Целые числа егэ математика профиль теория

Видеоурок: Натуральные, целые, рациональные, иррациональные и действительные числа

Лекция: Целые числа

Целые и натуральные числа

К целым числам можно отнести все числа натурального ряда, им противоположные, а также ноль.

То есть это все не дробные положительные, отрицательные числа, а так же ноль — иными словами, все не дробные числа на числовой прямой. Используя термин «натуральные числа» мы понимаем, что это не отрицательные и не дробные числа.

У Вас может возникнуть вопрос, чему же равно максимальное или минимальное целое число — таковых не существует, поскольку числовой ряд бесконечный.

Среди всего множества чисел, целые числа обозначаются буквой Z, а натуральные — N.

Все натуральные числа используются для счета. Например, на дереве висит 5 яблок, стол сервирован на 8 персон. Мы же не можем сказать, что на столе 7,5 тарелок, или у цветка -3 листка. Числа, противоположные натуральным, — это не дробные и отрицательные числа.

Арифметические действия

Существует несколько математических операций, которые можно производить с целыми числами. Хотелось пояснить каждую из них.

1. Сложение / Вычитание

При необходимости сложить два числа, имеющие одинаковые знаки, следует сложить их модули и поставить общий знак. Например,

 |+4| + |+6| = |+10|,

 |-8| + |-3| = |-11|.

Если необходимо сложить целые числа, которые имеют противоположные знаки, следует от числа с большим модулем вычесть второе число. Перед суммой поставить знак большего модуля. Например,

 |-10| + |+3| = |-7|,

 |+5| + |-2| = |+3|.

2. Умножение / Деление

Если следует получить произведение (частное) двух чисел, следует перемножить их модули. Перед произведением (частным) ставится знак «+» в том случае, если перемножались (делились) числа с одинаковыми знаками. Если умножение (деление) происходило между числами с разными знаками, то ставят знак «-«

Например,

 |-5| *  |-6| = |+30|,

 |+3| * |+7| = |+21|,

 |-4| *  |+3| = |-12|.

Основные правила, используемые при делении, умножении, сложении и вычитании целых чисел.

Рассмотрим арифметические действия, которые производятся над тремя целыми числами а, б, с.

Задачи повышенной сложности

Числовые множества

1. Натуральные числа – числа, которые мы используем для счета предметов, счёт начинается с единицы, поэтому ноль не является натуральным числом. Множество натуральных чисел обозначается $N$.

2. Целые числа – это ноль и «плюс – минус натуральные числа». Множество целых чисел обозначается $Z$.

3. Рациональные числа – это всевозможные дроби ${m}/{n}$, где $m$ — целое число, а $n$ – натуральное число, т.е. $n≠0$. Множество рациональных чисел обозначается $Q$.

Делимость

Число $а$ делится на число $с≠0$, если найдется такое число $b$, что $a=c·b$.

Если число $а$ делится на $с$, то число с называется делителем числа $а$.

Если числа $а$ и $b$ делятся на $с$, то их сумма $а + b$ тоже делится на $с$.

Признаки делимости:

Признак делимости на $2$

Число делится на $2$ тогда и только тогда, когда его последняя цифра ноль или делится на $2$, то есть является чётной.

Признак делимости на $3$

Число делится на $3$ тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на $4$

Число делится на $4$ тогда и только тогда, когда число из двух последних его цифр нули или делится на $4$.

Признак делимости на $5$

Число делится на $5$ тогда и только тогда, когда последняя цифра делится на $5$ (то есть равна $0$ или $5$).

Признак делимости на $6$

Число делится на $6$ тогда и только тогда, когда оно делится на $2$ и на $3$.

Признак делимости на $7$

Число делится на $7$ тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на $7$ (например, $217$ делится на $7$, так как $21 — (2 · 7) = 7$ делится на $7$).

Признак делимости на $8$

Число делится на $8$ тогда и только тогда, когда три его последние цифры — нули или образуют число, которое делится на $8$.

Признак делимости на $9$

Число делится на $9$ тогда и только тогда, когда сумма его цифр делится на $9$.

Признак делимости на $10$

Число делится на $10$ тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на $11$

Число делится на $11$ тогда и только тогда, когда сумма цифр с чередующимися знаками делится на $11$ (то есть $182919$ делится на $11$, так как $1 — 8 + 2 — 9 + 1 — 9 = -22$ делится на $11$). Следствие факта, что все числа вида $10^n$ при делении на $11$ дают в остатке $(-1)^n$.

Признак делимости на $12$

Число делится на $12$ тогда и только тогда, когда оно делится на $3$ и на $4$.

Признак делимости на $13$

Число делится на $13$ тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно $13$ (например, $949$ делится на $13$, так как $94 + (4 · 9) = 130$ делится на $13$).

Признак делимости на $14$

Число делится на $14$ тогда и только тогда, когда оно делится на $2$ и на $7$.

Признак делимости на $15$

Число делится на $15$ тогда и только тогда, когда оно делится на $3$ и на $5.$

Признак делимости на $17$

Число делится на $17$ тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно $17.$

Признак делимости на $19$

Число делится на $19$ тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно $19$ (например, $646$ делится на $19$, так как $64 + (6 · 2) = 76$ делится на $19$).

Четность и нечетность чисел

  1. Число называется четным, если оно делится нацело на $2$. Если $а$ четное число, то его вид можно записать $a=2n$.
  2. Число называется нечетным, если оно не делится нацело на $2$. Если $а$ нечетное число, то его вид можно записать $a=2n+1$.
  3. Сумма любого количества четных слагаемых четна.
  4. Сумма четного количества нечетных слагаемых – четное число.
  5. Сумма нечетного количества нечетных слагаемых – нечетное число.
  6. Если в произведении все множители нечетные числа, то произведение – нечетное число.
  7. Если в произведении попадется хотя бы одно четное число, то в результате умножения получится четное число.

Простые и взаимно простые числа

Простые числа – это целые числа, большие единицы, которые имеют только два положительных делителя, а именно самих себя и $1$.

Взаимно простые числа – это числа, которые не имеют общих делителей, кроме единицы. Например, числа $15$ и $4$ взаимно просты, так как их общий делитель равен $1$.

Свойства взаимно простых чисел.

Пусть $а$ и $b$ – взаимно простые числа, тогда для них справедливы следующие высказывания.

  1. Если некоторое число делится на $а$ и $b$, то оно делится и на их произведение $аb$.
  2. Если произведение $ас$ делится на $b$, то с делится на $b$.
  3. Если целые числа $а$ и $b$ взаимно просты, то их сумма $(а + b)$ и произведение $(а·b)$ так же являются взаимно простыми числами.
  4. Если целые числа $а$ и $b$ взаимно просты, то НОД (наименьший общий делитель) из суммы $(а + b)$ или разности ($а — b$) равен $1$ или $2$.
  5. Любые два последовательных натуральных числа взаимно просты.
  6. Если целые числа $а$ и $b$ взаимно просты, то НОД $(а + b$ или $a^2-ab+b^2)$ равен $1$ или $3$.
Числовые свойства степеней
  1. Точный квадрат целого числа не может оканчиваться цифрами $2, 3, 7, 8,$ а также нечётным количеством нулей.
  2. Квадрат натурального числа либо делится на $4$, либо при делении на $8$ даёт остаток $1$.
  3. Квадрат натурального числа либо делится на $9$, либо при делении на $3$ даёт остаток $1$.
  4. Разность квадратов двух целых чисел одинаковой четности делится на $4$.
  5. При делении на $3$ куб целого числа и само число дают одинаковые остатки $(0,1,2)$.
  6. При делении на $9$ куб целого числа дает в остатке $0,1$ или $8$.
  7. При делении на $4$ куб целого числа дает в остатке $0,1$ или $3$.
  8. Число $m^5$ оканчивается на ту же цифру, что и число $m$.

Среднее арифметическое чисел

Среднее арифметическое нескольких величин — это отношение суммы величин к их количеству.

Чтобы вычислить среднее арифметическое нескольких чисел, нужно взять сумму этих чисел и разделить все на количество слагаемых. Частное и будет средним арифметическим этих чисел.

Среднее геометрическое чисел

Чтобы найти среднее геометрическое чисел надо:

  1. Перемножить все числа
  2. Из полученного выражения в п.1 надо извлечь корень, степени, равной количеству элементов ряда.

Пример:

Найдите среднее геометрическое чисел $3,9,8$

Решение:

1. Найдем произведение чисел $3·9·8=216$

2. Извлечем корень третьей степени из полученного произведения

$√^3{216}=6$ – полученный результат и есть среднее геометрическое.

Ответ: $6$

Факториал

Факториал числа — это произведение натуральных чисел от $1$ до самого числа (включая данное число). Обозначается знаком (!).

$n!=1·2·3·….·n$

Факториал нуля равен единице $0!=1$

Пример:

Вычислите $7!$

Решение:

7!=1·2·3·4·5·6·7=5040

Ответ: 5040

Последовательности

Последовательность чисел – это набор чисел, в котором каждому числу можно присвоить некоторый номер, причем каждому номеру соответствует единственное число данного набора. Номер числа – это всегда натуральное число, нумерация номеров начинается с единицы. Число с номером $n$ (то есть $n$ — ый член последовательности) обычно обозначается $a_n$.

Большинство последовательностей можно задать аналитическим способом.

Последовательность задана аналитически, если указана формула ее $n$ – го члена. Например, $a_n=4n+3$. В данной формуле указав конкретное число $n$, нетрудно найти член последовательности с соответствующим номером. Если номер $n=5$, то подставим $5$ в формулу последовательности, получим числовое выражение, вычислив которое получим член последовательности с соответствующим номером. $a_5=4·5+3=23$

Прогрессии

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.

$а_1$ — первый член арифметической прогрессии

$d$ — разность между последующим и предыдущим членом прогрессии

$d=a_(n+1)-a_n$

$a_n$ — член арифметической прогрессии, стоящий на $n$-ом месте

$n$ — номер места для членов арифметической прогрессии

$S_n$ — сумма первых n членов арифметической прогрессии

Формула, для нахождения n-ого члена прогрессии:

$a_n=a_1+d(n-1)$

Формула суммы первых n членов арифметической прогрессии:

$S_n={(a_1+a_n)·n}/{2}$

Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.

$b_1$ — первый член геометрической прогрессии

$q$ — знаменатель геометрической прогрессии, показывает во сколько раз последующее число больше предыдущего.

$q={b_{n+1}}/{b_n}$

$b_n$ — $n$-ый член геометрической прогрессии

$S_n$ — сумма первых $n$ членов геометрической прогрессии

Формула, для нахождения $n$-ого члена прогрессии:

$b_n=b_1·q^{n-1}$

Формула суммы первых n членов арифметической прогрессии:

$S_n={b_1·(q^n-1)}/{q-1},q≠1$

Вот она! Загадочная. Нестандартная. Задача 18 Профильного ЕГЭ по математике.

Эта задача оценивается в целых 4 первичных балла, и они пересчитываются в 9-10 тестовых.

Можно ничего не знать. И удачно подобрать пример. И получить 1 балл за пункт (а). Во всяком случае, попробовать это сделать.

А можно потратить 2 часа на перебор вариантов… и так ничего и не найти. Если не знаешь секретов решения этой задачи. ОК, некоторые из секретов мы расскажем.

Действительно, пункт (а) в задаче 18 почти всегда решается сразу. Пункт (б) тоже решается быстро, но только если повезет. Пункт (в) без специальной подготовки решить невозможно.

Необходимая теория для решения задач на числа и их свойства — это всего две страницы. Делимость чисел, наибольший общий делитель и наименьшее общее кратное, основная теорема арифметики, признаки делимости на 3, на 4, на 5, на 8, 9, 10 и 11. Ничего сложного.

Повторите также темы: Арифметическая прогрессия и Геометрическая прогрессия.

Начинать лучше всего с подготовительных задач.

Затем стоит освоить метод «Оценка плюс пример». Для того чтобы применить этот метод, от строгих оценок, которые даны в условии (со знаками > или < ), переходим к нестрогим (со знаками ≥ или ≤ ).

Узнать о секретах решения задания 18 Профильного ЕГЭ по математике.

Узнать больше о решении уравнений в целых числах. В школьных учебниках этого нет.

Один из необходимых навыков для решения пункта (в) – работа с неравенствами. В школьных учебниках этого тоже нет.

Многие считают, что если в этой задаче в пункте (а) ответ «да», то во втором обязательно должно быть «нет». Авторитетно заявляем: нет, необязательно! Может быть любое сочетание из «да» и «нет». И может быть «да» в обоих пунктах, и «нет» в обоих.

Если вопрос в этой задаче (неважно, в каком пункте) формулируется как «Может ли быть…» — и дальше некоторое утверждение, и ваш ответ: «Да», — то одного вашего «Да» недостаточно. Нужен пример. И если вы его подберете, вы не обязаны объяснять, как нашли его.

Если ответ на этот вопрос: «Нет», то вам нужно это доказать. «Нет, потому что…» — и приводите свое доказательство.

В общем, проще показать это на примерах:

1. За прохождение каждого уровня игры на планшете можно получить от одной до трёх звёзд. При этом заряд аккумулятора планшета уменьшается на 3 пункта при получении трёх звёзд, на 6 пунктов при получении двух звёзд и на 9 пунктов при получении одной звезды. Витя прошёл несколько уровней игры подряд.

а) Мог ли заряд аккумулятора уменьшиться ровно на 32 пункта?

б) Сколько уровней игры было пройдено, если заряд аккумулятора уменьшился на 33 пункта и суммарно было получено 17 звёзд?

в) За пройденный уровень начисляется 9000 очков при получении трёх звёзд, 5000 — при получении двух звёзд и 2000 — при получении одной звезды. Какое наибольшее количество очков мог получить Витя, если заряд аккумулятора уменьшился на 33 пункта и суммарно было получено 17 звёзд?

а) Заметим, что заряд аккумулятора при прохождении уровня уменьшается на 3, 6 или 9 пунктов, и все эти числа делится на 3. Поскольку 32 не делится на 3, заряд не мог уменьшиться на 32 пункта.

б) Да, на 33 пункта заряд мог уменьшиться.

Пусть на х уровнях получено по 3 звезды, на у уровнях — по 2 звезды и на z уровнях — по 1 звезде.

Тогда:

3x+2y+z=17;

3x+6y+9z=33, то есть x+2y+3z=11.

Сложив уравнения 3x+2y+z=17 и x+2y+3z=11, получим, что x+y+z=7 (пройдено 7 уровней).

Системе удовлетворяют z=1,;y=2,;x=4. При этом заряд аккумулятора уменьшился на 33 пункта.

в) Поскольку x+2y+3z=11 и x+y+z=7, получаем, что y+2z=4. Возможны варианты:

z=0, тогдаy=4,;x=3, получено 47 тысяч очков.

z=1, тогда y=2,;x=4, получено 48 тысяч очков.

z=2, тогда y=0,;x=5, получено 49 тысяч очков – это максимально возможное количество.

Это была простая задача №18. А вот сложная.

2. В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали по крайней мере два учащихся, а суммарно тест писал 51 учащийся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл был целым числом. После этого один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.

а) Мог ли средний балл в школе № 1 вырасти в два раза?

б) Средний балл в школе № 1 вырос на 10%, средний балл в школе № 2 также вырос на 10%. Мог ли первоначальный балл в школе № 2 равняться 1?

в) Средний балл в школе № 1 вырос на 10%, средний балл в школе № 2 также вырос на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.

Пусть в первой школе писали тест n учеников, а во второй m учеников, причем
m=51-n, ngeq 2,;mgeq 2.

Пусть учащиеся первой школы набрали в сумме S_{1} балл, а учащиеся второй S_{2} баллов.

Тогда средние баллы равны frac{S_{1}}{n} и frac{S_{2}}{m}.

Пусть из первой школы во вторую перешел ученик, набравший за тест k баллов.

а) Предположим, что средний балл в школе № 1 вырос в два раза. Тогда frac{2S_1}{n}= frac{S_1 - k}{n-1}.

Отсюда: S_{1}left ( n-2 right )=-kn.

Поскольку kn положительно, получаем, что  – противоречие с условием.

Ответ в пункте (а): нет.

б) Во втором пункте ответ тоже «нет». Предположим, что frac{S_{2}}{m}=1. Получим:

frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n};

frac{S_{2}+k}{m+1}=1,1cdot frac{S_{2}}{m}.
Поскольку m=51-n,

frac{S_{2}+k}{52-n}=1,1cdot frac{S_{2}}{51-n}.

Если frac{S_{2}}{m}=1,то frac{S_{2}}{51-n}.

Тогда:

frac{51-n+k}{52-n}=1,1. Отсюда:

10k+n=62. Очевидно, kleq 6 и n=62-10k.

Что будет, если k=6? Тогда n=62-10k=2.

Подставив эти n и k в уравнение

frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n} , получим: frac{S_{1}-6}{2-1}=1,1cdot frac{S_{1}}{2}, S_{1}=frac{40}{3}, противоречие с условием, поскольку S_{1} – целое. Значит, 

С другой стороны, из условия frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n} получаем, что
10kn=S_{1}left ( 11-n right ), значит, 2leq nleq 10.

Но если n=62-10kleq 10, то 10kgeq 52 и kgeq 6 – получили противоречие.

в) По условию, и в первой, и во второй школах первоначально средний балл был целым числом. Он не может быть равен единице (из пункта (б)). Проверим, может ли он быть равен 2, 3, 4…

Пусть первоначально средний балл равен 2. Тогда

frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n};

frac{S_{2}+k}{52-n}=frac{1,1cdot S_{2}}{51-n};

frac{S_{2}}{m}=2. Условие 2leq nleq 10 по-прежнему должно выполняться.

Преобразуя эти уравнения, получим:

S_{2}=2left ( 51-n right )=102-2n;

frac{102-2n+k}{52-n}=1,1cdot 2;

1020-20n+10k=22cdot 52-22n;

2n+10k=124;

n=62-5k;

2leq 62-5kleq 10.

Значит, kgeq frac{52}{5} и kleq 12. Подходит k = 11 и k = 12.

При таких значениях k уравнение n=62-5k имеет решения n = 7 или n = 2.

Подставим поочередно пары k = 11, n = 7 и k = 12, n = 2 в уравнение

frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n} , получим, что целых решений S_{1} это уравнение не имеет.

Пусть первоначально средний балл равен 3. Тогда

frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n};

frac{S_{2}+k}{52-n}=frac{1,1cdot S_{2}}{51-n};

frac{S_{2}}{m}=3,2leq nleq 10;

frac{153-3n+k}{52-n}=1,1cdot 3;

3n+10k=186, подходит n = 2, k = 18, тогда S_{1}=40.

Например, в первой школе тест писали 2 учащихся и набрали 22 и 18 баллов. В школе № 2 писали тест 49 учащихся и каждый набрал по три балла, а у перешедшего из одной школы в другую учащегося 18 баллов.

Да, непростая это задача, восемнадцатая задача из варинта ЕГЭ. Но если к ней привыкнуть, потренироваться, то вполне можно решить и заработать необходимые на ЕГЭ баллы. Мы учим решать эту задачу на наших интенсивах в ЕГЭ-Студии, а также на Онлайн-курсе. Многим нашим выпускникам она обеспечила поступление на бюджетные отделения ведущих вузов.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание 18. Числа и их свойства u0026#8212; профильный ЕГЭ по Математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

9 марта 2018

В закладки

Обсудить

Жалоба

Теория чисел

Задача 19 профильного ЕГЭ.

В данном материале приведено подробное описание тем, которые используются при решении задачи 19 ЕГЭ. Сюда входят и теория чисел, и прогрессии (арифметическая и геометрическая), и деление с остатков, и признаки делимости чисел. По каждой из этих тем приведены методы решения и разбор примеров.

Автор: Колесник Марина Анатольевна.

19pro.docx

ЕГЭ №18 (19). Теория чисел. Рекуррентная задача – самая сложная задача мартовского статграда 2021

ЕГЭ 18 (19) – это задачи на теорию чисел, на свойства чисел, на последовательности. Что такое рекуррентная последовательность?

Сейчас узнаете…

Последовательности чисел нам хорошо известны ещё с 8 – 9 класса. Например, прогрессии – арифметическая и геометрическая.

На ЕГЭ довольно часто попадаются задачи на последовательности – как на стандартные прогрессии, так и на необычные – у каждой из которых какая-то своя формула. И формулы у таких последовательностей обычно рекуррентные – то есть такие, когда каждое следующее число вычисляется через значения каких-то предыдущих.

Например, самая известная не-прогрессия – это последовательность Фибоначчи: каждое число равно сумме двух предыдущих.

Такие последовательности – это не просто очередные бессмысленные упражнения математиков (которым, как известно, делать нечего, вот и грузят всех своими задачками). Последовательности очень часто встречаются нам в жизни, и с их помощью очень удобно описывать некоторые процессы.

Например, говорят, что Фибоначчи свою последовательность придумал, наблюдая за размножением кроликов: первые 2 месяца жизни кролик просто растёт, а потом начинает каждый месяц рожать нового кролика (в среднем).

Сколько будет кроликов через полгода? Через год? В задаче 18 (19 из последнего статграда нам попалась как раз такая последовательность.

Смотрите видео, и вы научитесь исследовать такие последовательности, а также узнаете, как правильно решается эта задача.

Числа и их свойства.

Задание №19 ЕГЭ по математике

Оглавление

1. Введение 2

2. Теория чисел 3

2.1. Множества чисел, иерархия множеств 3

2.2. Определение делимости 4

2.2.1. Делимость целых чисел, простые числа, НОД, свойства делимости 4

2.2.2. Чётные и нечётные числа 5

2.2.3. Основная теорема арифметики 6

2.2.4. Признаки делимости целых чисел. 6

2.3. Среднее арифметическое и среднее геометрическое 7

2.4. Прогрессии и их свойства, формулы 8

2.4.1 Арифметическая прогрессия 8

2.4.2 Геометрическая прогрессия 8

3. Методы решения задания № 19 10

3.1. Построение математической модели 10

3.2. Метод кругов Эйлера 10

3.3. Метод математической индукции 10

3.4. Принцип Дирихле 12

3.5. Перебор значений по заданным условиям 12

4. Заключение 13

Источники информации 14

Приложение 15

  1. Введение

Понятие числа возникло ещё в древности из практической потребности людей, когда людям были необходимы меры счёта и измерения. Пифагорейцы считали числа «причиной и началом» вещей. Со временем понятие числа стало основным понятием математики.

Свойства чисел — одна из интереснейших тем для изучения. Задание №19 единого государственного экзамена «Числа и их свойства» — одно из самых интересных и сложных заданий второй части. Знания, необходимые для решения данной задачи, ученики получают ещё в средней школе.

Целью работы является

  • Изучение алгоритмов и способов решения задания №19 ЕГЭ по профильной математике.

Объект исследования: задание №19 профильного ЕГЭ по математике

Методы исследования:

  1. Изучение теоретического материала;

  2. Решение задач ЕГЭ прошлых лет.

Поставлены следующие задачи:

  1. Изучить теоретический материал для решения задания №19;

  2. Научиться решать задание №19 ЕГЭ по математике профильного уровня, изучить основные методы решения;

  3. Разобрать задания №19 из вариантов ЕГЭ прошлых лет;

  4. Решить и оформить несколько заданий №19 ЕГЭ;

  1. Теория чисел

2.1. Множества чисел, иерархия множеств

Число — основное понятие математики, которое используется для количественной характеристики, сравнения, нумерации объектов и их частей. Выделяют следующие множества чисел:

Натуральные числа — числа, используемые при счете (перечислении) предметов:

N = {1 ,2, 3, …}

Целые числа — включают в себя натуральные числа, числа противоположные натуральным (т.е. с отрицательным знаком) и ноль.

Z = {…, -2, -1, 0, 1, 2, …}

Рациональные числа — числа, представляемые в виде обыкновенной дроби a / b, где a ∈ b, ∈ N, b ≠0

Q = {m / n, m ∈ Z, n ∈ N}

При переводе в десятичную дробь рациональное число представляется конечной или бесконечной периодической дробью.

Иррациональные числа — числа, которые представляются в виде бесконечной непериодической десятичной дроби. Обозначается как I. Типичным примером является π.

Действительные (вещественные) числа — объединение рациональных и иррациональных чисел. Обозначается R = {I + Q}

Комплексные числа – множество чисел C.

C = {x + iy, где x ∈ R и y ∈ R}, где i − мнимая единица.

Рис. 1 Иерархия множеств

2.2. Определение делимости 2.2.1. Делимость целых чисел, простые числа, НОД, свойства делимости

Опр. Пусть n – целое число (n ∈ Z), m – натуральное число (m ∈ N). Говорят, что n делится нацело на m, если существует такое целое число p ∈ Z, такое, что

n = mp

m называют делителем числа n, n называют делимым, а p называют частным от деления n на m

Любое целое число n можно представить в виде n = mp + q, где m называют делителем числа n, n называют делимым, а p называют частным от деления n на m, а q – остатком от деления n на m. qm называют делителем числа n, n называют делимым, а p называют частным от деления n на m.

Число q находится на отрезке от 0 до m – 1.

Опр. Натуральное число a1 называется простым, если оно имеет ровно два натуральных делителя: 1 и само себя. Простых чисел бесконечное множество.

Множество простых чисел: 2, 3, 5, 7, 11, 13, …

Опр. Наибольшее натуральное число, являющееся натуральным делителем каждого из натуральных чисел m и n, называют наибольшим общим делителем этих чисел и обозначают НОД (m, n).

Например, если m = 36 и n = 84, то НОД (36, 84) = 12.

Опр. Два числа называются взаимно простыми, если их НОД равен 1.

Например: 14 и 25, так как НОД (14, 25) = 1

Пусть a ∈ Z, b ∈ Z, m ∈ N, то справедливы следующие свойства делимости:

1.Если a и b делятся на m, то числа a — b и a + b также делятся на m.

2. Если a и b делятся на m, то при любых целых числах k и l число ak + bl также делится на m.

3. Если a делится на m, а b не делится на m, то числа a + b и a — b также не делятся на m.

4. Если a делится на m, а m делится на k ∈ N, то число a также делится на k.

5. Если a делится на m, а b не делится на m, то число ab делится на m.

6. Если a делится на каждое из чисел m и k, причем НОД (m, k) = 1, то a делится на произведение mk.

7. Если a делится на m, то ak делится на mk при любом k ∈N.

8. Если ab делится на m и b взаимно просто с m, то a делится на m.

9. В ряде из n подряд идущих целых чисел хотя бы одно делится на n нацело.

2.2.2. Чётные и нечётные числа

Опр. Целое число называется чётным, если оно делится на 2 без остатка

a – чётное число, если a = 2n, где n ∈ Z {…, -4, -2, 0, 2, 4, …}

Опр. Целое число называется нечётным, если при делении на 2 оно даёт остаток 1

a – нечётное число, если a = 2n – 1, где n ∈ Z {…, -3, -1, 1, 3, …}

2.2.3. Основная теорема арифметики

Для каждого натурального числа n 1 существует единственное разложение на простые множители. Это значит, что для любого натурального числа два разложения на простые множители могут отличаться только порядком этих множителей.

2.2.4. Признаки делимости целых чисел.

Признак делимости на 2.

Число делится на 2 тогда и только тогда, когда его последняя цифра чётна.

Признак делимости на 10.

Число делится на 10 тогда и только тогда, когда его последняя цифра равна 0.

Признак делимости на 5.

Число делится на 5 тогда и только тогда, когда его последняя цифра равна 0 или 5.

Признак делимости на 3.

Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на 9.

Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 9.

Признак делимости на 4.

Число делится на 4 тогда и только тогда, когда двузначное число, образованное двумя его последними цифрами (в том же порядке), делится на 4.

Признак делимости на 8.

Число делится на 8 тогда и только тогда, когда трёхзначное число, образованное тремя его последними цифрами (в том же порядке), делится на 8.

Признак делимости на 11.

У данного числа найдём сумму цифр, стоящих на чётных местах, и сумму цифр, стоящих на нечётных местах. Число делится на 11 тогда и только тогда, когда разность этих сумм делится на 11 (в частности, равна нулю).

Признак делимости на 13.

Число делится на 13, если знакочередующаяся сумма его трёхзначных граней делится на 13.

2.3. Среднее арифметическое и среднее геометрическое

Опр. Среднее арифметическое множества чисел — число, равное сумме всех чисел множества, делённой на их количество.

Пусть задано множество чисел A = {a1, a2, a3, …, an}, тогда среднее арифметическое этого множества (Q) равно Q = (a1 + a2 + a3 + … + an) / n

Среднее арифметическое множества, в котором все числа равны, является каждое число этого множества.

Опр. Средним геометрическое нескольких положительных вещественных чисел – такое число, которым можно заменить каждое из этих чисел так, чтобы их произведение не изменилось

Пусть задано множество чисел B= {b1, b2, b3, …, bn}, тогда среднее арифметическое этого множества (M) равно M =

Опр. Среднее геометрическое двух чисел называется их средним пропорциональным.

2.4. Прогрессии и их свойства, формулы

Опр. Прогрессия — последовательность величин, каждая следующая из которых находится в некой, общей для всей прогрессии, зависимости от предыдущей.

2.4.1 Арифметическая прогрессия

Опр. Арифметическая прогрессия — прогрессия, каждый следующий член которой равен предыдущему, увеличенному на фиксированное для прогрессии число.

Общий вид арифметической прогрессии:

a1, a1 + d, a1 + 2d, …, a1 + (n — 1)d

Рекуррентная формула n – го члена арифметической прогрессии:

an= an-1 + d

Формула n – го члена арифметической прогрессии:

an= a1 + (n – 1)d

Заметим, что если d0, то прогрессия возрастает, если d

d = an – an-1

Сумма n первых членов арифметической прогрессии (Sn):

Sn =

Sn =

2.4.2 Геометрическая прогрессия

Опр. Геометрическая прогрессия – прогрессия, в которой каждый следующий член больше предыдущего в фиксированное количество раз.

Общий вид геометрической прогрессии: b1, b1q, b1q2, b1q3, …, b1qn-1

Рекуррентная формула n члена геометрической прогрессии:

bn = bn-1q

Формула n члена геометрической прогрессии: bn =b1qn-1

Если b1 0 и q 0, то прогрессия является возрастающей, если 0qqq = 0 – стационарной

q =

Характеристическое свойство геометрической прогрессии:

Сумма n первых членов геометрической прогрессии (Sn):

Sn =

Сумма всех членов бесконечно убывающей прогрессии: (S):

S =

  1. Методы решения задания № 19

3.1. Построение математической модели

Опр. Метод построения математической модели – главная составляющая решения любой математической задачи. Суть метода заключается в переходе от бытового языка (например, русского) к языку математическому. Так, например, запись «у Пети было 12 яблок» можно представить, как «П = 12». То есть мы переходим к уравнениям, системам уравнений, решение которых приводит к решению данной задачи.

3.2. Метод кругов Эйлера

Опр. Диаграмма Эйлера — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления.

Первое их использование приписывают Леонарду Эйлеру. Используется в математике, логике, менеджменте и других прикладных направлениях.

Диаграммы Эйлера используются при решении задач на множества.

Рис 2. Диаграмма Эйлера

3.3. Метод математической индукции

Опр. Математическая индукция — метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — базис индукции, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n +1 — шаг индукции, или индукционный переход.

Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино. Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход). Тогда, если мы толкнём первую косточку (это база индукции), то все косточки в ряду упадут.

Докажем формулу суммы натуральных чисел от 1 до n, обозначим её как S(n):

  • Базовый случай n = 1, сумма чисел от 1 до 1 равна 1, проверим формулу подставив в неё n = 1:

  • Значит, наше утверждение верно для базового случая n.

  • Докажем истинность для утверждения n +1:

  • Подставим n + 1 в исходную формулу:

  • Заметим, что:

  • Тогда:

  • Вынесем n + 1 за скобку:

  • Мы доказали истинность формулы для n + 1, а значит она верна для любого натурального числа n.

3.4. Принцип Дирихле

Опр. Принцип Дирихле — утверждение, сформулированное немецким математиком Дирихле в 1834 году, устанавливающее связь между объектами («кроликами») и контейнерами («клетками») при выполнении определённых условий.

Формулировка принципа Дирихле также может пригодиться при решении задачи № 19 ЕГЭ по математике:

Если кролики рассажены в клетки, причём число кроликов больше числа клеток, то хотя бы в одной из клеток находится более одного кролика.

3.5. Перебор значений по заданным условиям

Перебор значений по заданным условиям также является методом решения задачи. Иногда задание №19 можно решить подбором, пункты «а» и «б» можно доказать, попросту приведя примеры и дав ответ «да» / «нет».

  1. Заключение

Результатом работы стала собранная в одном месте теория, необходимая для решения задания №19 профильного ЕГЭ по математике. Также были решены задания ЕГЭ прошлых лет, задания с сайта РЕШУ ЕГЭ и сборника ЕГЭ по профильной математике 2020 года. Всего было решено10 задач №19 второй части профильного ЕГЭ по математике.

Поставленные задачи работы выполнены: теория для решения задания изучена, задания №19 ЕГЭ прошлых лет разобраны и оформлены в соответствии с требованиями экзамена.

Источники информации

  1. «Задачи на целые числа» Корянов А.Г., Прокофьев А.А. — Р. на Д.: 2016. — 272 с.

  2. «Математика абитуриенту», В. В. Ткачук 4-е изд., испр. и доп. — М.: МЦНМО, 2007. — 976с.

  3. «Математика. Профильный уровень. Типовые экзаменационные варианты 2020», И. В. Ященко М.: Издательство «Национальное образование», 2020 – 256 с. – (ЕГЭ.ФИПИ – школе)

  4. «Математика: Новый полный справочник школьника для подготовки к ЕГЭ», А. Г. Мордкович, В. И. Глизбург, Н. Ю. Лаврентьева – Москва: Издательство АСТ, 2018 – 351 с.

  5. Борис Трушин [Электронный ресурс], URL: https://www.youtube.com/user/trushinbv

  6. Википедия – свободная энциклопедия [Электронный ресурс], URL: https://ru.wikipedia.org/ (дата обращения: 19.01.2020)

  7. Высшая математика [Электронный ресурс], URL: http://www.math24.ru/ (дата обращения: 19.01.2020)

  8. Подготовка к олимпиадам и ЕГЭ по математике и физике [Электронный ресурс], URL: http://mathus.ru/ (дата обращения 06.01.2020)

  9. Публичная страница канала «Wild Mathing» «ВКонтакте» [Электронный ресурс], URL: https://vk.com/wildmathing (дата обращения 08.01.2020)

  10. Сдам ГИА: РЕШУ ЕГЭ [Электронный ресурс], URL: https://ege.sdamgia.ru/

Приложение

  1. З адание №19 демоверсии ЕГЭ 2020 года

  1. Задание №19 реального ЕГЭ 2017 года

  1. З адание №19 реального ЕГЭ 2018 года

  1. Задание №19 реального ЕГЭ 2018 года

  1. Тренировочный вариант Ларина №42 с сайта РЕШУ ЕГЭ.

  1. Тренировочный вариант Ларина №42 с сайта РЕШУ ЕГЭ.

  1. З адание №19 из сборника И. В. Ященко 2020 год (вар. 35).

  1. Задание №19 из сборника И. В. Ященко (вар. 20)

  1. Задание №19 из демоверсии ЕГЭ 2018 года.

  1. Задание №19 с сайта РЕШУ ЕГЭ № 514744



Скачать материал

Теория и практика для решения задачи 19: Арифметика (подготовка к ЕГЭ)Яковле...



Скачать материал

  • Сейчас обучается 32 человека из 22 регионов

  • Сейчас обучается 140 человек из 49 регионов

  • Сейчас обучается 1081 человек из 83 регионов

Описание презентации по отдельным слайдам:

  • Теория и практика для решения задачи 19: Арифметика (подготовка к ЕГЭ)Яковле...

    1 слайд

    Теория и практика для решения задачи 19: Арифметика
    (подготовка к ЕГЭ)
    Яковлева Татьяна Петровна,
    доцент кафедры математики и физики
    Камчатского государственного университета имени Витуса Беринга,
    кандидат педагогических наук, доцент,
    г. Петропавловск — Камчатский

  • Делимость и её свойства.

    2 слайд

    Делимость и её свойства.

  • Примеры решения задач:Продолжение

    3 слайд

    Примеры решения задач:
    Продолжение

  • Признаки делимости.

    9 слайд

    Признаки делимости.

  • Простые и взаимно простые числа.

    10 слайд

    Простые и взаимно простые числа.

  • Примеры решения задач:

    11 слайд

    Примеры решения задач:

  • Продолжение

  • Остатки.

  • Примеры решения задач:

    18 слайд

    Примеры решения задач:

  • Продолжение

  • Десятичная запись числа.

    27 слайд

    Десятичная запись числа.

  • Примеры решения задач:

    28 слайд

    Примеры решения задач:

  • Продолжение

  • Продолжение

  • НОД и НОК.

  • Примеры решения задач:

    37 слайд

    Примеры решения задач:

  • Продолжение

  • Основная теорема арифметики.

    44 слайд

    Основная теорема арифметики.

  • Примеры решения задач:

    45 слайд

    Примеры решения задач:

  • Спасибо за внимание!

    48 слайд

    Спасибо за внимание!

  • Список используемой литературы:Андреева А.О. ЕГЭ по математике. Практическа...

    49 слайд

    Список используемой литературы:
    Андреева А.О. ЕГЭ по математике. Практическая подготовка. – СПб.: БХВ-Петербург, 2014. – 256 с.
    Вольфсон Г.И. ЕГЭ 2018. Математика. Арифметика и алгебра. Задача 19 (профильный уровень) / Под ред. И.В. Ященко. – М.: МЦНМО, 2018. – 112 с.
    Ерина Т.М. ЕГЭ 2020. 100 баллов. Математика. Профильный уровень. Практическое руководство / Т.М. Ерина. – М.: Издательство «Экзамен», 2020. – 350 с.
    Лаппо Л.Д. ЕГЭ 2020. Эксперт. Математика. Профильный уровень / Л.Д. Лаппо, М.А. Попов. – М.: Издательство «Экзамен», 2020. – 350 с.
    Мордкович А.Г. Математика: Полный справочник / А.Г. Мордкович, В.И. Глизбург, Н.Ю. Лаврентьева. – М.: АСТ: Астрель, 2016. – 335 с.
    Семенов А.В. Основной государственный экзамен. Математика. Комплекс материалов для подготовки учащихся. Учебное пособие. / А.В. Семенов, А.С. Трепалин, И.В. Ященко, П.И. Захарова, И.Р. Высоцкий; под ред. И.В. Ященко; Московский Центр непрерывного образования. – М.: Интеллект-Центр, 2017. – 248 с.
    Садовничий Ю.В. ЕГЭ. Математика. Профильный уровень. Задания с развернутым ответом / Ю.В. Садовничий. – М.: Издательство «Экзамен», 2020. – 654 с.
    Третьяк И.В. ОГЭ. Математика: универсальный справочник / И.В. Третьяк. — Москва : Эксмо, 2016. – 352 с.

Краткое описание документа:

Презентация «Теория и практика для решения задачи 19: Арифметика (подготовка к ЕГЭ)» предназначена систематизировать, обобщить знания и умения для решения задачи 19, посвященных разделу «Арифметика». Теоретический и практический материал включает: делимость и ее свойства, признаки делимости, остатки, десятичную запись числа, НОД и НОК, основную теорему арифметики. Материал полезен для подготовки к ЕГЭ по математике.

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 157 019 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Алгебра и начала математического анализа. Углубленный уровень», Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И.

    «Алгебра и начала математического анализа. Углубленный уровень», Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И.

    Тема

    § 1. Действительные числа

    Больше материалов по этой теме

  • «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др.

    «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др.

    Тема

    Глава 2. Делимость чисел

    Больше материалов по этой теме

  • «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.

    «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.

    Тема

    1.8. Делимость целых чисел

    Больше материалов по этой теме

  • «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углублённый уровень)», Пратусевич М.Я., Столбов К.М., Головин А.Н.

    «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углублённый уровень)», Пратусевич М.Я., Столбов К.М., Головин А.Н.

    Тема

    Глава II. Целые числа

    Больше материалов по этой теме

  • «Алгебра и начала математического анализа (базовый и углубленный уровень) (в 2 частях),  изд-во «Мнемозина»», Мордкович А.Г.

    «Алгебра и начала математического анализа (базовый и углубленный уровень) (в 2 частях), изд-во «Мнемозина»», Мордкович А.Г.

    Тема

    Глава 1. Действительные числа

    Больше материалов по этой теме

  • «Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

    «Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

    Тема

    Глава 1. Действительные числа

    Больше материалов по этой теме

  • «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углубленный уровни)», Алимов Ш.А., Колягин Ю.М., Ткачёва М.В. и др.

    «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углубленный уровни)», Алимов Ш.А., Колягин Ю.М., Ткачёва М.В. и др.

    Тема

    Глава 1. Действительные числа

    Больше материалов по этой теме

Другие материалы

  • 18.12.2020
  • 150
  • 1

«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С.

«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С./ Под ред. Подольского В.Е.

«Математика (в 3 частях)», Петерсон Л.Г.

«Математика (в 2 частях)», Виленкин А.Н., Жохов В.И., Чесноков А.С. и др.

«Математика (в 2 частях)», Виленкин А.Н., Жохов В.И., Чесноков А.С. и др.

«Математика. Учебник для специальных (коррекционных) образовательных учреждений VIII вида*», Капустина Г.М., Перова М.Н.

  • 18.12.2020
  • 116
  • 0
  • 18.12.2020
  • 163
  • 1

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»

  • Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»

  • Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»

  • Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»

  • Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»

  • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»

  • Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»

  • Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»

  • Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»

  • Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

  • Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Понравилась статья? Поделить с друзьями:
  • Цвета пламени металлов таблица егэ
  • Целые поколения землепашцев ни зимой ни летом егэ
  • Целеустремленность это определение для сочинения
  • Цвета пламени егэ химия
  • Целые два дня я готовился к экзамену