНК:
    5’ − УААУГАЦЦГЦАУАУАУЦЦАУ − 3’.
    2. Информативная часть начинается с третьего нуклеотида Т на ДНК, так как кодон АУГ кодирует аминокислоту Мет.
    3. Последовательность аминокислот находим по кодонам иРНК в таблице генетического кода:
    Мет-Тре-Ала-Тир-Иле-Гис

  • Алгоритм выполнения задания
1. По принципу комплементарности на основе транск...

    38 слайд

    Алгоритм выполнения задания
    1. По принципу комплементарности на основе транскрибируемой цепи ДНК находим цепь иРНК:
    ДНК 3’ − АТТАЦТГГЦГТАТАТАГГТА −5’
    иРНК 5’ − УААУГАЦЦГЦАУАУАУЦЦАУ − 3’
    2. По условию сказано, что синтез начинается с кодона, которым закодирована аминокислота МЕТ, по таблице генетического находим триплет иРНК, который кодирует МЕТ: АУГ (5’ −АУГ− 3’)
    По принципу комплементарности определяем, что информативная часть гена в транскрибируемой цепи ДНК будет начинаться с нуклеотида Т (триплет 3’−ТАЦ−5’)
    В ответ: Информативная часть начинается с третьего нуклеотида Т на ДНК, так как кодон АУГ кодирует аминокислоту Мет.
    3. Последовательность аминокислот находим по кодонам иРНК в таблице генетического кода (начиная с триплета АУГ, т.е. «откидываем» два нуклеотида) :
    иРНК 5’ − АУГ-АЦЦ-ГЦА-УАУ-АУЦ-ЦАУ − 3’
    белок: Мет-Тре-Ала-Тир-Иле-Гис

  • Задача 3. Исходный фрагмент молекулы ДНК имеет следующую последовательность н...

    39 слайд

    Задача 3. Исходный фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
    5’ − ГЦГГГЦТАТГАТЦТГ − 3’
    3’ − ЦГЦЦЦГАТАЦТАГАЦ − 5’

     В результате замены одного нуклеотида в ДНК четвёртая аминокислота во фрагменте полипептида заменилась на аминокислоту Вал. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните. Для выполнения задания используйте таблицу генетического кода. 

  • 1. Четвёртый триплет исходного фрагмента смысловой цепи ДНК — ГАТ (транскриби...

    40 слайд

    1. Четвёртый триплет исходного фрагмента смысловой цепи ДНК — ГАТ (транскрибируемой цепи ДНК — АТЦ), определяем триплет иРНК: ГАУ, по таблице генетического кода определяем, что он кодирует аминокислоту Асп.

     2. Во фрагменте ДНК в четвёртом триплете смысловой цепи ГАТ нуклеотид А заменился на Т (в транскрибируемой цепи в триплете АТЦ нуклеотид Т заменился на А), а в иРНК в четвёртом кодоне (ГАУ) нуклеотид А заменился на У (ГУУ).
    3. Свойство генетического кода — универсальность.
    (!!!) Наличие в ответе множества триплетов считается ошибкой, так как в задании указано, что произошла замена одного нуклеотида.

  • Алгоритм выполнения задания
1. Четвёртый триплет исходного фрагмента смыслово...

    41 слайд

    Алгоритм выполнения задания
    1. Четвёртый триплет исходного фрагмента смысловой цепи ДНК: 5′-ГАТ-3′ (транскрибируемой цепи ДНК: 5′-АТЦ-3′), определяем триплет иРНК: 5′-ГАУ-3′, по таблице генетического кода определяем, что он кодирует аминокислоту Асп.
    (!!!)Триплет иРНК: 5′-ГАУ-3′ нашли по принципу комплементарности на основе триплета транскрибируемой цепи ДНК 5′-АТЦ-3′. Для нахождения иРНК сначала произведем запись триплета ДНК в обратном порядке от 3’ → к 5’ получим 3’-ЦТА- 5’
    2. По условию сказано, что «четвёртая аминокислота во фрагменте полипептида заменилась на аминокислоту Вал». По таблице генетического кода находим, что аминокислота Вал кодируется четырьмя нуклеотидами: ГУУ, ГУЦ, ГУА, ГУГ;
    НО в условии указано, что произошла замена одного нуклеотида! т.е. в иРНК в четвёртом кодоне (5′-ГАУ-3′) нуклеотид А заменился на У (5′-ГУУ-3′).

     В ответ: В иРНК в четвёртом кодоне (ГАУ) нуклеотид А заменился на У (ГУУ). Во фрагменте ДНК в четвёртом триплете смысловой цепи 5′-ГАТ-3′ нуклеотид А заменился на Т (в транскрибируемой цепи в триплете 5′-АТЦ-3′ нуклеотид Т заменился на А).
    3. Свойство генетического кода — универсальность (Код един для всех организмов живущих на Земле).

  • Задача 4. Молекулы тРНК, несущие соответствующие антикодоны, входят в рибосом...

    42 слайд

    Задача 4. Молекулы тРНК, несущие соответствующие антикодоны, входят в рибосому в следующем порядке: ГУА, УАЦ, УГЦ, ГЦА.
    Определите последовательность нуклеотидов смысловой и транскрибируемой цепей ДНК, иРНК и аминокислот в молекуле синтезируемого фрагмента белка. Ответ поясните. Для решения задания используйте таблицу генетического кода. При выполнении задания учитывайте, что антикодоны тРНК антипараллельны кодонам иРНК.

  • 1. По принципу комплементарности определяем последовательность иРНК: 5’— УАЦГ...

    43 слайд

    1. По принципу комплементарности определяем последовательность иРНК: 5’— УАЦГУАГЦАУГЦ — 3’;
    2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности:
    5’ − ТАЦГ ТАГЦАТГЦ − 3’
    3’ − АТ ГЦАТЦГТАЦГ − 5’.
    3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде: Тир-Вал-Ала-Цис.

  • Алгоритм выполнения задания
1. По принципу комплементарности определяем посл...

    44 слайд

    Алгоритм выполнения задания
    1. По принципу комплементарности определяем последовательность иРНК на основе антикодонов тРНК, но сначала ориентируем антикодоны тРНК (3’→ 5’) так, чтобы они присоединялись к иРНК антипараллельно (по условию антикодоны тРНК даны в ориентации 5’→ 3’)
    тРНК: 3’АУГ 5’, 3’ЦАУ 5’, 3’ЦГУ 5’, 3’АЦГ 5’
    иРНК: 5’— УАЦ-ГУА-ГЦА-УГЦ — 3’ 
    2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности (на основе найденной иРНК по принципу комплементарности строим транскрибируемую ДНК, затем на её основе находим смысловую. В молекулярной генетике принято смысловую ДНК писать сверху, транскрибируему — снизу):
    5’ − ТАЦ-ГТА-ГЦА-ТГЦ − 3’
    3’ − АТГ-ЦАТ-ЦГТ-АЦГ − 5’.
    3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде:
    иРНК: 5’— УАЦ-ГУА-ГЦА-УГЦ — 3’
    белок: Тир-Вал-Ала-Цис

  • Задача 5. Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидо...

    45 слайд

    Задача 5. Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
    5’ − ГТЦАЦАГЦГАТЦААТ − 3’
    3’ − ЦАГТГТЦГЦТАГТТА − 5’

     Определите последовательность аминокислот во фрагменте полипептидной цепи и обоснуйте свой ответ. Какие изменения могли произойти в результате генной мутации во фрагменте молекулы ДНК, если вторая аминокислота в полипептиде заменилась на аминокислоту Про? Какое свойство генетического кода определяет возможность существования разных фрагментов мутированной молекулы ДНК? Ответ обоснуйте. Для решения задания используйте таблицу генетического кода.

  • 1. Последовательность аминокислот в полипептиде: Вал-Тре-Ала-Иле-Асн определя...

    46 слайд

    1. Последовательность аминокислот в полипептиде: Вал-Тре-Ала-Иле-Асн определяется по последовательности нуклеотидов в молекуле иРНК:
    5’ − ГУЦАЦАГЦГАУЦААУ − 3’.
    2. Во фрагменте белка вторая аминокислота Тре заменилась на Про что возможно при замене второго триплета в смысловой цепи ДНК АЦА на триплет ЦЦТ, ЦЦЦ, ЦЦА или ЦЦГ (второго кодона в РНК АЦА на кодон ЦЦУ, ЦЦЦ, ЦЦА или ЦЦГ).
    3. Свойство генетического кода — избыточность (вырожденность), так как одной аминокислоте (Про) соответствует более одного триплета (четыре триплета).

  • Алгоритм выполнения задания
1. Последовательность аминокислот в полипептиде о...

    47 слайд

    Алгоритм выполнения задания
    1. Последовательность аминокислот в полипептиде определяется по последовательности нуклеотидов в молекуле иРНК:
    иРНК: 5’ − ГУЦ-АЦА-ГЦГ-АУЦ-ААУ − 3’
    белок: Вал-Тре-Ала-Иле-Асн
    2. Во фрагменте белка вторая аминокислота Тре заменилась на Про что возможно при замене второго кодона в иРНК 5’-АЦА-3’ на кодон 5’-ЦЦУ-3’, 5’-ЦЦЦ-3’, 5’-ЦЦА-3’ или 5’-ЦЦГ-3’ → кодоны находим по таблице генетического кода
    Второй триплет в смысловой цепи ДНК 5’-АЦА-3’ заменился на триплет 5’-ЦЦТ-3’, 5’-ЦЦЦ-3’, 5’-ЦЦА-3’ или 5’-ЦЦГ-3’.
    дополнительно — НЕ ДЛЯ ОТВЕТА! — Скорее всего произошла мутация инверсия — хромосомная перестройка, при которой происходит поворот участка хромосомы на 180°:
    иРНК: 5’ − ГУЦ-АЦА-ГЦГ -АУЦ-ААУ − 3’ → иРНК: 5’ − ГУА-ЦЦА-ГЦГ -АУЦ-ААУ − 3’
    Первая аминокислота осталась той же, т.к. кодон ГУА, так же как и ГУЦ, кодирует аминокислоту вал (определяем по таблице генетического кода).
    3. Свойство генетического кода — избыточность (вырожденность), так как одной аминокислоте (Про) (и вал) соответствует более одного триплета (четыре триплета).

  • Задача 6. Некоторые вирусы в качестве генетического материала несут РНК. Таки...

    48 слайд

    Задача 6. Некоторые вирусы в качестве генетического материала несут РНК. Такие вирусы, заразив клетку, встраивают ДНК-копию своего генома в геном хозяйской клетки. В клетку проникла вирусная РНК следующей последовательности:
    5’ − АУГГЦУУУУГЦА − 3’.
    Определите, какова будет последовательность вирусного белка, если матрицей для синтеза иРНК служит цепь, комплементарная вирусной РНК. Напишите последовательность двуцепочечного фрагмента ДНК, укажите 5’ и 3’ концы цепей. Ответ поясните. Для решения задания используйте таблицу генетического кода.

  • 1. По принципу комплементарности находим нуклеотидную последовательность учас...

    49 слайд

    1. По принципу комплементарности находим нуклеотидную последовательность участка ДНК:
    5’ − АТГГЦТТТТГЦА − 3’
    3’ — ТАЦЦГААААЦГТ − 5’.
    2. По принципу комплементарности находим нуклеотидную последовательность иРНК:
    5’ − АУГГЦУУУУГЦА − 3’.
    3. По таблице Генетического кода определяем последовательность вирусного белка: МЕТ-АЛА-ФЕН-АЛА.

  • Алгоритм выполнения задания
1. По принципу комплементарности на основе вирусн...

    50 слайд

    Алгоритм выполнения задания
    1. По принципу комплементарности на основе вирусной РНК находим нуклеотидную последовательность транскрибируемого участка ДНК: 
    вирусная РНК: 5’ − АУГ-ГЦУ-УУУ-ГЦА − 3’
    транскрибируемая ДНК 3’− ТАЦ-ЦГА-ААА-ЦГТ − 5’.
    Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности (на основе данной РНК по принципу комплементарности строим транскрибируемую ДНК, затем на её основе находим смысловую. В молекулярной генетике принято смысловую ДНК писать сверху, транскрибируемую — снизу):
    5’ − АТГ-ГЦТ-ТТТ-ГЦА − 3’
    3’ — ТАЦ-ЦГА-ААА-ЦГТ − 5’.
    2. По принципу комплементарности на основе транскрибируемой ДНК находим нуклеотидную последовательность иРНК:
    ДНК: 3’ — ТАЦ-ЦГА-ААА-ЦГТ − 5
    иРНК: 5’ − АУГ-ГЦУ-УУУ-ГЦА − 3’.
    3. По таблице Генетического кода на основе иРНК определяем последовательность вирусного белка:
    иРНК: 5’ − АУГ-ГЦУ-УУУ-ГЦА − 3’
    белок: МЕТ-АЛА-ФЕН-АЛА 

  • Задача 7. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент м...

    51 слайд

    Задача 7. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
    5’ − ТГЦГЦТГЦАЦЦАГЦТ − 3’
    3’ − АЦГЦГАЦГТГГТЦГА − 5’
    Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

  • 1. Нуклеотидная последовательность участка тРНК (нижняя цепь по условию транс...

    52 слайд

    1. Нуклеотидная последовательность участка тРНК (нижняя цепь по условию транскрибируемая):
    ДНК: 3’-АЦГ-ЦГА-ЦГТ-ГГТ-ЦГА-5’
    тРНК: 5’-УГЦ-ГЦУ-ГЦА-ЦЦА-ГЦУ-3’ 
    2. Нуклеотидная последовательность антикодона ГЦА (по условию третий триплет) соответствует кодону на иРНК УГЦ;
    3. По таблице генетического кода этому кодону соответствует аминокислота -Цис, которую будет переносить данная тРНК.

  • Алгоритм выполнения задания
1. По фрагменту молекулы ДНК, определяем нуклеоти...

    53 слайд

    Алгоритм выполнения задания
    1. По фрагменту молекулы ДНК, определяем нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте.
    ДНК: 3’-АЦГ-ЦГА-ЦГТ-ГГТ-ЦГА-5’
    тРНК: 5’-УГЦ-ГЦУ-ГЦА-ЦЦА-ГЦУ-3’ 
    На ДНК с 3′ конца строится тРНК с 5′ — конца.
    2. Определяем кодон иРНК, который будет комплементарен триплету тРНК в процессе биосинтеза белка.
    Если третий триплет соответствует антикодону тРНК 5’- ГЦА-3’ , для нахождения иРНК сначала произведем запись в обратном порядке от 3’ → к 5’ получим 3’-АЦГ- 5’, определяем иРНК: 5’–УГЦ–3′.
    3. По таблице генетического кода кодону 5′-УГЦ-3′ соответствует аминокислота Цис, которую будет переносить данная тРНК.

  • Задача 8. Антикодоны тРНК поступают к рибосомам в следующей последовательност...

    54 слайд

    Задача 8. Антикодоны тРНК поступают к рибосомам в следующей последовательности нуклеотидов УЦГ, ЦГА, ААУ, ЦЦЦ. Определите последовательность нуклеотидов на иРНК, последовательность нуклеотидов смысловой и транскрибируемой цепей ДНК и последовательность аминокислот во фрагменте молекулы синтезируемого белка, используя таблицу генетического кода.
    Ответ поясните. При выполнении задания учитывайте, что антикодоны тРНК антипараллельны кодонам иРНК.

  • 1. По принципу комплементарности определяем последовательность иРНК на основе...

    55 слайд

    1. По принципу комплементарности определяем последовательность иРНК на основе антикодонов тРНК, но сначала ориентируем антикодоны тРНК (3’→ 5’) так, чтобы они присоединялись к иРНК антипараллельно (по условию антикодоны тРНК даны в ориентации 5’→ 3’)
    тРНК: 3’ГЦУ 5’, 3’АГЦ5’, 3’УАА5’, 3’ЦЦЦ5’
    иРНК: 5’-ЦГА-УЦГ-АУУ-ГГГ- 3’ 
    2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности (на основе найденной иРНК по принципу комплементарности строим транскрибируемую ДНК, затем на её основе находим смысловую. В молекулярной генетике принято смысловую ДНК писать сверху, транскрибируему — снизу):
    5’ − ЦГА-ТЦГ-АТТ-ГГГ − 3’
    3’ − ГЦТ-АГЦ-ТАА-ЦЦЦ − 5’.
    3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде:
    иРНК: 5’- ЦГА-УЦГ-АУУ-ГГГ — 3’
    белок: Арг-Сер-Иле-Гли 

  • Задача 9. Фрагмент генетического аппарата вируса, представленного молекулой Р...

    56 слайд

    Задача 9. Фрагмент генетического аппарата вируса, представленного молекулой РНК, имеет нуклеотидную последовательность: 5′ − АУГГУАГЦУУУУАУА − 3′.
    Определите нуклеотидную последовательность фрагмента двуцепочечной молекулы ДНК, которая синтезируется в результате обратной транскрипции на вирусной РНК, укажите 5′ и 3′ концы. Установите последовательность нуклеотидов в иРНК и аминокислот во фрагменте белка вируса, если матрицей для синтеза иРНК
    служит цепь, комплементарная вирусной РНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

  • 1) Фрагмент двуцепочечной молекулы ДНК определяется по принципу комплементарн...

    57 слайд

    1) Фрагмент двуцепочечной молекулы ДНК определяется по принципу комплементарности по вирусной РНК:
    5′ −  АТГГТАГЦТТТТАТА − 3′ (кодирующая цепь)
    3′ − ТАЦЦАТЦГААААТАТ − 5′ (матричная цепь);
    Примечание
    Обратная транскрипция — процесс образования двуцепочечной ДНК на основе одноцепочечной РНК, характерный для РНК-вирусов.
    2) Последовательность иРНК — 5′ − АУГГУАГЦУУУУАУА − 3′ — находим комлементарную цепь иРНК по условию задачи по матричной цепи ДНК, которая в свою очередь комплементарна вирусной РНК;
    3) По таблице генетического кода определяем последовательность аминокислот вирусного белка: Мет-Вал-Ала-Фен-Иле.

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 153 241 материал в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Биология. Базовый уровень», Пономарева И.Н. и др.

Другие материалы

«Биология», Пасечник В.В., Суматохин С.В., Калинова Г.С. и др. / Под ред. Пасечника В.В.

«Биология», Пасечник В.В., Суматохин С.В., Калинова Г.С. и др. / Под ред. Пасечника В.В.

«Биология», Сивоглазов В.И., Плешаков А.А.

«Биология», Сивоглазов В.И., Плешаков А.А.

«Биология», Пасечник В.В., Каменский А.А., Швецов Г.Г. / Под ред. Пасечника В.В.

«Биология», Константинов В.М., Бабенко В.Г., Кучменко В.С. / Под ред. Константинова В.М.

  • 17.12.2021
  • 86
  • 0
  • 17.12.2021
  • 67
  • 0

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Организация и руководство учебно-исследовательскими проектами учащихся по предмету «Биология» в рамках реализации ФГОС»

  • Курс повышения квалификации «ФГОС общего образования: формирование универсальных учебных действий на уроке биологии»

  • Курс повышения квалификации «Медико-биологические основы безопасности жизнедеятельности»

  • Курс повышения квалификации «Методические аспекты реализации элективного курса «Антропология и этнопсихология» в условиях реализации ФГОС»

  • Курс повышения квалификации «Нанотехнологии и наноматериалы в биологии. Нанобиотехнологическая продукция»

  • Курс повышения квалификации «Основы биоэтических знаний и их место в структуре компетенций ФГОС»

  • Курс профессиональной переподготовки «Анатомия и физиология: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Гендерные особенности воспитания мальчиков и девочек в рамках образовательных организаций и семейного воспитания»

  • Курс профессиональной переподготовки «Биология и химия: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация производственно-технологической деятельности в области декоративного садоводства»

  • Курс повышения квалификации «Инновационные технологии обучения биологии как основа реализации ФГОС»

  • Курс профессиональной переподготовки «Организация и выполнение работ по производству продукции растениеводства»

Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот

Генетическая информация в клетке

Воспроизведение себе подобных является одним из фундаментальных свойств живого. Благодаря этому явлению существует сходство не только между организмами, но и между отдельными клетками, а также их органоидами (митохондриями и пластидами). Материальной основой этого сходства является передача зашифрованной в последовательности нуклеотидов ДНК генетической информации, которая осуществляется благодаря процессам репликации (самоудвоения) ДНК. Реа лизуются все признаки и свойства клеток и организмов благодаря белкам, структуру которых в первую очередь и определяют последовательности нуклеотидов ДНК. Поэтому первостепенное значение в процессах метаболизма играет именно биосинтез нуклеиновых кислот и белка. Структурной единицей наследственной информации является ген.

Гены, генетический код и его свойства

Наследственная информация в клетке не является монолитной, она разбита на отдельные «слова» — гены.

Ген — это элементарная единица генетической информации.

Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, дали нам понимание того, что у человека всего около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество бессмысленных участков, повторов и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы большего количества людей и станет понятно, чем же все-таки они различаются.

Гены, кодирующие первичную структуру белка, рибосомальной или транспортной РНК называются структурными, а гены, обеспечивающие активацию или подавление считывания информации со структурных генов, — регуляторными. Однако даже структурные гены содержат регуляторные участки.

Наследственная информация организмов зашифрована в ДНК в виде определенных сочетаний нуклеотидов и их последовательности — генетического кода. Его свойствами являются: триплетность, специфичность, универсальность, избыточность и неперекрываемость. Кроме того, в генетическом коде отсутствуют знаки препинания.

Каждая аминокислота закодирована в ДНК тремя нуклеотидами — триплетом, например, метионин закодирован триплетом ТАЦ, то есть код триплетен. С другой стороны, каждый триплет кодирует только одну аминокислоту, в чем заключается его специфичность или однозначность. Генетический код универсален для всех живых организмов, то есть наследственная информация о белках человека может считываться бактериями и наоборот. Это свидетельствует о единстве происхождения органического мира. Однако 64 комбинациям нуклеотидов по три соответствует только 20 аминокислот, вследствие чего одну аминокислоту может кодировать 2–6 триплетов, то есть генетический код избыточен, или вырожден. Три триплета не имеют соответствующих аминокислот, их называют стоп-кодонами, так как они обозначают окончание синтеза полипептидной цепи.

Последовательность оснований в триплетах ДНК и кодируемые ими аминокислоты

*Стоп-кодон, означающий конец синтеза полипептидной цепи.

Сокращения названий аминокислот:

Ала — аланин

Арг — аргинин

Асн — аспарагин

Асп — аспарагиновая кислота

Вал — валин

Гис — гистидин

Гли — глицин

Глн — глутамин

Глу — глутаминовая кислота

Иле — изолейцин

Лей — лейцин

Лиз — лизин

Мет — метионин

Про — пролин

Сер — серин

Тир — тирозин

Тре — треонин

Три — триптофан

Фен — фенилаланин

Цис — цистеин

Если начать считывание генетической информации не с первого нуклеотида в триплете, а со второго, то произойдет не только сдвижка рамки считывания — синтезированный таким образом белок будет совсем иным не только по последовательности нуклеотидов, но и по структуре и свойствам. Между триплетами отсутствуют какие бы то ни было знаки препинания, поэтому нет никаких препятствий для сдвижки рамки считывания, что открывает простор для возникновения и сохранения мутаций.

Матричный характер реакций биосинтеза

Клетки бактерий способны удваиваться каждые 20–30 минут, а клетки эукариот — каждые сутки и даже чаще, что требует высокой скорости и точности репликации ДНК. Кроме того, каждая клетка содержит сотни и тысячи копий многих белков, особенно ферментов, следовательно, для их воспроизведения неприемлем «штучный» способ их производства. Более прогрессивным способом является штамповка, которая позволяет получить многочисленные точные копии продукта и к тому же снизить его себестоимость. Для штамповки необходима матрица, с которой осуществляется оттиск.

В клетках принцип матричного синтеза заключается в том, что новые молекулы белков и нуклеиновых кислот синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).

Биосинтез белка и нуклеиновых кислот

Репликация ДНК. ДНК представляет собой двухцепочечный биополимер, мономерами которого являются нуклеотиды. Если бы биосинтез ДНК происходил по принципу ксерокопирования, то неизбежно возникали бы многочисленные искажения и погрешности в наследственной информации, которые в конечном итоге привели бы к гибели новых организмов. Поэтому процесс удвоения ДНК происходит иным, полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией (от лат. репликацио — повторение). В результате репликации образуются две абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной копии материнской.

Процесс репликации на самом деле крайне сложен, так как в нем участвует целый ряд белков. Одни из них раскручивают двойную спираль ДНК, другие разрывают водородные связи между нуклеотидами комплементарных цепей, третьи (например, фермент ДНК-полимераза) подбирают по принципу комплементарности новые нуклеотиды и т. д. Образовавшиеся в результате репликации две молекулы ДНК в процессе деления расходятся по двум вновь образующимся дочерним клеткам.

Ошибки в процессе репликации возникают крайне редко, однако если они и происходят, то очень быстро устраняются как ДНК-полимеразами, так и специальными ферментами репарации, поскольку любая ошибка в последовательности нуклеотидов может привести к необратимому изменению структуры и функций белка и, в конечном итоге, неблагоприятно сказаться на жизнеспособности новой клетки или даже особи.

Биосинтез белка. Как образно выразился выдающийся философ XIX века Ф. Энгельс: «Жизнь есть форма существования белковых тел». Структура и свойства белковых молекул определяются их первичной структурой, т. е. последовательностью аминокислот, зашифрованной в ДНК. От точности воспроизведения этой информации зависит не только существование самого полипептида, но и функционирование клетки в целом, поэтому процесс синтеза белка имеет огромное значение. Он, по-видимому, является самым сложным процессом синтеза в клетке, поскольку здесь участвует до трехсот различных ферментов и других макромолекул. Кроме того, он протекает с высокой скоростью, что требует еще большей точности.

В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.

Транскрипция (от лат. транскрипцио — переписывание) — это биосинтез молекул иРНК на матрице ДНК.

Поскольку молекула ДНК содержит две антипараллельных цепи, то считывание информации с обеих цепей привело бы к образованию совершенно различных иРНК, поэтому их биосинтез возможен только на одной из цепей, которую называют кодирующей, или кодогенной, в отличие от второй, некодирующей, или некодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности. Этот процесс может протекать как в ядре, так и в органоидах, имеющих собственную ДНК, — митохондриях и пластидах.

Синтезированные в процессе транскрипции молекулы иРНК проходят сложный процесс подготовки к трансляции (митохондриальные и пластидные иРНК могут оставаться внутри органоидов, где и происходит второй этап биосинтеза белка). В процессе созревания иРНК к ней присоединяются первые три нуклеотида (АУГ) и хвост из адениловых нуклеотидов, длина которого определяет, сколько копий белка может синтезироваться на данной молекуле. Только потом зрелые иРНК покидают ядро через ядерные поры.

Параллельно в цитоплазме происходит процесс активации аминокислот, в ходе которого аминокислота присоединяется к соответствующей свободной тРНК. Этот процесс катализируется специальным ферментом, на него затрачивается АТФ.

Трансляция (от лат. трансляцио — передача) — это биосинтез полипептидной цепи на матрице иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.

Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).

Для начала трансляции (инициации) к готовой к синтезу молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону (АУГ) подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь. Рибосома передвигается на один кодон иРНК; первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется и шаг за шагом полипептидная цепь удлиняется, т. е. происходит ее элонгация.

Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.

Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.

Для ускорения синтеза определенных белковых молекул к молекуле иРНК могут присоединяться последовательно несколько рибосом, которые образуют единую структуру — полисому.

Философ Фридрих Энгельс в своем знаменитом определении сказал, что жизнь является способом существования белковых тел. В каждом живом организме безостановочно идет сложный процесс, требующий немалых энергетических затрат, — синтезируются и созревают белки. Общая схема биосентеза белка такова: ДНК — иРНК — белок.

Биосинтез белка делится на два главных этапа. Во-первых, из аминокислот синтезируется полипептидная цепь. Этот этап проходит на рибосомах при участии молекул двух типов РНК, информационной и транспортной. Во-вторых, с полипептидной цепью происходят посттрансляционные модификации. Образно представить весь этот процесс можно как крошечную железную дорогу, по которой постоянно, от одной станции к другой, снуют паровозы с прицепленными гружеными вагонами.

Трансляция

1.      Синтез полипептидных белковых цепей по матрице иРНК, который производится рибосомами, называется трансляцией.

2.      Полисома — система рибосом в виде цепи, используемая для увеличения количества производимых белков. Через нее может проходить одна и та же иРНК.

3.      Первым делом иРНК должна получить некую информацию. Транскрипция — процесс перенесения информации с ДНК на иРНК в ядре по принципу комплементарности. Далее иРНК идет в цитоплазму для синтеза белка на ее матрице.

4.      Как ДНК проходит подготовку к транскрипции? При помощи ферментов двойная связь ДНК раскручивается, разрываются водородные связи.

5.      Значительная часть ДНК, как и ее копия иРНК являются некодирующими. Кодирующие части иРНК называют экзонами, некодирующие интронами. Для «отбрасывания» некодирующих участков происходит сплайсинг — вырезание интронов с помощью ферментов.

6.      Как аминокислоты доставляются к рибосомам? С помощью тРНК, по форме напоминающей клеверный лист и состоящей из 70–90 нуклеотидов.

7.      Сколько видов тРНК в клетке? Столько же, сколько кодонов (триплетов), шифрующих аминокислоты — 64. Кодоны — это триплеты нуклеотидов в иРНК. Пример триплета — АГЦ (аденин, гуанин, цитозин). Каждое азотистое основание, например, аденин, входит в состав какого-то нуклеотида.

8.      Вверху в тРНК имеется триплет, присоединяющийся к кодонам иРНК. Это антикодон.

9.      Фермент кодаза присоединяет аминокислоту к тРНК. Причем он присоединяет строго ту аминокислоту, которая кодируется кодоном иРНК — триплетом, комплементарным антикодону тРНК.

10. Для связывания одной аминокислоты с тРНК тратится одна молекула АТФ.

11. Аминокислота отрывается от тРНК в тот момент, когда тРНК подходит к рибосоме и ее антикодон узнает кодон иРНК по принципу комплементарности.

12. В акцепторном участке рибосомы приходящая тРНК присоединяется к своему кодону иРНК, причем аминокислота присоединяет к себе растущую цепь белка — образуется пептидная связь.

13. В донорный участок рибосомы тРНК перемещается вместе с кодоном иРНК и с аминокислотой, цепь удлиняется на одну аминокислоту. На место данной тРНК в акцепторный участок идет новая тРНК.

14. Разные полипептидные цепи отделяются друг от друга своеобразными «знаками препинания», тремя триплетами — УАА, УАГ, УГА. Ни одна тРНК не имеет антикодонов, комплементарных данным триплетам, потому она не сможет поступить в акцепторный участок.

15. Какая аминокислота стоит в начале синтезируемого полипептида в рибосоме прокариот? Формилметионин, она соответствует антикодону АУГ иРНК. Данная измененная форма аминокислоты метионина является «заглавной буквой» фразы и прямиком следует в донорный участок рибосомы. С нее начинается синтез любой белковой цепи у бактерий, митохондрий, хлоропластов. У эукариот гены ядра не кодируют эту аминокислоту. После того как синтез полипептидной цепи закончен, формилметионин отщепляется от нее и отсутствует в готовом белке.

16. Что происходит с тРНК после выполнения ее роли? С помощью фермента кодазы к ней будет присоединена та же аминокислота, и тРНК продолжит функционировать.

17. Посттрансляционная модификация — формирование структур белка: вторичной, третичной и четвертичной. В этом процессе участвуют ферменты и затрачивается энергия.

Советы, которые помогут эффективно подготовиться к ЕГЭ по БИОЛОГИИ

1. Познакомься с актуальными демоверсией, спецификацией, кодификатором на официальном сайте, чтобы четко понимать, что тебя ждет и какие требования предъявляются к уровню подготовки.

sovet1 1

2. Определись, сколько баллов ты хотел бы получить.

sovet2

3. Составь расписание своих занятий и старайся максимально его соблюдать. Регулярность занятий очень важна.

sovet3

4. Используй несколько источников для подготовки: школьные учебники, пособия для поступающих в ВУЗы, видео уроки и т.п.

sovet4

5. Главное – понимание! Старайся разобраться в теме, а потом можно зазубрить некоторые понятия.

sovet5

6. Учись внимательно читать и понимать задание.

sovet6

7. Начинай с легкого и постепенно усложняй материал. Но не бойтесь сложных заданий, если хочешь высокий балл.

sovet7

8. Постоянно повторяй пройденный материал, решай тесты, задачи и теоретические вопросы.

Повторять рекомендуется сразу в течение 15-20 минут, через 8-9 часов и через 24 часа. Полезно повторять материал за 15-20 минут до сна и утром, на свежую голову.

sovet8

9. Систематизируй материал, создай целостную и структурированную систему знаний.

sovet9

10. И не забывай высыпаться, сбалансированно питаться и вести здоровый образ жизни. Это хорошо влияет на память:)

sovet10

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 428    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Вставьте в текст «Биосинтез белка» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем получившуюся последовательность цифр (по тексту) впишите в приведённую ниже таблицу.

БИОСИНТЕЗ БЕЛКА

В результате пластического обмена в клетках синтезируются специфические для организма белки. Участок ДНК, в котором закодирована информация о структуре одного белка, называется ______(А). Биосинтез белков начинается

с синтеза ______(Б), а сама сборка происходит в цитоплазме при участии ______(В). Первый этап биосинтеза белка получил название _________(Г), а второй  — трансляция.

ПЕРЕЧЕНЬ ТЕРМИНОВ:

1)  иРНК

2)  ДНК

3)  транскрипция

4)  мутация

5)  ген

6)  рибосома

7)  комплекс Гольджи

8)  фенотип

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Источник: РЕШУ ОГЭ


Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса биосинтеза белка в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1)  Процесс происходит при наличии ферментов.

2)  Центральная роль в процессе принадлежит молекулам РНК.

3)  Процесс сопровождается синтезом АТФ.

4)  Мономерами для образования молекул служат аминокислоты.

5)  Сборка молекул белков осуществляется в лизосомах.

Источник: РЕШУ ЕГЭ


В чем проявляется взаимосвязь энергетического обмена и биосинтеза белка?

Раздел: Общая биология. Метаболизм


Известно, что все виды РНК синтезируются на ДНК-матрице.

Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая).

5’-ААЦЦТТТТТГЦЦТГА-3’

3’-ТТГГАААААЦГГАЦТ-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Раздел: Основы генетики

Источник: РЕШУ ЕГЭ


Какой цифрой на рисунке обозначен этап трансляции в процессе биосинтеза белка?

1)  1

2)  2

3)  3

4)  4

Источник: Диагностическая работа по биологии 06.04.2011 Вариант 2.


Верны ли следующие утверждения о процессах обмена веществ?

А. Окончательное окисление органических соединений до СO2 и Н2O происходит в матриксе митохондрий.

Б. Биосинтез белка происходит во всех мембранных органоидах клетки.


Реакции биосинтеза белка, в которых последовательность триплетов в иРНК обеспечивает последовательность аминокислот в молекуле белка, называют


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая).

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда; второй  — из верхнего горизонтального ряда и третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.

Источник: Демонстрационная версия ЕГЭ—2020 по биологии


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов:

5’ − ЦГААГГТГАЦААТГТ −3’3’ − ГЦТТЦЦАЦТГТТАЦА −5′ Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда; второй – из верхнего горизонтального ряда и третий – из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов:

5’ − ГТГТАТГААТГЦАТА −3’3’ − ЦАЦАТАЦТТАЦГТАТ −5′

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда; второй – из верхнего горизонтального ряда и третий – из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов:

5’ − ЦТТЦГАЦААГЦЦТГА − 3’3’ − ГААГЦТГТТЦГГАЦТ − 5’Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Обоснуйте последовательность Ваших действий. Для решения задания используйте таблицу генетического кода.

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда; второй — из верхнего горизонтального ряда и третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, находится искомая аминокислота.


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов:

5’ − ГЦААЦЦЦГАТЦЦГАА − 3’3’ − ЦГТТГГГЦТАГГЦТТ − 5′

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда; второй  — из верхнего горизонтального ряда; третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов:

5’ − ЦГААГГТГАЦААТГТ − 3’3’ − ГЦТТЦЦАЦТГТТАЦА − 5′ Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда; второй – из верхнего горизонтального ряда и третий – из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов:

5’ − АЦГГГТААГЦААТГЦ − 3′

3’ − ТГЦЦЦАТТЦГТТАЦГ − 5′

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда; второй  — из верхнего горизонтального ряда; третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов:

5’ − ТГЦЦАТТААЦГАТАГ − 3′

3’ − АЦГГТААТТГЦТАТЦ − 5′

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда, второй  — из верхнего горизонтального ряда и третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов:

5’ − АГГЦГТАТГЦТАТЦЦ − 3’3’ − ТЦЦГЦАТАЦГАТАГГ − 5′ Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет является антикодоном тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда, второй  — из верхнего горизонтального ряда и третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов:

5’ − ТАТЦГАЦТТГЦЦТГА − 3′

3’ − АТАГЦТГААЦГГАЦТ − 5′

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задачи используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берется из левого вертикального ряда, второй – из верхнего горизонтального ряда и третий – из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок тРНК, имеет следующую последовательность нуклеотидов:

5’ − ТАТЦГАЦТТГЦЦТГА − 3’3’ − АТАГЦТГААЦГГАЦТ − 5′ Установите нуклеотидную последовательность участка тРНК который синтезируется на данном фрагменте, обозначьте 5′ и 3′ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответсвует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода:

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г


Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь матричная (транскрибируемая)):

5’-АТЦАТГЦТТТАЦЦГА-3’

3’-ТАГТАЦГАААТГГЦТ-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте ДНК. Укажите триплет, который является антикодоном, если данная тРНК переносит аминокислоту ала. Ответ поясните. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи

Источник: Демонстрационная версия ЕГЭ—2022 по биологии


Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов АТАГЦТГААЦГГАЦТ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задачи используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берется из левого вертикального ряда, второй – из верхнего горизонтального ряда и третий – из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота

Раздел: Общая биология. Метаболизм

Всего: 428    1–20 | 21–40 | 41–60 | 61–80 …




Как решать задачи на биосинтез белка?

Как решать задачи на биосинтез белка?

Чтобы сдать ЕГЭ по биологии на 80+ баллов, нужно решить задания не только первой, но и второй части КИМа. Традиционно, самые «решаемые» задания – это №27, №28. За них можно легко получить баллы, если знать несколько основных правил и принципов. О них мы и будем говорить сегодня. 

25.png (27 KB)

Основные правила 

Итак, мы начинаем знакомство с основными правилами, которые важно использовать при работе с заданием №27. 

  1. Синтез новых цепей идет с транскрибируемой цепи ДНК

Вспомните: молекула ДНК представляет собой двойную спираль, то есть состоит из двух цепей. Они имеют собственные названия и направления синтеза. Одна из цепей – транскрибируемая (матричная), другая – смысловая (кодирующая). Транскрибируемая цепь строится в направлении от 3’-конца к 5’-концу, смысловая –  от 5’-конца к 3’-концу. 

Если в задании нужно синтезировать новую цепь, например иРНК, то в качестве матрицы (основы) для синтеза необходимо использовать транскрибируемую цепь ДНК. 

Однако это правило работает только в тех случаях, когда в условии задания обозначено, какая цепь является транскрибируемой, а какая – смысловой. 

24.png (37 KB)

  1. Все виды РНК синтезируются с транскрибируемой цепи ДНК

Любые виды РНК: информационная (иРНК), транспортная (тРНК), рибосомальная (рРНК) – синтезируются с транскрибируемой цепи ДНК. 

Если в задании нужно синтезировать какую-либо РНК, то в качестве матрицы (основы) для ее синтеза берется транскрибируемая цепь ДНК. 

  1. Последовательность аминокислот в полипептиде находится по нуклеотидной последовательности иРНК

Чтобы определить последовательность аминокислот во фрагменте полипептида, нужно использовать молекулу иРНК. Для этого мы используем знания нуклеотидной последовательности молекулы иРНК и таблицу генетического кода. 

Таблица генетического кода будет в условии задания на экзамене, поэтому учить ее не требуется. 

  1. Кодоны иРНК в таблице генетического кода указаны в направлении от 5’-конца к 3’-концу

При работе с таблицей генетического кода необходимо учитывать, что в ней указаны кодоны иРНК в направлении от 5’-конца к 3’-концу. Соответственно, использовать другие триплеты в другом направлении при работе с этой таблицей нельзя. 

19.png (21 KB)

Основные принципы

Для решения 27 задания нужно знать еще и два принципа построения цепи ДНК:  комплементарности и антипараллельности. 

  1. Принцип комплементарности 

Принцип комплементарности – это избирательное соединение нуклеотидов при образовании новых молекул нуклеиновых кислот. 

В процессе репликации (самоудвоения молекулы ДНК) синтез дочерних цепей идет на основе материнской цепи ДНК. При построении новых цепей ДНК нуклеотиды дочерней цепи подбираются не спонтанно, а избирательно: в строгом соответствии с последовательностью нуклеотидов в материнской цепи ДНК. 

Проще: Если в исходной цепи встречается определенный нуклеотид, то в дочерней цепи ему будет соответствовать другой определенный нуклеотид. 

Комплементарны друг другу следующие нуклеотиды: 

  • адениловый нуклеотид – тимидиловый нуклеотид (А-Т); 
  • гуаниловый нуклеотид – цитидиловый нуклеотид (Г-Ц). 

Принцип комплементарности используется не только при построении дочерних цепей ДНК, но и при построении любых новых молекул нуклеиновых кислот. Ниже приводится схема соответствия друг другу нуклеотидов разных молекул нуклеиновых кислот. 

1.png (13 KB)

  1. Принцип антипараллельности

Принцип антипараллельности: цепи в молекуле ДНК ориентированы антипараллельно. Одна строится в направлении 5՛-3՛, другая – в 3՛-5՛. 

Выше мы уже обсуждали, что молекула ДНК состоит из двух цепей, каждая из которых имеет свой направление синтеза. Важно запомнить, что транскрибируемая цепь строится в направлении от 3’-конца к 5’-концу, а смысловая – от 5’-конца к 3’-концу. Направление синтеза разное, поэтому говорят, что цепи антипараллельны. 

При синтезе дочерней цепи ДНК на основе материнской важно помнить не только про избирательное соединение нуклеотидов, но и про антипараллельность цепей. Если у нас есть одна цепь ДНК с определенной последовательностью нуклеотидов, то при синтезе с ее новой цепи ДНК нужно воспользоваться принципом комплементарности. А также правильно указать направления цепей в соответствии с принципом антипараллельности. Например, если исходная цепь имела направление 3՛-5՛, то дочерняя цепь будет иметь направление 5՛-3՛. 

Обратите внимание: в данном случае цепи не нужно переориентировать или «отзеркаливать». Необходимо указать направление дочерней цепи антипараллельно исходной. 

Принцип антипараллельности также используется при построении любых новых молекул нуклеиновых кислот. 

23.png (28 KB)

С основными правилами и принципами, которые нужно знать для решения задания №27, мы познакомились. Они помогут вам научиться решать простейшие задачи на биосинтез белка. Однако на реальном экзамене в задании №27 бывает много подвохов, о которых мы поговорим в следующий раз. До встречи! 




Решаем простейшие задачи на биосинтез белка

Решаем простейшие задачи на биосинтез белка

Решаем простейшие задачи на биосинтез белка

В прошлый раз мы обсуждали основные правила и принципы решения задач на биосинтез белка. Их важно использовать при работе с заданием №27 в КИМе. Сегодня мы продолжим разбирать задачи на биосинтез белка, рассмотрим простейшие задания и обсудим алгоритмы их решения. Поехали!

24.png (37 KB)

Пример №1

Фрагмент начала гена имеет следующую последовательность нуклеотидов (нижняя цепь матричная (транскрибируемая)):

5’ – ЦАГАГАГЦАГААТАЦ – 3ʹ
3ʹ – ГТЦТЦТЦГТЦТТАТГ – 5ʹ


Определите последовательность аминокислот во фрагменте полипептидной цепи, объясните последовательность решения задачи. 

Внимательно прочитаем условие и определим, что нам дано и что требуется найти. В задании речь идет о фрагменте гена, то есть перед нами участок молекулы ДНК. По условию требуется определить последовательность аминокислот во фрагменте полипептидной цепи и объяснить ход решения. 

Для того, чтобы определить последовательность аминокислот во фрагменте полипептидной цепи, мы должны знать последовательность нуклеотидов в цепи иРНК. Саму молекулу иРНК легко построить, используя транскрибируемую цепь ДНК. 

Итак, задача будет решаться в два шага: 

  1. По принципу комплементарности на основе транскрибируемой цепи ДНК построим молекулу иРНК; 
  2. Определим последовательность аминокислот во фрагменте полипептида с помощью  нуклеотидной последовательности молекулы иРНК и таблицы генетического кода.

Решение: 

  1. в качестве матрицы (основы) для синтеза иРНК берем транскрибируемую ДНК и далее по принципу комплементарности (А–У, Т–А, Г–Ц, Ц–Г) строим новую молекулу:

транскрибируемая ДНК: – ГТЦТЦТЦГТЦТТАТГ –
                              иРНК: 5’ – ЦАГАГАГЦАГААЦАЦ – 3’

Обратите внимание: направление цепи иРНК мы изменили в соответствии с принципом антипараллельности.

  1. чтобы определить последовательность аминокислот в полипептиде, воспользуемся таблицей генетического кода и полученной молекулой иРНК. Для этого разбиваем молекулу иРНК на отдельные триплеты, для которых будем искать в таблице генетического кода соответствующие аминокислоты.

    иРНК: 5’ – ЦАГ АГА ГЦА ГАА ЦАЦ – 3’

полипептид: глнаргалаглугис

Обратите внимание: между названиями аминокислот стоят дефисы. Их обязательно нужно писать, так как между аминокислотами в полипептиде имеются пептидные связи. Чтобы их обозначить, пишут дефисы. 

19.png (21 KB)

Все! На этом наша задача решена. Теперь обсудим, как писать решение на экзамене. В бланк ответов обычно сразу пишется решение, без «дано» и «ответа». Достаточно последовательно описать ход своих действий и ответить на все вопросы в задании. 

У нашей задачи решение, которое нужно будет вписать в бланк ответов, будет выглядеть следующим образом: 

Решение: 

  1. по принципу комплементарности на основе транскрибируемой цепи ДНК находим нуклеотидную последовательность молекулы иРНК:
    5’ – ЦАГАГАГЦАГААЦАЦ – 3’;
  2. на основе нуклеотидной последовательности молекулы иРНК и таблицы генетического кода определяем последовательность аминокислот во фрагменте полипептида: глнаргалаглугис. 

Пример №2

Исходный фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):

5’ – ГЦГГГЦТАТТГЦЦТГ – 3’

3’ – ЦГЦЦЦГАТААЦГГАЦ – 5’

В результате мутации в ДНК четвёртая аминокислота во фрагменте полипептида заменилась на аминокислоту три. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК в результате мутации? Ответ поясните.

Эта задача чуть сложнее, чем предыдущая, но гораздо интереснее! Сначала, по традиции, внимательно прочитаем условие и определим, что дано и что требуется найти. Речь идет о молекуле ДНК до и после мутации. До мутации четвертый триплет ДНК кодировал одну аминокислоту, после мутации стал кодировать другую (по условию, аминокислоту три). Нужно определить, какую аминокислоту кодировал четвертый триплет ДНК до мутации, а также указать, какие изменения произошли в структуре ДНК, чтобы она стала кодировать другую аминокислоту. 

Как определить, какую аминокислоту кодировал триплет ДНК до мутации? Так же, как и в предыдущей задаче. Сначала по принципу комплементарности находим кодон иРНК, который соответствует этому триплету ДНК. А затем воспользуемся таблицей генетического кода и определим аминокислоту, которая подходит этому кодону иРНК. 

Решение: 

  1. в качестве матрицы (основы) для синтеза иРНК берем транскрибируемую ДНК и далее по принципу комплементарности (А–У, Т–А, Г–Ц, Ц–Г) определим нуклеотидную последовательность кодона иРНК:

триплет транскрибируемой ДНК: – АЦГ –
                                  кодон иРНК: 5’ – УГЦ – 3’

Обратите внимание: направление кодона иРНК мы изменили в соответствии с принципом антипараллельности. 

  1. чтобы определить аминокислоту, которую кодирует этот кодон иРНК, воспользуемся таблицей генетического кода:

    кодон иРНК: 5’ – УГЦ – 3’
    аминокислота: цис.

20.png (17 KB)

Итак, триплет ДНК до мутации кодировал аминокислоту цис. После мутации этот же триплет стал кодировать аминокислоту три. Почему? Потому что в результате мутации изменилась нуклеотидная последовательность этого триплета. Если изменился триплет, то изменится и аминокислота, которую он кодирует. 

Как узнать, какие изменения произошли в нуклеотидной последовательности триплета ДНК? Очевидно, начать «с конца».

 Мы знаем, какую аминокислоту кодирует изменившийся триплет. Значит, можно определить, какой кодон иРНК соответствует этой аминокислоте (для этого надо посмотреть в таблицу генетического кода). Так  мы можем найти триплет ДНК по принципу комплементарности. Таким образом, мы получим триплет ДНК после мутации. Далее нужно сравнить триплет до и после мутации, а также сделать вывод о произошедших изменениях. 

Решение: 

  1. чтобы определить, какой кодон иРНК кодирует аминокислоту три, воспользуемся таблицей генетического кода: 

аминокислота: три
кодон иРНК: 5’ – УГГ – 3’

Обратите внимание: в данном случае аминокислота встречается в таблице всего лишь один раз, поэтому мы выписали только один кодон иРНК. Однако бывают задачи, когда аминокислота встречается в таблице несколько раз. В таком случае кодонов также будет несколько. 

  1. по принципу комплементарности на основе нуклеотидной последовательности кодона иРНК определим нуклеотидную последовательность триплета ДНК:

    кодон иРНК: 5’ – УГГ – 3’
    триплет транскрибируемой ДНК: 3’ – АЦЦ – 5’

Итак, после мутации триплет ДНК имеет следующую последовательность нуклеотидов: 3’ – АЦЦ5’. До мутации он имел другую последовательность нуклеотидов: – АЦГ5ʹ. Какие изменения произошли в ДНК в результате мутации? Как можно заметить, произошла замена последнего нуклеотида. 

Теперь оформим решение как на экзамене. 

Решение: 

  1. четвёртый триплет исходного фрагмента транскрибируемой ДНК: – АЦГ – , по принципу комплементарности определяем кодон иРНК: 5’ – УГЦ – 3’; 

  1. используя таблицу генетического кода, определяем, что кодон иРНК кодирует аминокислоту цис; 

  1. во фрагменте транскрибируемой цепи ДНК в четвёртом триплете – АЦГ – произошла замена последнего нуклеотида (нуклеотид Г заменился на Ц). 

Как можно заметить, задачи на биосинтез белка не такие сложные, как кажется на первый взгляд. Главное – внимательно читать условие, решать последовательно и соблюдать все правила оформления. Кстати, именно о них мы поговорим подробнее в следующий раз. До встречи!  




Как оформлять задачи на биосинтез белка на ЕГЭ?

Как оформлять задачи на биосинтез белка на ЕГЭ?

В прошлый раз мы с вами обсуждали, как решать простейшие задачи на биосинтез белка. Сегодня нас ждет важный разговор о том, как оформлять 27 задание на ЕГЭ. Настоятельно советую не пренебрегать правилами, которые мы обсудим в этот раз, ведь от них зависит, сколько баллов за задание выставит эксперт на экзамене. Итак, поехали! 

21.png (45 KB)

Главное

В отличие от других заданий второй части задачи на биосинтез белка имеют четкую структуру и оцениваются максимально только при наличии всех элементов ответа, которые предусмотрены составителями. 

В бланке ответов обязательно должен быть представлен ход решения задачи. Иными словами, важно решать задачу последовательно, объяснять порядок своих действий, пояснять каждый шаг. 

Правила оформления

  1. В молекулах ДНК, иРНК, сплошной цепи тРНК нуклеотиды можно писать через тире, триплеты можно писать через тире; молекулы можно записать в виде сплошной последовательности

Допустимыми с позиции оформления являются следующие варианты записи: 


3’ -А-Г-А-Г-Ц-А-Г-Т-А-Г-Т-Т-Т-Г-А-Г-Ц-Ц- 5’

3’ — АГА-ГЦА-ГТА-ГТТ-ТГА-ГЦЦ — 5’

3’ — АГАГЦАГТАГТТТГАГЦЦ — 5’

При написании нуклеотидной последовательности цепей ДНК, иРНК, сплошной цепи тРНК можно записать нуклеотиды через тире, триплеты через тире. Почему? Между нуклеотидами имеются фосфодиэфирные связи, за счет которых нуклеотиды связываются друг с другом – тире обозначает эти связи. Также допустимо писать нуклеотиды без тире в виде сплошной последовательности. 

  1. В сплошной цепи ДНК, иРНК, тРНК триплеты нельзя разделять запятыми

Недопустимой с позиции оформления является следующая запись: 

3’ — АГА, ГЦА, ГТА, ГТТ, ТГА, ГЦЦ — 5’

Запятые в таком случае будут означать, что триплеты относятся к разным молекулам, в то время как триплеты составляют одну. Поэтому в сплошных цепях ДНК, иРНК, тРНК нельзя разделять триплеты запятыми. 

22.png (16 KB)

  1. Антикодоны разных молекул тРНК нельзя писать через тире между триплетами

Недопустимой с позиции оформления является следующая запись: 

3’ — АГА-ГЦА-ГАА-ГАА-АГА-ГЦЦ — 5’

Написание тире между триплетами при записи антикодонов тРНК является ошибкой. Это связано с тем, что антикодоны тРНК не связаны в единую цепь, они являются частями разных молекул. 

  1. Аминокислоты во фрагменте полипептида можно писать через тире, пробел, или без разделительных знаков

Допустимыми с позиции оформления являются следующие варианты записи: 


Мет-Ала-Глу-Три-Сер-Арг

Мет Ала Глу Три Сер Арг
МетАлаГлуТриСерАрг

Написание тире между аминокислотами допустимо, так как при образовании полипептида аминокислоты связываются друг с другом пептидными связями. Тире обозначают эти связи. 

  1. Аминокислоты во фрагменте полипептида нельзя писать через запятую или точку с запятой

Недопустимой с позиции оформления является следующая запись: 

Мет, Ала, Глу, Три, Сер, Арг

Мет; Ала; Глу; Три; Сер; Арг

  1. Писать в ответе нуклеотид или кодон молекулы иРНК в качестве гена нельзя

Ген – это участок молекулы ДНК. Соответственно, указание в ответе нуклеотида или кодона в молекуле иРНК как гена считается ошибкой. 

24.png (37 KB)

  1. В задачах с открытой рамкой считывания на иРНК необходимо в явном виде указывать место начала или окончания синтеза полипептида

Допустимыми с позиции оформления являются следующие варианты записи: 

3’ — АУГАГЦАГУАГУУЦААЦГАГЦЦ — 5’

3’ — АУГАГЦАГУАГУУЦААЦГАУАА — 5’

В 2022 году на ЕГЭ появился новый тип задач на биосинтез белка. В таких заданиях нужно самостоятельно определить открытую рамку считывания (участок иРНК, кодирующий полипептид) и указать место начала или окончания синтеза полипептида на молекуле иРНК. Вы можете подчеркнуть или обвести кодон, указать стрелкой на первый или последний нуклеотид рамки считывания. 

  1. При написании цепей ДНК, иРНК, тРНК, антикодонов тРНК нужно указывать направления цепей

При написании последовательностей нуклеиновых кислот важно не только верно написать саму последовательность, но и указать направление цепи, то есть обозначить 3’- и 5’-концы. Если концы цепей будут указаны неверно, баллы за решение будут снижены. 

20.png (17 KB)

Требований к оформлению 27 задания достаточно много. Не забывайте их учитывать при написании решения в бланк ответов. В случае, если участник экзамена неверно оформляет решение, баллы будут снижаться так же, как и в случае наличия в ответе биологических ошибок. Чтобы этого не произошло, не забывайте проверять свой ответ перед внесением его в бланк. Успехов! 

Понравилась статья? Поделить с друзьями:
  • Биосинтез белка подготовка к егэ презентация
  • Биосинтез белка материал для егэ
  • Биосинтез белка кратко егэ
  • Биосинтез белка картинки егэ
  • Биосинтез белка задания егэ 1 часть