ЕГЭ по физике пугает многих выпускников. На деле он не такой сложный, главное — разобраться со структурой. В этой статье поговорим о том, как подготовиться к ЕГЭ по физике 2023, из каких разделов состоит экзамен и какие темы нужно изучить, чтобы сдать его.
Изменения в ЕГЭ по физике 2023
В 2023 году ЕГЭ по физике обновился незначительно:
- Изменилось расположение заданий в части с кратким ответом: теперь задания 1 и 2 перешли на позицию 20 и 21. Однако есть сами формулировки и проверяемые темы в части 1 остались прежними.
- В части 2 изменения коснулись только задания 30 — расчетной задачи по механике, оцениваемой в 4 первичных балла (самый высокий балл за задачу). В прошлом году на этой позиции необходимо было применять законы Ньютона, знать тонкости для решения задач со связанными телами, а также использовать законы сохранения энергии импульса. В 2023 здесь также могут встретиться задачи по статике. То есть теперь нужно знать, что такое плечо силы, момент и условие равновесия рычага, чтобы получить максимальный балл на экзамене. Но не забывайте проработать и те законы, которые встречались в прошлом году.
Коротко о структуре ЕГЭ по физике 2023
Экзамен состоит из 2 частей: I часть с кратким ответом и II часть с развернутым ответом. Всего в ЕГЭ 30 заданий, которые разделены на 4 раздела. Чтобы хорошо подготовиться к экзамену, важно ориентироваться в том, как он устроен: какие темы входят в каждый раздел, каких заданий больше, а каких меньше.
Давайте взглянем на таблицу и сделаем выводы:
Максимальное количество первичных баллов — 54
I часть
- Приносит 34 балла, то есть ⅔ баллов всего экзамена.
- 23 задания с кратким ответом
- В ответе нужно указать лишь число
II часть
- Приносит 20 баллов, что составляет ⅓ баллов экзамена
- 7 заданий с развернутым ответом
- Решения нужно подробно расписать по критериям ЕГЭ
Разделы ЕГЭ по физике 2023
- Механика — один из самых больших разделов на ЕГЭ. Он составляет около трети всего экзамена.
- Электродинамика — еще один большой раздел по количеству баллов. Она также составляет около трети всего экзамена.
- Молекулярная физика занимает третье место. Около 25% баллов на ЕГЭ можно получить именно за нее.
- Квантовая физика замыкает наш список. В сумме все задания по квантовой физике могут принести около 10% баллов.
Иными словами, чтобы сдать ЕГЭ по физике на высокий балл, нужно хорошо разбираться и в структуре экзамена, и в каждом из разделов, которые в него входят. Если не знать, как все устроено и что именно требуется для решения заданий, то можно завалить ЕГЭ и не поступить на бюджет.
Чтобы этого не произошло, на своих занятиях по подготовке к ЕГЭ я разбираю с учениками каждый раздел экзамена и все критерии. Мы разбираемся, какие знания проверяют составители в каждом из заданий и учимся правильно оформлять ответы. Очень важная часть подготовки — научиться внимательно читать формулировки заданий и правильно их понимать. Это одна из ловушек экзаменаторов, на которые попадаются очень многие.
Если вы хотите подготовиться к ЕГЭ по физике 2023 на высокий балл, записывайтесь на мои занятия. Мы вместе разберемся со всеми непонятными заданиями, и я сделаю так, что все задачки по физике вы будете щелкать как орешки 😉💪
Какие задания входят в ЕГЭ по физике?
Здесь вам на помощь приходят документы с официального сайта ФИПИ: кодификатор, демоверсия и спецификация.
Кодификатор — это краткий перечень всех тем, законов и формул, которые включены в экзамен. В формулах важно ориентироваться и понимать, какие формулы, в каком разделе и когда используются.
Все формулы из кодификатора нужно знать наизусть.
Демоверсия — типовой вариант ЕГЭ. Он показывает уровень экзамена и ориентировочную сложность заданий.
Спецификация — это документ, описывающий структуру экзамена и разбалловку.
Какие темы на ЕГЭ по физике 2023 самые важные?
В физике есть темы, которые встречаются на каждом шагу. Это тот необходимый минимум знаний, который будет применяться в каждом разделе. Для всех моих учеников, отлично освоивших эти темы, изучение физики стало гораздо легче и приятнее.
1. Силы
В самом начале подготовки к ЕГЭ по физике важно научиться правильно расставлять силы, записывать второй закон Ньютона в векторном виде, а потом проецировать силы на оси и записывать второй закон Ньютона в скалярном виде.
2. Второй закон Ньютона
Без этого закона мы на ЕГЭ по физике будем как без рук. Он будет применяться почти в каждой второй задаче.
3. Энергия и закон сохранения энергии (ЗСЭ)
Перераспределение энергии и закон сохранения энергии встречаются в каждом разделе. Сначала мы знакомимся с ними в механике, а потом встречаем почти в каждой теме.
Приведу примеры:
- I начало термодинамики в молекулярной физике — это вид ЗСЭ
- ЗСЭ встречается в электродинамике в задачах на электрические цепи
- Уравнение Эйнштейна для фотоэффекта в квантовой физике — это тип ЗСЭ
4. Работа
Работа — это форма энергии. Она вам понадобится:
- В механике (механическая работа)
- В молекулярной физике (работа газа и работа над газом)
- В электродинамике (работа электрического поля)
Поэтому советую вам основательно разобраться с этим понятием.
5. Движение по окружности
На эту тему стоит обратить особое внимание. Она появляется в задачах:
- На магнетизм и силу Лоренца
- На гравитацию
- На астрофизику
Есть частый тип задания с развернутым ответом на фотоэффект. В такой задаче электрон попадает в магнитное поле и начинает двигаться по окружности.
План успешной подготовки к ЕГЭ по физике
При подготовке к экзамену не пренебрегайте ничем. Решайте и первую часть, и вторую.
Двигайтесь по материалу в соответствие с кодификатором:
- Механика
- Молекулярная физика
- Электродинамика
- Квантовая физика
Одновременно с изучением теории. Как только вы выучили одну тему, сразу же начинайте тренироваться на задачах. Именно так вы запоминаете формулы и законы.
ЕГЭ — это сугубо практический экзамен, поэтому важно практиковаться, практиковаться и еще раз практиковаться. Всю теорию нужно уметь применять на практике.
I часть ЕГЭ по физике
Многие школьники готовятся только ко второй части экзамена. Думают, если вторую часть они могут решать, то и первая просто решится… Такие ученики ошибаются в простых заданиях, а для поступления в вуз мечты важен каждый балл! Ни в коем случае не стоит недооценивать первую часть.
Не стоит считать, что первая часть слишком простая и к ней можно не готовиться. Если пренебрежительно относиться к первой части, экзамен можно завалить, даже если вы решите всю вторую часть. Помните, что первая тестовая часть — это ⅔ всего экзамена.
В этой статье мы уже рассказывали, что можно набрать 80+ баллов, если сделать полностью первую часть, а вторую решить лишь на 40%.
Первую часть нужно атаковать постепенно. Начать с изучения механики, потом приниматься за молекулярную физику, за электродинамику, и в последнюю очередь за квантовую физику.
В первой части есть задания базового уровня на 1 балл и повышенного уровня на 2 балла.
Задания базового уровня на 1 балл
Обычно такие задания решаются применением 1-2 физических законов и формул. Именно с заданий базового уровня я советую начинать. Как только вы прошли одну тему по физике, сразу же приступайте к решению задач формата ЕГЭ по этой теме!
Задания повышенного уровня на 2 балла
Первая часть ЕГЭ по физике включает в себя задания трех типов:
- Выбор 2 из 5 утверждений
- Анализ изменения величин
- Установление соответствия
Подробные разборы каждого типа заданий читайте в нашей предыдущей статье.
Стоит отметить, что в ЕГЭ можно все аргументировать, объяснить или опровергнуть. Как на дебатах. Только способ объяснения — это формулы и математические вычисления.
II часть ЕГЭ по физике
Распространенный миф: «II часть ЕГЭ по физике очень сложная, и у меня не получится к ней подготовиться». Часто мои новые ученики думают именно так, и я всегда развеиваю этот миф.
В задачах с развернутым ответом есть приемы и алгоритмы, которые часто встречаются. Побольше практикуйтесь и запоминайте эти приемы. Задачи второй части можно и нужно решать.
Когда начать решать задачи с развернутым ответом из II части? После освоения теории. Чем раньше — тем лучше. Сначала отработайте знания на более легких заданиях. Как только научитесь применять формулы в задачах на 1 балл, сразу же переходите ко второй части.
Обычно при решении задач с развернутым ответом нужно применить от 2 до 4 формул и законов. Каждый из этих законов по отдельности использовать просто, но применить их в комбинации — это уже довольно сложная задача для учеников.
Лайфхаки решения II части
Во второй части ЕГЭ по физике есть стандартных приемов к решению задач, которые нужно знать каждому. Если вы их поймете и запомните, то будете решать часть КИМа стабильно хорошо.
1. Закон сохранения импульса + закон сохранения энергии
В механике эти два закона часто применяются вместе. Эти законы помогают решить задачи на соударения, на слипание и на взрывы тел. Пример:
2. Закон сохранения энергии + второй закон Ньютона
Эта связка особенно часто встречается. Например, она помогает решать задачи на аттракционы трюк «мертвую петлю». Еще понадобятся знания движения по окружности. Пример:
3. Второй закон Ньютона + уравнение Менделеева-Клапейрона
Эти законы связывают механику и молекулярную физику. Они помогают решать задачи на цилиндры с поршнями. Пример:
4. Уравнение Менделеева-Клапейрона + сила Архимеда + второй закон Ньютона
С помощью этой связки решаются задачки на воздушные шарики. Пример:
5. Фотоэффект + сила Лоренца в магнитном поле + движение по окружности
Обычно задания на электродинамику и квантовую физику пугают школьников, поэтому рекомендую прочитать статью, где мы подробно разбираем этот тип задач.
На самом деле, все это — лишь малая часть лайфхаков, которые нужно знать, чтобы сдать ЕГЭ по физике 2023 на высокий балл.
Когда я готовлю своих учеников к ЕГЭ, мы разбираем все из них. Причем сюда можно отнести не только лайфхаки по решению заданий, но и лучшие способы оформления решений. Часто бывает, что формулировка ответов может стоить выпускнику нескольких баллов — а все из-за того, что он или она недостаточно четко сформулировал(а) мысль.
Чтобы этого не случилось с вами, приходите на мои занятия по подготовке к ЕГЭ по физике 2023. Мы еще подробнее разберем структуру экзамена и научимся быстро и правильно решать все задачи. Жду вас!
ОГЭ по физике 2022: структура экзамена, разбор кодификатора и разбалловка. Все о том, как основательно и качественно подготовиться, читайте сегодня!
Структура ОГЭ по физике 2022
Как обычно начинаем мы со структуры ОГЭ по физике 2022, так как без нее понять сложность предстоящего экзамена и вникнуть в суть заданий будет попросту невозможно.
КИМ по физике состоит из 25 заданий (15 – базового уровня сложности, 7 – повышенного и 2 – высокого), и делится на две части:
- 19 заданий с кратким ответом (1-16, 18-20);
- 6 номеров с развернутым решением (17 (лабораторная работа), 21-25).
По форме ответа делим задания на несколько типов:
- 2 номера с кратким ответом-цифрой;
- 6 номеров с кратким ответом-числом;
- 10 заданий на соответствие и выбор нескольких вариантов (ответ-порядок цифр);
- 7 задач с полноценным решением;
Какие знания и умения девятиклассников хотят проверить составители ОГЭ по физике 2022:
- Решение расчётных и качественных задач;
- Работа с текстом физического содержания;
- Методологические умения;
- Понимание принципов действия технических устройств, вклада учёных в развитии науки;
- Владение понятийным аппаратом.
Подробнее о первой части экзамена:
- включено задание на сопоставление физических величин с единицами измерения и специализированными приборами, оцениваемое в 2 балла;
- встречаются теоретические задания повышенной сложности;
- двубалльные задания могут быть оценены по принципу 1 из 2, если, к примеру, правильно было произведено лишь одно вычисление;
- сталкиваемся с расчетными задачами повышенной сложности;
Немного о второй части КИМа:
- записывается на бланке ответов №2 и проверяется экспертами вручную;
- задание №17 – лабораторная работы, позволяет получить 3 балла;
- задача №21 – работа с текстом;
- качественная задача №22;
- расчетные задачи №23, №24 и №25, которые по статистике решает менее 20% сдающих.
Темы и тематические задания
Для вашего удобства мы составили небольшую таблицу распределения заданий по тематическим блокам:
Раздел физики | Количество заданий |
Вся работа | |
Квантовые явления | 1-4 |
Тепловые явления | 4-10 |
Электромагнитные явления | 7-14 |
Механические явления | 9-14 |
Итого | 25 |
А теперь самое время обратиться к подробному кодификатору, опубликованному на официальном сайте ФИПИ:
МЕХАНИЧЕСКИЕ ЯВЛЕНИЯ
1.1 Механическое движение. Относительность движения. Траектория. Путь. Перемещение. Равномерное и неравномерное движение. Средняя скорость.
1.2 Равномерное прямолинейное движение. Графики зависимости от времени для проекции скорости, проекции перемещения, пути;
координаты при равномерном прямолинейном движении
1.3 Зависимость координаты тела от времени в случае равноускоренного прямолинейного движения. Формулы для проекции перемещения, проекции скорости и проекции ускорения при равноускоренном прямолинейном движении. Графики зависимости от времени для проекции ускорения, проекции скорости, проекции
перемещения, координаты при равноускоренном прямолинейном движении;
1.4 Свободное падение. Формулы, описывающие свободное падение тела по вертикали (движение тела вниз или вверх относительно поверхности Земли). Графики зависимости от времени для проекции ускорения, проекции скорости и координаты при свободном падении тела по вертикали;
1.5 Скорость равномерного движения тела по окружности. Направление скорости.
Формула для вычисления скорости через радиус окружности и период обращения.
Центростремительное ускорение. Направление центростремительного ускорения.
Формула для вычисления ускорения. Формула, связывающая период и частоту обращения;
1.6 Масса. Плотность вещества. Формула для вычисления плотности;
1.7 Сила – векторная физическая величина. Сложение сил;
1.8 Явление инерции. Первый закон Ньютона;
1.9 Второй закон Ньютона. Сонаправленность вектора ускорения тела и вектора силы, действующей на тело;
1.10 Взаимодействие тел. Третий закон Ньютона;
1.11 Трение покоя и трение скольжения. Формула для вычисления модуля силы трения скольжения;
1.12 Деформация тела. Упругие и неупругие деформации. Закон упругой деформации (закон Гука);
1.13 Всемирное тяготение. Закон всемирного тяготения. Сила тяжести. Ускорение свободного падения. Формула для вычисления силы тяжести вблизи поверхности Земли. Искусственные спутники Земли;
1.14 Импульс тела – векторная физическая величина.Импульс системы тел;
1.15 Закон сохранения импульса для замкнутой системы тел. Реактивное движение;
1.16 Механическая работа. Формула для вычисления работы силы. Механическая мощность;
1.17 Кинетическая и потенциальная энергия. Формула для вычисления кинетической энергии. Формула для вычисления потенциальной энергии тела, поднятого над Землёй;
1.18 Механическая энергия. Закон сохранения механической энергии. Формула для закона сохранения механической энергии в отсутствие сил трения. Превращение механической энергии при наличии силы трения;
1.19 Простые механизмы. «Золотое правило» механики. Рычаг. Момент силы. Условие равновесия рычага. Подвижный и неподвижный блоки. КПД простых механизмов;
1.20 Давление твёрдого тела. Формула для вычисления давления твёрдого тела. Давление газа. Атмосферное давление. Гидростатическое давление внутри жидкости.
Формула для вычисления давления внутри жидкости;
1.21 Закон Паскаля. Гидравлический пресс;
1.22 Закон Архимеда. Формула для определения выталкивающей силы, действующей на тело, погружённое в жидкость или газ. Условие плавания тела. Плавание судов и воздухоплавание;
1.23 Механические колебания. Амплитуда, период и частота колебаний.
Формула, связывающая частоту и период колебаний. Механические волны. Продольные и поперечные волны. Длина волны и скорость
распространения волны.Звук. Громкость и высота звука. Скорость распространения звука. Отражение и преломление звуковой волны на границе двух сред. Инфразвук и ультразвук.
ТЕПЛОВЫЕ ЯВЛЕНИЯ
2.1 Молекула – мельчайшая частица вещества. Агрегатные состояния вещества. Модели строения газов, жидкостей, твёрдых тел;
2.2 Тепловое движение атомов и молекул. Связь температуры вещества со скоростью хаотического движения частиц. Броуновское движение. Диффузия. Взаимодействие молекул;
2.3 Тепловое равновесие;
2.4 Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии;
2.5 Виды теплопередачи: теплопроводность, конвекция, излучение;
2.6 Нагревание и охлаждение тел. Количество теплоты. Удельная теплоёмкость;
2.7 Закон сохранения энергии в тепловых процессах. Уравнение теплового баланса;
2.8 Испарение и конденсация. Изменение внутренней энергии в процессе испарения и конденсации. Кипение жидкости. Удельная теплота парообразования;
2.9 Влажность воздуха;
2.10 Плавление и кристаллизация. Изменение внутренней энергии при плавлении и кристаллизации. Удельная теплота плавления;
2.11 Тепловые машины. Преобразование энергии в тепловых машинах. Внутренняя энергия сгорания топлива. Удельная теплота сгорания топлива.
ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ
3.1 Электризация тел;
3.2 Два вида электрических зарядов. Взаимодействие электрических зарядов;
3.3 Закон сохранения электрического заряда;
3.4 Электрическое поле. Действие электрического поля на электрические заряды. Проводники и диэлектрики;
3.5 Постоянный электрический ток. Действия электрического тока. Сила тока. Напряжение;
3.6 Электрическое сопротивление. Удельное электрическое сопротивление;
3.7 Закон Ома для участка электрической цепи. Последовательное соединение проводников. Параллельное соединение проводников равного сопротивления. Смешанные соединения проводников;
3.8 Работа и мощность электрического тока;
3.9 Закон Джоуля – Ленца;
3.10 Опыт Эрстеда. Магнитное поле прямого проводника с током. Линии магнитной индукции. Электромагнит;
3.11 Магнитное поле постоянного магнита. Взаимодействие постоянных магнитов;
3.12 Опыт Ампера. Взаимодействие двух параллельных проводников с током.
Действие магнитного поля на проводник с током;
3.13 Электромагнитная индукция. Опыты Фарадея;
3.14 Переменный электрический ток. Электромагнитные колебания и волны. Шкала электромагнитных волн;
3.15 Закон прямолинейного распространения света;
3.16 Закон отражения света. Плоское зеркало;
3.17 Преломление света;
3.18 Дисперсия света;
3.19 Линза. Фокусное расстояние линзы;
3.20 Глаз как оптическая система. Оптические приборы.
КВАНТОВЫЕ ЯВЛЕНИЯ
4.1 Радиоактивность. Альфа-, бета-, гамма-излучения. Реакции альфа- и бета-распада;
4.2 Опыты Резерфорда по рассеянию альфа-частиц. Планетарная модель атома;
4.3 Состав атомного ядра. Изотопы;
4.4 Ядерные реакции. Ядерный реактор. Термоядерный синтез.
Баллы и оценки
Время написания экзамена – 3 часа (180 минут). Максимально количество баллов: 43. Как принято на ОГЭ, полученные баллы будут переведены в школьную оценку:
Баллы | Оценка |
43 – 34 | 5 |
33 – 22 | 4 |
21 – 11 | 3 |
10 – 0 | 2 |
Как подготовиться к ОГЭ по физике в 2022 году
И сейчас переходим к самому насущному вопросу, как же подготовиться к этому довольно специфическому и трудному экзамену?
Собрали несколько самых топовых советов специально для вас:
- Во время решения пробных вариантов обязательно пользуйтесь разрешенными материалами и приборами;
- Нарешивайте тестовые задания, чтобы встреча с ними на самом экзамене прошла благоприятнее;
- Выписывайте и заучивайте формулы, которые запоминаются хуже всего;
- Не ленитесь просматривать разборы заданий на YouTube;
- Если вы чувствуете, что самостоятельно не справляетесь, то не бойтесь показаться всем “слабаком” и запишитесь на вспомогательные курсы.
Готовьтесь к ЕГЭ, когда все отдыхают
А мы делимся знаниями, которые сами по себе позволяют подготовиться на хорошие баллы и компенсируют репетиторов. В 2021 году средний тестовый балл учеников онлайн-школы Умскул составил 73, что на 19,5 баллов больше, чем усредненные результаты по России. Мы проводим бесплатные вебинары каждую неделю. Чтобы получить доступ к материалам, подпишитесь на бесплатную рассылку ОГЭ или ЕГЭ. Присоединяйтесь к нашему блогу и готовьтесь с лучшими!
В комбинации ЕГЭ при поступлении на технические специальности часто включают физику. Пройти конкурсный отбор без высоких баллов по этому предмету будет сложно. Расскажем, что ждет выпускников 11-х классов на экзамене и как к нему подготовиться.
0
182
Структура ЕГЭ по физике
В 2023 году выпускников ждет 30 заданий разного уровня сложности. У тебя будет 235 минут, чтобы решить все задачи.
Часть 1
В 1-й части экзамена тебя ждут 23 задания, которые требуют краткого ответа. К 11-ти ответ нужно записать в виде одного или двух чисел. Другие 12 заданий рассчитаны на поиск соотношения или выбор нескольких вариантов. Ответ должен быть последовательностью чисел.
Часть 2
Во 2-й части экзамена есть 7 заданий, которые требуют развернутого ответа. Он может содержать полное описание решения задачи или же объяснение процессов на основе явлений и законов физики.
На экзамене можно пользоваться непрограммируемым калькулятором, с помощью которого можно вычислить тригонометрические функции, и линейкой.
Изменения в ЕГЭ по физике 2023
В 2023 году в работу были внесены небольшие поправки.
Изменилась очередность заданий в 1-й части. Следует быть внимательным при подготовке, так как те разделы физики, которые использовались в прошлом году в заданиях 1 и 2, теперь будут применяться в заданиях 20 и 21.
Изменилось задание 30. Разработчики расшили тематику. Для решения вариантов задач нужно было уметь применять законы Ньютона о связанных телах или использовать законы сохранения в механике. В этом году могут встретиться задачи на знание законов статики.
Преподаватели «СОТКИ» всегда следят за изменениями в экзаменационной работе и говорят своих учеников в соответствии с новыми правилами. В «СОТКЕ» ты будешь готовиться по актуальным материалам. Запишись на бесплатный вводный урок, чтобы посмотреть, как проходят наши занятия.
Критерии оценивания ЕГЭ по физике 2023
Для оценки ответов в 1-й части экзамена используют эталонные ответы. Если результат совпадает с эталоном и все символы записаны в указанной инструкцией последовательности, то он считается правильным.
Решение второй части оценивают по отдельным критериям. Задания 24 —
30 будут считаться правильно выполненными, если в ответе представлены все необходимые элементы. В ответах должны быть:
- полное и правильное решение задачи с математическими расчетами и преобразованиями,
- полное и верное объяснение явлений и законов, используемых в задаче,
- положения и законы, закономерности, необходимые для решения,
- описание вводимых буквенных обозначений, если требуется,
- правильный ответ с указанием единицы измерения, если это требуется,
- рисунок, если требуется.
В зависимости от задания количество пунктов может меняться. Задание 30 оценивают еще и по дополнительному параметру: обоснование возможности использования физических законов. За это задание можно получить больше всего баллов.
Все важные темы для ЕГЭ по физике
Все задания экзамена основаны на 4 основных разделах физики.
Механика
Большой раздел физики, посвященный определению механического движения тел и их взаимодействию. В основе механики лежат законы Ньютона.
В работе могут встретиться задачи на знание разделов механики: кинематики, динамики, статики, законов сохранения, основы динамики, механический колебаний и волн.
Молекулярная физика и термодинамика
Молекулярная физика изучает взаимодействие частиц, из которых состоят все тела. Нужно знать все о связях молекул и атомов между собой и с окружающей средой.
В ЕГЭ будут задачи, требующие понимания моделей строения частиц, движения частиц, диффузии, изопроцессов, и других разделов молекулярной физики, а также задачи на знание основ термодинамики.
Электродинамика
В разделе электродинамики рассматриваются характеристики электромагнитного поля и его взаимодействия с телами, которые имеют электрический заряд.
Это тоже довольно большой раздел, на экзамене могут встретиться задания, связанные с электрическим полем, законами постоянного тока, магнитным полем, электромагнитной индукции, электромагнитными колебаниями и волнами, разделом оптики, а также с основами специальной теории относительности.
Квантовая физика
Самый загадочный и сложный, по мнению школьников, раздел. Квантовая физика изучает квантовые системы и законы их движения.
Для решения заданий этой тематиики нужно изучить корпускулярно-волновой дуализм, физику атома и физику атомного ядра
План подготовки к ЕГЭ по физике
Не знаешь, как подготовиться к ЕГЭ по физике? Нужно составить план и следовать ему, тогда ты сможешь все успеть до экзамена.
Изучи документацию
Начни подготовку с подробного изучения документации. Кодификатор с возможными темами, спецификацию и демоверсию экзамена можно скачать на сайте ФИПИ.
Оцени свои знания
Пройди пробные варианты, чтобы понять, на какие разделы стоит сделать упор.
Составь расписание подготовки
Начни с теории, внимательно изучи все разделы из кодификатора, с пониманием процессов и явлений. Учи формулы, их нужно будет знать на экзамене.
Практикуйся
После каждой пройденного раздела переходи к практике, постарайся решить как можно больше задач с разными постановками вопроса.
Что нужно, чтобы сдать экзамен
Чтобы сдать экзамен по физике заниматься придется много, задания охватывают разделы всего курса. Нужен высокий уровень самодисциплины и мотивации, чтобы успеть изучить и понять все материалы.
Правильно составленное расписание занятий и мощные тренировки помогут тебе сдать физику на высокий балл.
Важно внимательно читать условия заданий, чтобы точно знать, по какому пути решения следовать. А также нужно хорошо знать математику и системы расчетов, чтобы решить задачи по физике.
У нас для тебя есть четкий план занятий! В «СОТКЕ» ты сможешь подготовиться к физике с нуля на нужный балл. Мы делаем подробный разбор каждой темы и даем много разнообразной практики. Наши преподаватели и опытный психолог окажут необходимую поддержку, чтобы не выгореть и не растерять мотивацию. А еще ты сможешь изучать 4 предмета по цене одного. Узнать подробности.
1 августа 2021
В закладки
Обсудить
Жалоба
ЕГЭ 2022 по физике состоит из 30 заданий: 23 заданий тестовой, 7 заданий письменной части. Задания разные по уровням сложности: 19 заданий базовой, 7 заданий повышенной и 4 задания высокой сложности.
В тестовой части задания базовой и повышенной сложности: 15 заданий базовой сложности, 4 задания повышенной. В письменной части 3 задания повышенной сложности, 4 задания высокой сложности.
В письменной части номера заданий соответствуют конкретным разделам физики:
№3-8: кинематика
№9-13: термодинамика
№14-19: электродинамика
№20-21: квантовая физика
№1, 2, 22, 23: все разделы.
В письменной части разделение на темы не такое конкретное, но всё же есть структура:
№24 — качественная задача на все разделы физики;
№25 — простая (для письменной части) задача на механику или термодинамику;
№26 — простая задача на электродинамику или квантовую физику;
№27 — сложная задача на термодинамику с элементами из других разделов;
№28, 29 — сложная задача на электродинамику с элементами из других разделов. Задача №28 — на подраздел электричества: электрическое поле, законы постоянного тока. №29 — на подраздел электромагнетизма;
№30 — сложная задача на механику.
В таблице можно наглядно показано, сколько заданий на какой раздел и какие баллы можно за них получить.
Источник: vk.com/lancmanschool_phys
Федор Григорьев,
к.х.н., в.н.с. МГУ им. М.В. Ломоносова, доцент НИЯУ МИФИ,
эксперт в области ЕГЭ по физике, учитель физики Предуниверситария НИЯУ МИФИ
Существует мнение, что физика — самый сложный предмет ЕГЭ. Как сейчас обстоит дело с физикой в общеобразовательных школах? Насколько хорошо школьники ее знают?
Я согласен с тем, что физика — один из самых трудных ЕГЭ. Существует рейтинг сложности предметов, и физика в нем занимает первое место, а дальше уже идут алгебра, геометрия и русский язык. В обычной школе на физику отводится один или два часа в неделю. Чтобы хорошо подготовиться и сдать ЕГЭ, этого недостаточно, даже если ученик обладает определенными способностями к предмету.
В школе ребята сдают два итоговых экзамена по физике — ОГЭ (ГИА) в конце 9 класса и ЕГЭ в конце 11 класса. Между ними есть разница. ГИА устроен таким образом, чтобы его смогли сдать все школьники, это экзамен за среднюю школу, и он довольно простой. Для подготовки к ГИА вполне достаточно двух часов физики в неделю. Что касается ЕГЭ по физике, он рассматривается как заявка на поступление в вуз естественно-научного профиля. Поэтому считается, что здесь выпускник должен продемонстрировать некую базу, необходимую для дальнейшего обучения в вузе. Экзамен сложный и требует соответствующей подготовки. Сейчас школьники имеют массу возможностей для этого. Есть профильные лицеи, при ведущих вузах работают предуниверситарии, во многих обычных школах есть физико-математические классы.
Какие изменения в ЕГЭ по физике произошли в 2017 году? Насколько они усложнили экзамен?
В этом году в экзамене по физике изменена структура первой части работы. Из нее исключены задания с выбором верного ответа и добавлены задания с кратким ответом. Это немного усложнило экзамен. Теперь надо не выбирать ответ, а получить его. Тем не менее эти задачи нельзя назвать сложными, так как они решаются с применением одного из законов. Фактически это задачи «на подстановку». При этом важно записать ответ именно в требуемых единицах измерения.
По вашему опыту преподавания, какие разделы физики самые сложные для школьников? И какие темы самые простые?
Самыми трудными являются атомная и квантовая физика, интерференция, дифракция, фотоэффект, а также элементы ядерной физики. Это специфические темы, слабо связанные с остальными разделами предмета. Там нужно знать специальные законы и правила, что вызывает сложности. Если говорить о наиболее простых темах, то это традиционно кинематика и динамика. Как правило, с этих разделов и начинается изучение физики в школе.
За какие задания на ЕГЭ по физике ставится наибольшее количество баллов?
Самые «весомые» на экзамене — последние пять задач, с № 27 по № 31, раньше это была часть С. Эти задания подразумевают развернутый ответ, где нужно записать полное решение, их проверяет эксперт. За каждую задачу максимально можно получить три балла.
Как эксперт я каждый год проверяю работы на ЕГЭ. И в большинстве случаев листы с этими задачами ребята сдают пустыми. Они за них даже не берутся, потому что не знают, как решить. Но здесь есть нюанс, который я всегда проговариваю со своими учениками. Дело в том, что в критериях оценки этих заданий есть интересный пункт. Если в работе записаны все необходимые законы и с ними произведены некоторые преобразования, считается, что школьник продемонстрировал действия, направленные на получение правильного ответа. А за это уже выставляется один балл из трех. Поэтому даже если вы не знаете, как решить задачу до конца и дойти до ответа, обязательно нужно записать все законы, которые требуются для ее решения.
Два балла набрать за задачу уже существенно сложнее. Такой результат ставится за полное решение с каким-то недочетом, например, вычислительной ошибкой. Зато один балл получить вполне реально для всех школьников, кто знает законы, пусть даже не очень умеет их применять.
Какие есть подводные камни в заданиях части 2? На что нужно обратить внимание при подготовке к заданиям повышенной сложности?
В решении задач № 24-26 нужно применить два закона. Здесь важно обратить внимание, как именно требуется записать ответ, в каких единицах измерения. Например, многие школьники привыкли писать расстояние или путь в метрах, а бывает, что ответ требуется указать в сантиметрах. Даже если решение верно, а ответ записан неправильно, результат будет нулевым.
Задание № 27 вызывает сложности даже у самых сильных выпускников. Здесь нужно не просто решить задачу, а дать анализ явления, то есть написать, какие именно законы применяются. В этом задании следует указать, как правило, три закона. И в объяснении все эти три закона должны быть отражены либо словесно, либо в виде формулы. Если какой-то из законов отсутствует в решении, балл снижается, даже если ответ верный.
Пара слов о рисунке к задаче. Если в условии сказано, что нужен рисунок, то он должен быть в решении. И он оценивается отдельно (один балл). Если по условию рисунок не требуется, за его отсутствие оценка не снижается. Но здесь важно иметь в виду и обратную ситуацию. Если вы сделали рисунок, который не требуется в условии, и показали на нем что-то неправильно, то за это оценка может быть снижена. Поэтому, если рисунок был нужен для решения, но вы в нем сомневаетесь, то лучше его зачеркнуть.
То же относится и к лишним записям. Если записано лишнее, не относящееся к решению задачи, а бывает так, что выпускник начинает писать все подряд, за это могут снять баллы. Записи, не влияющие прямо на ход решения, всегда лучше зачеркнуть — тогда они не проверяются и не влияют на оценку. Это общие рекомендации, которых следует придерживаться при подготовке к заданиям части 2.
Есть ли «формула успеха», которая поможет подготовиться к ЕГЭ по физике наилучшим образом?
Готовиться надо начинать как минимум за год. В первую очередь нужно открыть кодификатор ЕГЭ, в котором указан некий теоретический минимум для экзамена и кратко изложены основные законы. Для начала надо выучить наизусть все из этого минимума. Если самостоятельно можешь воспроизвести законы и формулы из кодификатора, значит, выучил. Теперь нужно отвечать на вопросы из части 1, там только простые задания, на один закон каждое. Это будет главная проверка, как хорошо ты знаешь законы.
Дальше можно приступать к заданиям № 24-26, они сложнее. Если выражаться шахматным языком, это задачи в два хода, для их решения нужно применить два закона. Если они получаются, можно браться за задачи повышенной сложности с развернутым ответом (№ 27-31). Таким образом, здесь требуется постепенно, системно проходить все задания по мере увеличения сложности.
Выпускникам этого года, у которых осталось до экзамена примерно два месяца, я бы посоветовал в первую очередь повторить специфические темы, которые перечислены выше. Дальше нужно решать задачи вразнобой по всем темам. Полезно найти в интернете варианты из досрочной волны ЕГЭ этого года и прорешать их.
Какие источники вы рекомендуете использовать для самостоятельной подготовки к экзамену?
- «Сайт ФИПИ». На нем размещены демоверсии ЕГЭ по физике с 2008 по 2017 год; там же вы найдете и кодификаторы.
- «РешуЕГЭ». Качественный сайт для подготовки по всем предметам ЕГЭ, в том числе по физике.
- Сборники вариантов ЕГЭ прошлых лет. Их можно приобрести в книжных магазинах или найти в интернете.
- Черноуцан А.И., «Физика. Задачи с ответами и решениями». Хороший задачник по всем темам. Единственный его серьезный минус — мало задач на графики, а в ЕГЭ они широко используются.
- Кирик Л.А., Генденштейн Л.Э., Гельфгат И.М., «1001 задача по физике с решениями». Неплохой задачник по разным уровням сложности, с подсказками.
Что нужно делать школьнику, чтобы получить 100 баллов? Реально ли это?
100 баллов получить вполне реально. В прошлом году у меня было два таких ученика, а во всей параллели Предуниверсариума МИФИ (лицей № 1511) было пять стобалльных работ по физике. Для этого не нужно быть гением, но нужны способности и усидчивость. И еще я хочу сказать, что 100 баллов — это в какой-то степени лотерея. На экзамене всегда может попасться экзотический вопрос. Например, кто провел опыты по определению давления света — Лебедев или Столетов? Невозможно ведь знать вообще все. Кроме того, всегда есть вероятность случайной ошибки — каждый год из-за таких ошибок хорошие ученики не добирают один-два балла до 100. Если ты знаешь физику очень хорошо, за 90 баллов ты всегда получишь, а вот для 100 баллов требуется еще и везение. Другое дело, что везет обычно все-таки лучшим.
Готовиться к ЕГЭ по физике 2023 необходимо заранее. В идеале вы должны знать теорию, уметь читать графики и схемы, решать практические задачи.
Структура итогового испытания
Госэкзамен состоит из 30 заданий, которые поделены на две части. Чтобы вы имели представление о структуре тестов, мы предлагаем вам обратить к следующей таблице.
Задания | Тип ответа |
3–5, 9–11, 14-16, 20 | Целое число или десятичная дробь |
1, 2, 6, 7, 12, 13, 17, 18 | Последовательность |
8, 19, 21-23 | Две цифры |
24–30 | Требует развернутого ответа с описанием алгоритма решения |
Блоки теории единого государственного экзамена по физике:
- Механика.
- Физика молекулярная.
- Квантовая физика и составные части астрофизики.
- Электродинамика и спецтеория относительности.
Конечно, выпускнику придется выучить большое количество материала. Для сдачи ЕГЭ по физике необходимо хорошо знать всю учебную программу, поэтому подготовку следует начинать как можно раньше.
Важно не только хорошо разбираться в физике, но еще и отлично знать математику. Данная дисциплина значительно упростит решение практических заданий.
Принципы подготовки
Начинайте с теоретических материалов, а затем переходите изучению понятий и принципов. Разобравшись с какой-то определенной темой, переходите к решению практических задач. Большим подспорьем будут онлайн-тесты, позволяющие проверить знания и выявить явные пробелы.