Цепочки с хромом химия егэ

Хром

1. Положение хрома в периодической системе химических элементов
2. Электронное строение хрома
3. Физические свойства
4. Нахождение в природе
5. Способы получения
6. Качественные реакции
7. Химические свойства

Оксид хрома (III)

  • Способы получения
  • Химические свойства

Оксид хрома (II)

  • Химические свойства

Оксид хрома (VI)

  • Способы получения
  • Химические свойства

Гидроксид хрома (III)

  • Способы получения
  • Химические свойства

Гидроксид хрома (II)

  • Способы получения
  • Химические свойства

Соли хрома

Хром

Положение в периодической системе химических элементов

Хром расположен в 6 группе  (или в  побочной подгруппе VI группы в короткопериодной форме ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение атома хрома

Электронная конфигурация  хрома в основном состоянии:

+24Cr 1s22s22p63s23p63d54s1 1s  2s 2p

3s   3p    4s     3d 

Примечательно, что у атома хрома уже в основном энергетическом состоянии происходит провал (проскок) электрона с 4s-подуровня на 3d-подуровень.

Физические свойства 

Хром – твердый металл голубовато-белого цвета. Очень чистый хром поддается механической обработке.  В природе встречается в чистом виде и широко применяется в различных отраслях науки, техники и производства. Чаще всего хром применяется, как компонент сплавов, которые используются при изготовлении медицинского или химического технологического оборудования и приборов.

Изображение с портала top10a.ru

Температура плавления 1890оС, температура кипения 2680оС, плотность хрома 7,19 г/см3.

Нахождение в природе

Хром – довольно распространенный металл в земной коре (0,012 масс.%). Основной минерал, содержащий хром хромистый железняк FeO·Cr2O(или Fe(CrO2)2).

Способы получения 

Хром получают из хромита железа. Для восстановления используют кокс:

Fe(CrO2)2   +  4C   →    Fe   +    2Cr +   4CO

Еще один способ получения хрома: восстановление из оксида алюминием (алюмотермия):

2Al   +   Cr2O3  →   2Cr   +  Al2O3

Качественные реакции

Качественная реакция на ионы хрома +2 – взаимодействие избытка солей хрома (II) с щелочами. При этом образуется коричневый аморфный осадок гидроксида хрома (II).

Например, хлорид хрома (II) взаимодействует с гидроксидом натрия:

CrCl2   +   2NaOH   →   Cr(OH)2   + 2NaCl

Качественная реакция на ионы хрома +3 – взаимодействие избытка солей хрома (III) с щелочами. При этом образуется серо-зеленый аморфный осадок гидроксида хрома (III).

Например, хлорид хрома (III) взаимодействует с гидроксидом калия:

CrCl3   +   3KOH   →   Cr(OH)3   + 3KCl

При дальнейшем добавлении щелочи амфотерный гидроксид хрома (III) растворяется с образованием комплексной соли:

Cr(OH)3   +   3KOH   →  K3[Cr(OH)6]

Обратите внимание,  если мы поместим соль хрома (III) в избыток раствора щелочи, то осадок гидроксида хрома (III) не образуется, т.к. в избытке щелочи соединения хрома (III) сразу переходят в комплекс:

CrCl3   +   6KOH   →   K3[Cr(OH)6]   + 3KCl

Соли хрома можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей хрома (II) с водным раствором аммиака также образуется коричневый осадок гидроксида хрома (II).

CrCl2 + 2NH3  + 2H2O   →   Cr(OH)2↓ + 2NH4Cl

Cr2+ + 2NH3   +  2H2O    →   Cr(OH)2↓ + 2NH4+

При взаимодействии растворимых солей хрома (III) с водным раствором аммиака также образуется серо-зеленый осадок гидроксида хрома (III).

CrCl3 + 3NH3   +  3H2O     →    Cr(OH)3↓ + 3NH4Cl

Cr3+ + 3NH3    +  3H2O    →    Cr(OH)3 ↓ + 3NH4+

Химические свойства

В соединениях хром может проявлять степени окисления от +1 до +6. Наиболее характерными являются соединения хрома со степенями окисления +3 и +6. Менее устойчивы соединения хрома со степенью окисления +2. Хром образует комплексные соединения с координационным числом 6.

1. При комнатной температуре хром химически малоактивен из-за образования на его поверхности тонкой прочной оксидной пленки. При нагревании оксидная пленка хрома разрушается, и он реагирует практически со всеми неметаллами: кислородом, галогенами, серой, азотом, кремнием, углеродом, фосфором.

1.1. При взаимодействии хрома с галогенами образуются галогениды:

2Cr  +  3Cl2  → 2CrCl3

1.2. Хром реагирует с серой с образованием сульфида хрома:

2Cr  +  3S  → Cr2S3

1.3. Хром взаимодействует с фосфором. При этом образуется бинарное соединение – фосфид хрома:

Cr  +   P   →  CrP

1.4. С азотом хром реагирует при нагревании до 1000оС с образованием нитрида:

2Cr  +  N2   →   2CrN

1.5. Хром не взаимодействует с водородом.

1.6. Хром взаимодействует с кислородом с образованием оксида:

4Cr  +  3O2  →  2Cr2O3

2. Хром взаимодействует и со сложными веществами:

2.1. Хром реагирует с парами воды в раскаленном состоянии:

2Cr  +  3H2O (пар)  → Cr2O3  +  3H2

2.2. В ряду напряжений хром находится левее водорода и поэтому в отсутствии воздуха может вытеснить водород из растворов минеральных кислот (соляной и разбавленной серной кислоты), образуя соли хрома (II).

Например, хром бурно реагирует с соляной кислотой:

Cr   +  2HCl    →   CrCl2   +  H2

В присутствии кислорода образуются соли хрома (III):

4Cr   +   12HCl  +  3O2   →   4CrCl3   +  6H2O

2.3. При обычных условиях хром не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат хрома (III) и вода:

2Cr  +  6H2SO4   →   Cr2(SO4)3  +  3SO2  +  6H2O

2.4. Хром не реагирует при обычных условиях с концентрированной азотной кислотой также из-за пассивации.

Только при сильном нагревании концентрированная азотная кислота растворяет хром:

Cr  +  6HNO3   →   Cr(NO3)3  +  3NO2  +  3H2O

2.5. Растворы щелочей на хром практически не действуют.

2.6. Однако хром способен вытеснять многие металлы, например медь, олово, серебро и др. из растворов их солей.

Например, хром реагирует с хлоридом меди с образованием хлорида хрома (III) и меди:

2Cr   +   3CuCl2   →    2CrCl3   +  3Cu

Восстановительные свойства хрома также проявляются при взаимодействии его с сильными окислителями: пероксидом натрия, нитратами и нитритами, хлоратами в щелочной среде.

Например, при сплавлении хрома с хлоратом калия в щелочи хром окисляется до хромата калия:

Cr  + KClO3  + 2KOH  →  K2CrO+ KCl  +  H2O

Хлорат калия и нитрат калия также окисляют хром:

2Cr  + KClO3   →   Cr2O3  +  KCl

2Cr  + 3KNO3   →   Cr2O3  +  3KNO2

Оксид хрома (III)

Способы получения

Оксид хрома (III) можно получить различными методами:

1. Термическим разложением гидроксида хрома (III): 

2Cr(OH)3   →   Cr2O3   +  3H2O

2. Разложением дихромата аммония:

(NH4)2Cr2O7    →    Cr2O3   +   N2   +   4H2O           

 3. Восстановлением дихромата калия углеродом (коксом) или серой:

2K2Cr2O7   +   3C     →   2Cr2O3   +   2K2CO +   CO2

K2Cr2O7   +   S    →     Cr2O3   +   K2SO4

Химические свойства

Оксид хрома (III) – типичный амфотерный оксид. При этом оксид химически довольно инертен. В высокодисперсном состоянии с трудом взаимодействует с кислотами и щелочами.

1. При сплавлении оксида хрома (III) с основными оксидами активных металлов образуются соли-хромиты.

Например, оксид хрома (III) взаимодействует с оксидом натрия:

Na2O  +  Cr2O3  → 2NaCrO2

2. Оксид хрома (III) взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солихромиты, а в растворе реакция практически не идет. При этом оксид хрома (III) проявляет кислотные свойства.

Например, оксид хрома (III) взаимодействует с гидроксидом натрия в расплаве с образованием хромита натрия и воды:

2NaOH  + Cr2O3  → 2NaCrO+  H2O

3. Оксид хрома (III) не взаимодействует с водой.

4. Оксид хрома (III) проявляет слабые восстановительные свойства. В щелочных расплавах окислителей окисляется до соединений хрома (VI).

Например, оксид хрома (III) взаимодействует с нитратом калия в щелочной среде:

Cr2O3  +  3KNO3  +  4KOH   →  2K2CrO4  +   3KNO2   +   2H2O

Оксид хрома (III) окисляется бромом в присутствии гидроксида натрия:

Cr2O3  +  3Br2  +  10NaOH  →  2Na2CrO4  +   6NaBr   +   5H2O

Озоном или кислородом:

Сr2O3  +  O3  +  4KOH     →   2K2CrO4  +  2H2O

Cr2O3  +  3O2 +   4Na2CO3  →   2Na2CrO4  + 4CO2

Нитраты и хлораты в расплаве щелочи также окисляют оксид хрома (III):

Сr2O3  +  3NaNO3  +  2Na2CO3   →  2Na2CrO4  +  2CO2  +  3NaNO2

Cr2O3  +   KClO3    +   2Na2CO3    →    2Na2CrO4  +  KCl    +  2CO2

5. Оксид хрома (III) в высокодисперсном состоянии при сильном нагревании взаимодействует с сильными кислотами.

Например, оксид хрома (III) реагирует с серной кислотой:

Cr2O3   +  3H2SO4   →  Cr2(SO4)3   +  3H2O

6. Оксид хрома (III) проявляет слабые окислительные свойства при взаимодействии с более активными металлами.

Например, оксид хрома (III) реагирует с алюминием (термит):

2Al  +  Cr2O →  Al2O3  +  2Cr

Реакция очень экзотермическая, сопровождается выделением большого количества света:

Материал с сайта pikabu.ru

Если сжечь большой объем термита в тигле, то можно получить металлический хром:

Материал с сайта pikabu.ru

7. Оксид хрома (III) – твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например, из карбоната калия:

Cr2O3  +  K2CO3 → 2KCrO+  CO2

Оксид хрома (II)

Химические свойства

Оксид хрома (II) имеет основный характер, ему соответствует гидроксид хрома (II), обладающий основными свойствами.

1. При обычной температуре устойчив на воздухе, выше 100°С окисляется кислородом. Все соединения хрома (II) – сильные восстановители.

4CrO  +  O2     →   2Cr2O3

2. При высоких температурах оксид хрома (II) диспропорционирует:

3CrO   →   Cr  +  Cr2O3

3. Оксид хрома (II) не взаимодействует с водой.

4. Оксид хрома (II) проявляет основные свойства. Взаимодействует с сильными кислотами и кислотными оксидами.

Например, оксид хрома (II) взаимодействует с соляной кислотой:

CrO  +  2HCl   →  CrCl2  +  H2O

И с серной кислотой:

CrO  +  H2SO4   →   CrSO4  +  H2O

Оксид хрома (VI)

Оксид хрома (VI) CrO3 – темно-красное кристаллическое вещество. Гигроскопичен, расплывается на воздухе, малоустойчив, разлагается при нормальных условиях.

Способы получения

Оксид хром (VI) можно получить действием концентрированной серной кислоты на сухие хроматы или дихроматы:

Na2Cr2O7   +  2H2SO4  →  2CrO+ 2NaHSO4 + H2O          

Химические свойства

Оксид хрома (VI) – кислотный. Сильно ядовит. Оксиду хрома (VI) соответствуют хромовая (H2CrO4) и дихромовая (H2Cr2O7) кислоты.

Изображение с портала chemres.ru

1. При взаимодействии оксида хрома (VI) с водой образуется хромовые кислоты:

CrO+  Н2O   →  Н2CrO4

2CrO+  Н2O  →   Н2Cr2O7

2. Оксид хрома (VI) проявляет кислотные свойства. Взаимодействует с основаниями и основными оксидами.

Например, оксид хрома (VI) взаимодействует с гидроксидом калия с образованием хромата калия:

CrO3 + 2KOH  → K2CrO4 + H2O

Или с оксидом лития с образованием хромата лития:

CrO3  +  Li2O   →   Li2CrO4

3. Оксид хрома (VI) – очень сильный окислительокисляет углерод, серу, иод, фосфор, превращаясь при этом в оксид хрома (III).

Например, сера окисляется до оксида серы (IV):

4CrO3  +  3S   →   2Cr2O3  +  3SO2↑   

Оксид хрома (VI) также окисляет сложные вещества, например, сульфиты:

2CrO3  +   3K2SO3  +  3H2SO4  →  3K2SO4    +   Cr2(SO4)3    +  3H2O

И некоторые органические веществ, например, этанол:

2CrO3   +   3C2H5OH   +   3H2SO4   →  Cr2(SO4)3   +   3CH3CHO   +   6H2O

Гидроксид хрома (III)

Гидроксид хрома (III) Cr(OH)3 – это твердое вещество серо-зеленого цвета.

Способы получения

1. Гидроксид хрома (III) можно получить действием раствора аммиака на соли хрома (III).

Например, хлорид хрома (III) реагирует с водным раствором аммиака с образованием гидроксида хрома (III) и хлорида аммония:

CrCl +  3NH3  +  3H2O   →   Cr(OH)3  +  3NH4Cl

2. Пропусканием углекислого газа, сернистого газа или сероводорода через раствор гексагидроксохромата калия:

K3[Cr(OH)6]  +  3CO2   →   Cr(OH)3↓   +   3KHCO3

Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить сложное вещество K3[Cr(OH)6] на составные части: KOH и Cr(OH)3. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Cr(OH)3 не реагирует с СО2, то мы записываем справа Cr(OH)3  без изменения. Гидроксид калия реагирует с избытком углекислого газа с образованием гидрокарбоната калия

3. Гидроксид хрома (III) можно получить действием недостатка щелочи на избыток соли хрома (III).

Например, хлорид хрома (III) реагирует с недостатком гидроксида калия с образованием гидроксида хрома (III) и хлорида калия:

CrCl3  +  3KOH(недост)  →  Cr(OH)3↓ +  3KCl

4. Также гидроксид хрома (III) образуется при взаимодействии растворимых солей хрома (III) с растворимыми карбонатами, сульфитами и сульфидами. Сульфиды, карбонаты и сульфиты хрома (III) необратимо гидролизуются в водном растворе.

Например: бромид хрома (III) реагирует с карбонатом натрия. При этом выпадает осадок гидроксида хрома (III), выделяется углекислый газ и образуется бромид натрия:

2CrBr3  +  3Na2CO3  + 3H2O   →   2Cr(OH)3↓  +  3CO2↑ +  6NaBr

Хлорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

2CrCl3  +  3Na2S  +  6H2O  →   2Cr(OH)3  +  3H2S↑  +  6NaCl

Химические свойства

1. Гидроксид хрома (III) реагирует с растворимыми кислотами. При этом образуются средние соли.

Например, гидроксид хрома (III) взаимодействует с соляной кислотой с образованием хлорида хрома (III):

Cr(OH)3  +   3HCl  →   CrCl3  +  3H2O

2Cr(OH)3  +  3H2SO4   →  Cr2(SO4)3  +  6H2O

Cr(OH)3  +  3HBr  →   CrBr3  +  3H2O

2. Гидроксид хрома (III) взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид хрома (III) взаимодействует с оксидом серы (VI) с образованием сульфата хрома (III):

2Cr(OH)3  +  3SO3  →  Cr2(SO4)3  + 3H2O

3. Гидроксид хрома (III) взаимодействует с растворимыми основаниями (щелочами). При этом в растворе образуются комплексные соли. При этом гидроксид хрома (III) проявляет кислотные свойства.

Например, гидроксид хрома (III) взаимодействует с избытком гидроксидом натрия  с образованием гексагидроксохромата:

Cr(OH) +  3NaOH  →  Na3[Cr(OH)6]

4. Гидроксид хрома (III) разлагается при нагревании:

2Cr(OH)3  →  Cr2O3 + 3H2O

5. Под действием окислителей в щелочной среде переходит в хромат.

Например, при взаимодействии с бромом в щелочной среде гидроксид хрома (III) окисляется до хромата:

2Cr(OH)3  +  3Br2  +  10KOH   →  2K2CrO4  +   6KBr   +   8H2O

Гидроксид хрома (II)

Способы получения

1. Гидроксид хрома (II) можно получить действием раствора аммиака на соли хрома (II).

Например, хлорид хрома (II) реагирует с водным раствором аммиака с образованием гидроксида хрома (II) и хлорида аммония:

CrCl +  2NH3  +  2H2O   →   Cr(OH)2  +  2NH4Cl

2. Гидроксид хрома (II) можно получить действием щелочи на соли хрома (II).

Например, хлорид хрома (II) реагирует с гидроксидом калия с образованием гидроксида хрома (II) и хлорида калия:

CrCl2  +  2KOH  →  Cr(OH)2↓ +  2KCl

Химические свойства

1. Гидроксид хрома (II) проявляет основные свойства. В частности, реагирует с растворимыми кислотами.

Например, гидроксид хрома (II) взаимодействует с соляной кислотой с образованием хлорида хрома (II). Соли хрома (II) окрашивают раствор в синий цвет.

Cr(OH)2  +   2HCl  →   CrCl2  +  2H2O

2. Гидроксид хрома (II) взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид хрома (II) взаимодействует с оксидом серы (VI) с образованием сульфата хрома (II):

Cr(OH)2  +  SO3   →  CrSO4  + H2O

3. Гидроксид хрома (II) – сильный восстановитель.

Например, под действием кислорода воздуха гидроксид хрома (II)  окисляется до гидроксида хрома (III):

4Cr(OН)2  +  O2  +  2Н2О   →   4Cr(OН)3

Соли хрома

Соли хрома (II)

Все соли хрома (II) – сильные восстановители. В растворах окисляются даже кислородом воздуха.

Например, хлорид хрома (II) окисляется кислородом в растворе в присутствии щелочи до соединений хрома (III):

4CrCl2  +  O2  +  20KOH  +  2H2O  →   4K3[Cr(OH)6]  +  8KCl 

Концентрированные кислоты-окислители (азотная и серная) также окисляют соединения хрома (II):

CrCl+ 4HNO3(конц) → Cr(NO3)3  + NO2↑ + 2HCl↑ + H2O   

2CrCl2 + 4H2SO4(конц) → Cr2(SO4)3 + SO2↑ + 4HCl↑ +2H2O

Соли хрома (III)

Хром с валентностью III образует два типа солей:

  • Соли, в которых хром (III) является катионом. Например, хлорид хрома (III) CrCl3.
  • Соли, в которых хром (III) входит в состав кислотного остатка – хромиты и гидроксокомплексы хрома (III). Например, хромит калия, KCrO2. или гексагидроксохромат (III) калия K3[Cr(OH)6].

1. Соли хрома (III) проявляют слабые восстановительные свойства. окисляются под действием сильных окислителей в щелочной среде.

Например, бром в присутствии гидроксида калия окисляет хлорид хрома (III):

2CrCl3  +  3Br2   +  16KOH   →  2K2CrO4  +   6KBr   +  6KCl  +  8H2O

или сульфат хрома (III):

Cr2(SO4)3  +  3Br2   +  16NaOH  →  2Na2CrO4  +  6NaBr  +  3Na2SO4   +  8H2O

Пероксид водорода в присутствии щелочи также окисляет соли хрома (III):

2CrCl3  +  3H2O2   +   10NaOH   →  2Na2CrO4  +   6NaCl    +  8H2O

Cr2(SO4)3  +  3H2O2  +  10NaOH   →  2Na2CrO4  +  3Na2SO4  +  8H2O

Даже перманганат калия в щелочной среде окисляет соли хрома (III):

Cr2(SO4)3  +  6KMnO4   +  16KOH    →  2K2CrO4   +  6K2MnO4   +   3K2SO4  +  8H2O

Комплексные соли хрома (III) также окисляются сильными окислителями в присутствии щелочей.

Например, гексагидроксохроматы окисляются бромом в щелочи:

2Na3[Cr(OH)6]  +  3Br2  +  4NaOH  →  2Na2CrO4   +  6NaBr  +  8H2O

2K3[Cr(OH)6]  +  3Br2   +  4KOH   →  2K2CrO4  +  6KBr  +  8H2O

Оксид свинца (IV) также окисляет хромиты:

2KCrO2 + 3PbO2 + 8KOH  →  2K2CrO4 + 3K2PbO2 + 4H2O

2. Соли хрома (III) в щелочной среде образуют гидроксид хрома (III), который сразу растворяется, образуя гидроксокомплекс.

2CrCl3  +  6KOH  →   2Cr(OH)3  +   6KCl

Cr(OH)3  +  3KOH  →   K3[Cr(OH)6]

3. Более активные металлы вытесняют  хром (III) из солей.

Например, цинк реагирует с хлоридом хрома (III):

2CrCl3  +  Zn  →  2CrCl2  +  ZnCl2

Гидролиз солей хрома (III)

Растворимые соли хрома (III) и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

I ступень: Cr3+ + H2O = CrOH2+ + H+

II ступень: CrOH2+ + H2O = Cr(OH)2+ + H+

III ступень: Cr(OH)2+ + H2O = Cr(OH)+ H+

Однако  сульфиды, сульфиты, карбонаты хрома (III) и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой в момент образования.

Например, при сливании растворов солей хрома (III) и сульфита, гидросульфита, карбоната или сульфида натрия протекает взаимный гидролиз:

Cr2(SO4)3  +  6NaHSO3   →   2Cr(OH)3  +  6SO2  +  3Na2SO4

2CrBr3  +  3Na2CO3  + 3H2O   →   2Cr(OH)3↓  +  CO2↑ +  6NaBr

2Cr(NO3)3  +  3Na2CO3  +  3H2O  →   2Cr(OH)3↓  +  6NaNO3  +  3CO2

2CrCl3  +  3Na2CO3  +  3H2O  →  2Cr(OH)3↓  +  6NaCl  +  3CO2

Cr2(SO4)3  +  3K2CO3  +  3H2O  →   2Cr(OH)3↓  +  3CO2↑  +  3K2SO4

2CrCl3  +  3Na2S  +  6H2O →  2Cr(OH)3  +  3H2S↑  +  6NaCl

Более подробно про гидролиз можно прочитать в соответствующей статье.

Хромиты

Соли, в которых хром (III) входит в состав кислотного остатка (хромиты) — образуются из оксида хрома (III) при сплавлении с щелочами и основными оксидами:

Cr2O3 + Na2O → 2NaCrO2

Для понимания свойств хромитов их удобно мысленно разделить на два отдельных вещества.

Например, хромит натрия мы поделим мысленно на два вещества: оксид хрома (III) и оксид натрия.

NaСrO2 разделяем на Na2O и Cr2O3

При этом очевидно, что хромиты реагируют с кислотами. При недостатке кислоты образуется гидроксид хрома (III):

NaCrO2   +   HCl (недостаток)    +   H2O  →   Cr(OH)3   +   NaCl

В избытке кислоты гидроксид хрома (III) не образуется:

NaCrO2   +   4HCl (избыток)  →   CrCl3   +   NaCl   + 2H2O

NaCrO2  +  4HCl   →   CrCl3  +  NaCl  +  2H2O

NaCrO2  +  4HNO3    →   Cr(NO3)3  +  NaNO3  +  2H2O

2NaCrO2  +  4H2SO4    →   Cr2(SO4)3   +  Na2SO4  +  4H2O

Под действием избытка воды хромиты гидролизуются:

NaCrO2   +   2H2O  →  Cr(OH)3↓ +   NaОН

Соли хрома (VI)

Оксиду хрома (VI) соответствуют две кислоты – хромовая Н2CrO и дихромовая  Н2Cr2O7. Поэтому хром в степени окисления +6 образует два типа солей: хроматы и дихроматы.

Например, хромат калия K2CrO4 и дихромат калия K2Cr2O7.

1. Различить эти соли довольно легко: хроматы желтые, а дихроматы оранжевые. Хроматы устойчивы в щелочной среде, а дихроматы устойчивы в кислой среде.

При добавлении к хроматам кислот они переходят в дихроматы.

Например, хромат калия взаимодействует с серной кислотой и разбавленной соляной кислотой с образованием дихромата калия:

2K2CrO4 + H2SO4(разб.)  →   K2Cr2O7 + K2SO4 + H2O

2K2CrO4 + 2HCl(разб.)  →  K2Cr2O7 + 2KCl + H2O

И наоборот: дихроматы реагируют с щелочами с образованием хроматов.

Например, дихромат калия взаимодействует с гидроксидом калия с образованием хромата калия:

K2Cr2O +  2KOH  →  2K2CrO4 + H2O

Видеоопыт взаимных переходов хроматов и дихроматов при добавлении кислоты или щелочи можно посмотреть здесь.

2. Хроматы и дихроматы проявляют сильные окислительные свойства. При взаимодействии с восстановителями они восстанавливаются до соединений хрома (III).

В нейтральной среде хроматы и дихроматы восстанавливаются до гидроксида хрома (III).

Например, дихромат калия реагирует с сульфитом натрия в нейтральной среде:

K2Cr2O7  +  3Na2SO3  +  4H2O  →  2Cr(OH)3    +  3Na2SO4   +   2KOH

Хромат калия окисляет сульфид аммония:

2K2CrO4    +   3(NH4)2S    +   2H2O    →   2Cr(OH)3↓  +   3S↓   +    6NH3↑   +   4KOH

При взаимодействии с восстановителями в щелочной среде хроматы и дихроматы образуют комплексные соли.

Например, хромат калия окисляет гидросульфид аммония в щелочной среде:

2K2CrO4  +  3NH4HS  +  2H2O  +  2KOH   →  3S  +  2K3[Cr(OH)6]  +  3NH3 

Хромат натрия окисляет сернистый газ:

2Na2CrO4   +  3SO2  +  2H2O  +  8NaOH  →  2Na3[Cr(OH)6]  +  3Na2SO4

Хромат натрия окисляет сульфид натрия:

2Na2CrO4   +  3Na2S   +  8H2O  →  3S  +  2Na3[Cr(OH)6]  +  4NaOH

При взаимодействии с восстановителями в кислой среде хроматы и дихроматы образуют соли хрома (III).

Например, дихромат калия окисляет сероводород в присутствии серной кислоты:

3H2S  +  K2Cr2O7   +  4H2SO4   →  K2SO4    +   Cr2(SO4)3   +   3S   +  7H2O

Дихромат калия окисляет йодид калия, фосфид кальция, соединения железа (II), сернистый газ,  концентрированную соляную кислоту:

K2Cr2O7  +  7H2SO4   +  6KI  →   Cr2(SO4)3    +   3I +  4K2SO4  +   7H2O

8K2Cr2O7  +  3Ca3P2   +  64HCl  →  3Ca3(PO4)2  +  16CrCl3  + 16KCl   +   32H2O

K2Cr2O7  +  7H2SO4  +  6FeSO4  →  Cr2(SO4)3  +  3Fe2(SO4)3   +  K2SO4  +  7H2O

K2Cr2O7  +  4H2SO4  +  3KNO2  →  Cr2(SO4)3   +  3KNO3   +  K2SO4   +  4H2O

K2Cr2O7  +   3SO2  +  8HCl   →  2KCl  +   2CrCl3    +   3H2SO4  +   H2O

K2Cr2O7   +  14HCl  →  3Cl2  +  2CrCl3     +   7H2O   +  2KCl

Хром. Соединения хрома.

В соединениях хром может проявлять степени окисления от +1 до +6. Наиболее характерными являются соединения хрома со степенями окисления +3 и +6. Менее устойчивы соединения хрома со степенью окисления +2. Хром образует комплексные соединения с координационным числом 6.

  1. Хром.
  • С неметаллами

При комнатной температуре хром химически малоактивен из-за образования на его поверхности тонкой прочной оксидной пленки. При нагревании оксидная пленка хрома разрушается, и он реагирует практически со всеми неметаллами: кислородом, галогенами, серой, азотом, кремнием, углеродом, фосфором:

4Cr  +    3O2  =    2Cr2O3                       2Cr  +    3Br2  =    2CrBr3 

2Cr  +    3Cl2  =    2CrCl3                      2Cr  +   3S  =   Cr2S3                  2Cr  +  N2  =   2CrN 

  • С водой.  В раскаленном состоянии хром реагирует с парами воды:

2Cr  +  3H2O (пар)  =  Cr2O3  +  3H2

  • С кислотами.

В ряду напряжений хром находится левее водорода и поэтому в отсутствии воздуха может вытеснить водород из растворов соляной и разбавленной серной кислоты, образуя соли хрома (II):

           Cr   +   2HCl  =   CrCl2  +  H2                    Cr  +     H2SO4 (разб.)  =   CrSO4   +  H2

В присутствии кислорода – соли хрома (III):  

4Cr   +   12HCl  +  3O2  =   4CrCl3   +  6H2O

Концентрированные серная и азотная кислоты на холоду пассивируют хром, однако при сильном нагревании они растворяют хром с образованием солей хрома (III):

2Cr  +  6H2SO4   Cr2(SO4)3  +  3SO2  +  6H2O

 Cr  +  6HNO3    Cr(NO3)3  +  3NO2  +  3H2O

  • С солями.

Хром способен вытеснять многие металлы, например медь, олово, серебро и др. из растворов их солей:

Cr  +  CuSO4 = CrSO4 + Cu 

  • С щелочами.

Растворы щелочей на хром практически не действуют. Но хром реагирует с щелочными расплавами окислителей. В качестве окислителей используют нитраты калия и натрия, хлорат калия и другие окислители.

Cr  + KClO3  + 2KOH  K2CrO4  + KCl  +  H2O

2Cr  + KClO3   =  Cr2O3  +  KCl                           2Cr  + 3KNO3   =  Cr2O3  +  3KNO2

  1.  Соединения  хрома.

Соединения  хрома (II).  Оксид,  гидроксид, соли.

           Оксид хрома (II) имеет основный характер, ему соответствует гидроксид хрома (II), обладающий основными свойствами.

При высоких температурах оксид хрома (II) диспропорционирует:

3CrO     Cr  +  Cr2O3

Все соединения хрома (II) – сильные восстановители, уже кислородом воздуха окисляются до соединений хрома (III):

4CrO  +  O2 = 2Cr2O3                        4Cr(OН)2  +  O2  +  2Н2О  =  4Cr(OН)3 

CrCl2  + 4HNO3(конц) = Cr(NO3)3  + NO2↑ + 2HCl↑ + H2O    

2CrCl2 + 4H2SO4(конц) = Cr2(SO4)3 + SO2↑ + 4HCl↑ +2H2O

Оксид и гидроксид хрома (II) растворяются в кислотах:

CrO  +  2HCl  =  CrCl2  +  H2O              Cr(OН)2  +  2HCl  =  CrCl2  +  2H2O

Соединения  хрома (III).

  1. Оксид хрома (III) обладает амфотерными свойствами. Оксид хрома можно получить термическим разложением дихромата аммония:

(NH4)2C2O7         Cr2O3   +   N2   +   4H2O        

C кислотами оксид хрома (III) образует соли:     Cr2O3  +  6HCl  =  2CrCl3  +  3H2O

        При сплавлении оксида хрома (III) с оксидами, гидроксидами и карбонатами щелочных и щелочноземельных металлов образуются хроматы (III), (хромиты):

Сr2O3  +  Ba(OH)2   Ba(CrO2)2 + H2O

Сr2O3  +  Na2CO3    2NaCrO2  +  CO2 

        C щелочными расплавами окислителей – хроматы (VI) (хроматы)

Cr2O3  +  3KNO3  +  4KOH  =  2K2CrO4  +   3KNO2   +   2H2O

Cr2O3  +  3Br2  +  10NaOH  =  2Na2CrO4  +   6NaBr   +   5H2O

Сr2O3  +  O3  +  4KOH    =  2K2CrO4  +  2H2O

  1. Гидроксид хрома (III)  обладает амфотерными свойствами.

Cr(OH)3  +  3HCl  =  CrCl3  +  3H2O        Cr(OH)3  +  3NaOH  =  Na3[Cr(OH)6]

2Cr(OH)3   =  Cr2O3  +  3H2O 

  1. Соли хрома (III)

2CrCl3  +  3Br2   +  16KOH   =   2K2CrO4  +   6KBr   +  6KCl  +  8H2O

2CrCl3  +  3H2O2   +   10NaOH   =   2Na2CrO4  +   6NaCl    +  8H2O

Cr2(SO4)3  +  3H2O2  +  10NaOH   =   2Na2CrO4  +  3Na2SO4  +  8H2O

Cr2(SO4)3  +  3Br2   +  16NaOH  =  2Na2CrO4  +  6NaBr  +  3Na2SO4   +  8H2O

Cr2(SO4)3  +  6KMnO4   +  16KOH    =  2K2CrO4   +  6K2MnO4   +   3K2SO4  +  8H2O.

Cr2S3   +  30HNO3(конц.)  =  2Cr(NO3)3   +  3H2SO4  +  24NO2  +  12H2O

2CrCl3  +  Zn   =  2CrCl2  +  ZnCl2

        Cоли, образованные катионами хрома (III) и анионом слабой  или летучей кислоты, в водных растворах полностью гидролизуются:        Cr2S3   +  6H2O   =   2Cr(OH)3↓   +   3H2S↑

Cоединения  хрома (VI)

  1. Оксид хрома (VI). Сильно ядовит!  Кислотный оксид, который взаимодействует с основными оксидами, основаниями, водой:

CrO3 + Li2O → Li2CrO4                          CrO3 + 2KOH → K2CrO4 + H2O

CrO3  +  Н2O  =  Н2CrO4                         2CrO3  +  Н2O  =  Н2Cr2O7

Оксид хрома (VI) сильный окислитель: окисляет углерод, серу, иод, фосфор, превращаясь при этом в оксид хрома (III)

4CrO3 → 2Cr2O3 + 3O2↑.                      4CrO3 + 3S = 2Cr2O3 + 3SO2↑  

        Окисление солей:

2CrO3  +   3K2SO3  +  3H2SO4   =  3K2SO4    +   Cr2(SO4)3    +  3H2O

Соли хромовых кислот – хроматы и дихроматы являются сильными окислителями. Продуктами восстановления которых являются производные хрома (III).

Продукт восстановления в различных средах можно представить схематично:

                    H2O        Cr(OH)3                 серо-зеленый осадок                

K2CrO4 (CrO42– )                

 желтый                                OH        [Cr(OH)6]3           раствор изумрудно-зеленого цвета

K2Cr2O7 (Cr2O72– )               H+          Cr3+                       растворы сине-фиолетового цвета

оранжевый

Изменяя реакцию раствора, можно осуществлять взаимное превращение хроматов в дихроматы:

2K2CrO4 + H2SO4(разб.) =  K2Cr2O7 + K2SO4 + H2O       K2Cr2O7   +  2KOH   =  2K2CrO4 + H2O

                                      кислая среда  

2СrO42    +   2H+                                Cr2O72–    +   OH 

                                     щелочная среда

Хромат-ион устойчив только в щелочной и, отчасти, в нейтральной среде. В кислотной среде хромат-ион превращается в дихромат-ион по реакции:

2CrO42- + 2H+ = Cr2O7 2- + H2O

Дихромат-ион устойчив только в кислотной и, отчасти, в нейтральной среде. В щелочной среде превращается в хромат-ион:

Cr2O72- + 2OH = 2CrO42-  + H2O

Поэтому в кислотной среде протекают окислительно-восстановительные процессы только с участием иона Cr2O7 2-, а в щелочной – только с участием иона CrO42-.  

В нейтральной среде образуется гидроксид хрома (III):

K2Cr2O7  +  3Na2SO3  +  4H2O   =  2Cr(OH)3    +  3Na2SO4   +   2KOH

2K2CrO4    +   3(NH4)2S    +   2H2O    =    2Cr(OH)3↓  +   3S↓   +    6NH3↑   +   4KOH

В щелочной – гидроксохроматы (III):

2K2CrO4  +  3NH4HS  +  5H2O  +  2KOH  =  3S  +  2K3[Cr(OH)6]  +  3NH3 · H2O

2Na2CrO4   +  3SO2  +  2H2O  +  8NaOH  =  2Na3[Cr(OH)6]  +  3Na2SO4

В кислой – соли хрома (III):

 K2Cr2O7   +  3H2S  +4H2SO4  =  K2SO4    +   Cr2(SO4)3   +   3S   +  7H2O

K2Cr2O7  +  7H2SO4   +  6KI   =  Cr2(SO4)3    +   3I2   +  4K2SO4  +   7H2O

8K2Cr2O7  +  3Ca3P2   +  64HCl  =  3Ca3(PO4)2  +  16CrCl3  + 16KCl   +   32H2O

K2Cr2O7  +  6FeSO4 + 7H2SO4     =  Cr2(SO4)3  +  3Fe2(SO4)3   +  K2SO4  +  7H2O

K2Cr2O7  +   3KNO2 +  4H2SO4  =  Cr2(SO4)3   +  3KNO3   +  K2SO4   +  4H2O

K2Cr2O7   +  14HCl  =  3Cl2  +  2CrCl3     +   7H2O   +  2KCl

K2Cr2O7  +   3SO2  +  8HCl  =  2KCl  +   2CrCl3    +   3H2SO4  +   H2O

2K2CrO4   +  16HCl  =  3Cl2  +  2CrCl3     +   8H2O   +  4KCl

Задание №32. Хром. Соединения хрома.

1. Сульфид хрома (III) обработали водой, при этом выделился газ и осталось нерастворимое вещество. К этому веществу прибавили раствор едкого натра и пропустили газообразный хлор, при этом раствор приобрел желтое окрашивание. Раствор подкислили серной кислотой, в результате окраска изменилась на оранжевую; через полученный раствор пропустили газ, выделившийся при обработке сульфида водой, и цвет раствора изменился на зеленый. Напишите уравнения описанных реакций.

2. После кратковременного нагревания неизвестного порошкообразного вещества оранжевого цвета начинается самопроизвольная реакция, которая сопровождается изменением цвета на зеленый, выделением газа и искр. Твердый остаток смешали с едким кали и нагрели, полученное вещество внесли в разбавленный раствор соляной кислоты, при этом образовался осадок зеленого цвета, который растворяется в избытке кислоты. Напишите уравнения описанных реакций.

3. Две соли окрашивают пламя в фиолетовый цвет. Одна из них бесцветна, и при легком нагревании ее с концентрированной серной кислотой отгоняется жидкость, в которой растворяется медь, последнее превращение сопровождается выделением бурого газа. При добавлении к раствору второй соли раствора серной кислоты желтая окраска раствора изменяется на оранжевую, а при нейтрализации полученного раствора щелочью восстанавливается первоначальный цвет. Напишите уравнения описанных реакций.

4. Гидроксид трехвалентного хрома обработали соляной кислотой. В полученный раствор добавили поташ, выделившийся осадок отделили и внесли в концентрированный раствор едкого кали, в результате осадок растворился. После добавления избытка соляной кислоты был получен раствор зеленого цвета. Напишите уравнения описанных реакций.

5. При добавлении в раствор соли желтого цвета, окрашивающей пламя в фиолетовый цвет, разбавленной соляной кислоты окраска изменилась на оранжево-красную. После нейтрализации раствора концентрированной щелочью цвет раствора вернулся к первоначальному.  При добавлении в полученный хлорида бария выпадает осадок желтого цвета. Осадок отфильтровали  и в фильтрат добавили раствор нитрата серебра. Напишите уравнения описанных реакций.

6. К раствору сульфата трехвалентного хрома добавили кальцинированную соду. Выделившийся осадок отделили, перенесли в раствор едкого натра, добавили бром и нагрели. После нейтрализации продуктов реакции серной кислотой раствор приобретает оранжевую окраску, которая исчезает после пропускания через раствор сернистого газа.  Напишите уравнения описанных реакций.

7) Порошок сульфида хрома (III) обработали водой. Выпавший при этом серо-зеленый  осадок  обработали хлорной водой в присутствии гидроксида калия. К полученному желтому раствору прилили раствор сульфита калия, при этом вновь выпал серо-зеленый осадок, который прокалили до постоянства массы. Напишите уравнения описанных реакций.

8) Порошок сульфида хрома (III) растворили в серной кислоте. При этом выделился газ и образовался раствор. К полученному раствору добавили избыток раствора аммиака, а газ пропустили через раствор нитрата свинца. Полученный при этом черный осадок побелел после обработки его пероксидом водорода. Напишите уравнения описанных реакций.

9) Дихромат аммония разложили при нагревании. Твердый продукт разложения растворили в серной кислоте. К полученному раствору прилили раствор гидроксида натрия до выпадения осадка. При дальнейшем приливании гидроксида натрия к осадку он растворился. Напишите уравнения описанных реакций.

10) Оксид хрома (VI) прореагировал с гидроксидом калия. Полученное вещество обработали серной кислотой, из образовавшегося раствора выделили соль оранжевого цвета. Эту соль обработали бромоводородной кислотой. Полученное простое вещество вступило в реакцию с сероводородом.  Напишите уравнения описанных реакций.

11.  Хром сожгли в хлоре. Полученная соль прореагировала с раствором, содержащим пероксид водорода и гидроксид натрия. К образовавшемуся желтому раствору добавили избыток серной кислоты, цвет раствора изменился на оранжевый. Когда с этим раствором прореагировал оксид меди (I), цвет раствора стал сине-зеленым. Напишите уравнения описанных реакций.

12.   Нитрат натрия сплавили с оксидом хрома (III) в присутствии карбоната натрия. выделившийся при этом газ прореагировал с избытком раствора гидроксида бария с выпадением осадка белого цвета. Осадок растворили в избытке раствора соляной кислоты и в полученный раствор добавили нитрат серебра до прекращения выпадения осадка. Напишите уравнения описанных реакций.

13.   Калий сплавили с серой. Полученную соль обработали соляной кислотой. выделившийся при этом газ пропустили через раствор бихромата калия в серной кислоте. выпавшее вещество желтого цвета отфильтровали и сплавили с алюминием. Напишите уравнения описанных реакций.

14.   Хром сожгли в атмосфере хлора. К образовавшейся соли добавили по каплям гидроксид калия до прекращения выделения осадка. Полученный осадок окислили перекисью водорода в среде едкого калия и упарили. К полученному твердому остатку добавили избыток горячего раствора концентрированной соляной кислоты. Напишите уравнения описанных реакций.

Хром. Соединения хрома.

1)         Cr2S3  +  6H2O   =  2Cr(OH)3↓   +  3H2S↑

2Cr(OH)3  +  3Cl2  +  10NaOH  =  2Na2CrO4  +  6NaCl  +  8H2O

2Na2CrO4  +  H2SO4   =  Na2Cr2O7  +  Na2SO4  +  H2O

Na2Cr2O7  +  4H2SO4   +  3H2S   =  Cr2(SO4)3  +  Na2SO4  +  3S↓  +  7H2O

2)         (NH4)2Cr2O7   Cr2O3  +  N2↑  +  4H2O↑

Cr2O3  +  2KOH    2KCrO2  +  H2O

KCrO2  +  H2O  +  HCl   =  KCl  +  Cr(OH)3

Cr(OH)3  +  3HCl  =  CrCl3  +  3H2O

3)        KNO3(тв.)  +  H2SO4(конц.)    HNO3  +  KHSO4

4HNO3  +  Cu  =  Cu(NO3)2  +  2NO2  +  2H2O

2K2CrO4  +  H2SO4   =  K2Cr2O7  +  K2SO4  +  H2O

K2Cr2O7   +   2KOH    =  2K2CrO4  +  H2O

4)        Cr(OH)3  +  3HCl   =  CrCl3  +  3H2O

2CrCl3  +  3K2CO3   +  3H2O   =   2Cr(OH)3↓   +   3CO2↑  +   6KCl

Cr(OH)3  +  3KOH  =  K3[Cr(OH)6]

K3[Cr(OH)6]   +  6HCl   =  CrCl3  +  3KCl  +  6Н2О

5)        2K2CrO4  +  2HCl   =  K2Cr2O7  +  2KCl    +  H2O

K2Cr2O7   +   2KOH    =  2K2CrO4  +  H2O

K2CrO4  +  BaCl2  =  BaCrO4↓  +  2 KCl

KCl    +  AgNO3  =  AgCl↓   +  KNO3

6)         Cr2(SO4)3  +  3Na2CO3   +  6H2O  =  2Cr(OH)3↓   +   3CO2↑  +   3K2SO4

2Cr(OH)3  +  3Br2  +  10NaOH  =  2Na2CrO4  +  6NaBr  +  8H2O

2Na2CrO4  +  H2SO4   =  Na2Cr2O7  +  Na2SO4  +  H2O

Na2Cr2O7   +  H2SO4   +   3SO2   = Cr2(SO4)3  +  Na2SO4  + H2O

7)        Cr2S3  +  6H2O   =  2Cr(OH)3↓   +  3H2S↑

2Cr(OH)3  +  3Cl2  +  10KOH  =  2K2CrO4  +  6KCl  +  8H2O

2K2CrO4  +  3K2SO3   +  5H2O   =  2Cr(OH)3   +  3K2SO4   + 4KOH

2Cr(OH)3  Cr2O3  +  3H2O

8)         Cr2S3  +  3H2SO4   =  Cr2(SO4)3  +  3H2S↑

        Cr2(SO4)3  +  6NH3  +  6H2O   =  2Cr(OH)3↓   +   3(NH4)2SO4

H2S  +  Pb(NO3)2   =   PbS  +  2HNO3

PbS  +  4H2O2   =  PbSO4  +  4H2O

9)         (NH4)2Cr2O7     Cr2O3   +  N2   +   4H2O

Cr2O3   +  3H2SO4   =   Cr2(SO4)3   +  3H2O

Cr2(SO4)3   +   6NaOH    =   2Cr(OH)3↓    +   3Na2SO4

Cr(OH)3   +   3NaOH    =  Na3[Cr(OH)6]

10)         CrO3  +  2KOH   =  K2CrO4  +  H2O

2K2CrO4 + H2SO4(разб.) =  K2Cr2O7 + K2SO4 + H2O

K2Cr2O7   +  14HBr  =  3Br2  +  2CrBr3     +   7H2O   +  2KBr

        Br2  +  H2S   =   S   +  2HBr

11)        2Cr    +   3Cl2   =    2CrCl3

2CrCl3   +   10NaOH   +   3H2O2    =   2Na2CrO4    +   6NaCl     +    8H2O

2Na2CrO4  +  H2SO4   =  Na2Cr2O7  +  Na2SO4  +  H2O

Na2Cr2O7  +  3Cu2O   +  10H2SO4  =  6CuSO4   +   Cr2(SO4)3   +   Na2SO4   +   10H2O

12)        3NaNO3     +    Cr2O3    +   2Na2CO3   =   2Na2CrO4    +   3NaNO2   +   2CO2

CO2    +    Ba(OH)2    =    BaCO3↓   +    H2O

BaCO3   +   2HCl    =   BaCl2    +    CO2   +   H2O

BaCl2    +   2AgNO3    =   2AgCl↓     +   Ba(NO3)2

13)        2K    +    S    =    K2S

K2S    +    2HCl    =   2KCl    +    H2S↑

3H2S    +    K2Cr2O7    +    4H2SO4    =    3S    +   Cr2(SO4)3    +   K2SO4    +    7H2O

3S    +    2Al    =    Al2S3

14)        2Cr    +    3Cl2   =   2CrCl3

CrCl3     +    3KOH   =   3KCl    +    Cr(OH)3

2Cr(OH)3   +   3H2O2    +   4KOH    =   2K2CrO4     +   8H2O

2K2CrO4    +    16HCl      =   2CrCl3   +    4KCl     +   3Cl2     +     8H2O

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 261    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Верны ли следующие утверждения о хроме и его соединениях?

А.  Все оксиды хрома имеют кислотный характер.

Б.  Высшая степень окисления хрома в соединениях равна +6.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Задания Д2 № 534

Верны ли следующие суждения о хроме и его соединениях?

А.  Степень окисления хрома в высшем оксиде равна +3.

Б.  С увеличением степени окисления хрома кислотные свойства его оксидов усиливаются.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Задания Д2 № 663

Верны ли следующие суждения о хроме и железе?

А.  И хром, и железо образуют устойчивые оксиды в степени окисления +3.

Б.  Оксид хрома (III) является амфотерным.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Верны ли следующие суждения о соединениях хрома?

А.  Высшая степень окисления хрома равна +3.

Б.  Высший оксид хрома проявляет амфотерные свойства.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Верны ли следующие суждения о соединениях хрома?

А Высшая степень окисления хрома равна +4.

Б.  Высший оксид хрома относится к основным оксидам.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Установите соответствие между исходными веществами, вступающими в реакцию, и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.


Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную

цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.


Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.


Задания Д2 № 276

Верны ли следующие суждения о железе и его соединениях?

А.  Железо в соединениях проявляет только степень окисления, равную +2.

Б.  Металлическое железо проявляет восстановительные свойства.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Задания Д6 № 367

Верны ли следующие суждения о свойствах железа?

А.  При взаимодействии железа с разбавленной хлороводородной кислотой образуется

хлорид железа (II).

Б.  При взаимодействии железа с хлором образуется хлорид железа (II).

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Задания Д6 № 410

Верны ли следующие суждения о меди и ее соединениях?

А.  Степень окисления меди в высшем оксиде равна +1.

Б.  Медь вытесняет алюминий из раствора нитрата алюминия.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Задания Д2 № 706

Верны ли следующие суждения о соединениях железа и меди?

А.  Гидроксид железа (III) проявляет амфотерные свойства.

Б.  Устойчивая степень окисления для меди равна +2.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Задания Д2 № 878

Верны ли следующие суждения о соединениях железа?

А.  Оксиду железа с основными свойствами соответствует формула FeO.

Б.  Для гидроксида железа (III) характерны только кислотные свойства.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Верны ли следующие суждения о железе и меди?

А.  Гидроксид железа (II) не относится к щелочам.

Б.  Устойчивая степень окисления для меди равна +2.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Верны ли следующие утверждения о цинке и его соединениях?

А.  Оксид и гидроксид цинка проявляют амфотерные свойства.

Б.  Соединения цинка в высшей степени окисления являются сильными окислителями.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Верны ли следующие утверждения о d-металлах?

А.  Все соединения d-металлов имеют амфотерный характер.

Б.  d-металлы в низших степенях окисления входят в состав катионов, а в высших степенях окисления — в состав анионов.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Общее свойство железа и меди  —

1)  растворяются в кислотах-неокислителях с выделением водорода

2)  вытесняют серебро из растворов его солей

3)  низший оксид и гидроксид обладают амфотерными свойствами

4)  растворяются в щелочах


Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную

цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.


В двух пробирках находился свежеосаждённый гидроксид меди(II). В первую пробирку добавили раствор вещества Х, а во вторую  — раствор вещества Y. В обеих пробирках осадок полностью растворился, причём в первой пробирке образовался голубой раствор, а во второй  — сине-фиолетовый. Из предложенного перечня выберите вещества X и Y, которые могут вступать в описанные реакции.

1)  NaOH

2)  H_2$SO_4$

3)  NH_3$

4)  H_2$S

5)  NaHCO_3$

Запишите в таблицу номера выбранных веществ под соответствующими буквами.


В двух пробирках находился оксид меди(II). В первую пробирку добавили раствор вещества Х, а во вторую  — избыток концентрированного раствора вещества Y. В обеих пробирках осадок полностью растворился. В первой пробирке раствор приобрёл голубой цвет, а во второй  — зелёный. Из предложенного перечня выберите вещества X и Y, которые могут вступать в описанные реакции.

1)  NaOH

2)  Na_2$CO_3$

3)  HCl

4)  AgNO_3$

5)  H_2$SO_4$

Запишите в таблицу номера выбранных веществ под соответствующими буквами.

Всего: 261    1–20 | 21–40 | 41–60 | 61–80 …

СОЕДИНЕНИЯ
ХРОМА

Название
«хром» происходит от греческого «хрома» — «цвет»  и связано со способностью
хрома образовывать соединения разной окраски за счет большого количества
валентных электронов

Электронное
строение атома
 :

У хрома
наблюдается такое явление как «провал электрона» — один электрон с 4s-орбитали
перескакивает на 3d-орбиталь: 1
s22s22p63s23p64s13d5

 Возможные степени
окисления
 хрома: +6,  +4,  +3 и  +2.

элемент хром

У хрома
 свойства веществ меняются
следующим образом: 

·                         
вещества, в которых хром в низшей степени окисления, проявляют
металлические (основные) свойства;

·                         
хром в средней степени окисления (+3) — амфотерные; cтабильные,
чаще выступают восстановителем

·                         
вещества с хромом в высшей степени окисления проявляют кислотные
свойства.

Свойства
простого вещества

Хром —
типичный металл — блестящий, бело-голубого цвета. Довольно часто встречающийся
элемент в минералах земли. Это малоактивный металл, т.к. на воздухе он
покрывается оксидной пленкой Cr2O3.  Химически
инертен: все реакции необходимо вести при нагревании.   Сжечь хром в кислороде
можно при температуре  20000:   4
Cr + 3O2  → 2Cr2O3  (пигмент
зеленого цвета)

·      
Взаимодействие с  неметаллами:
2Сr + 3F2 = 2CrF3 (
Br2,
N2, S
– при нагревании)

·      
Взаимодействие с водой (при нагревании):
2Cr + 3H2O = Cr2O3 + 3H2

·      
Взаимодействие с кислотами
— при н.у. это пассивный металл, ни с концентрированной серной, ни с
азотной кислотой не взаимодействует;
— с разбавленной соляной и серной
кислотами образует соли хрома (II):    

Сr +
2HCl = CrCl2 + H2

Cr + 6HNO3
= 3NO2 +Cr(NO3)3 +3H2O

2Cr +
4H2SO4 = Cr2(SO4)3 + SO2
+ 4H2O

·      
С солями-окислителями (при нагревании):

2Сr
+KClO3=Cr2O3 +KCl

2Cr +
3KNO3 = Cr2O3 + 3KNO2

Свойства
соединений.

СТЕПЕНЬ
ОКИСЛЕНИЯ +2
 (Соли 
Cr +2 голубого цвета)

СrO
— оксид хрома (II), (черного цвета) — основной оксид.

 СrO
+ 2HCl = CrCl2 + H2O

Сr(OH)2 — желто-коричневого
цвета, быстро окисляется до Cr2O3 или Сr(OH)3

4Cr(OH)2
+
O2 + 2H2O = 4Cr(OH)3
(аналогично соединениям железа (
II))

СТЕПЕНЬ ОКИСЛЕНИЯ
+3

(Соли C
r3+  зеленого
цвета
)

Cr2O3 —
оксид хрома (III), (зеленого цвета) — амфотерный оксид.

 Сr2O3 +
2NaOH = 2NaCrO2 + H2O – хромит натрия

Cr2O3 +
6HCl = 2CrCl3 + 3H2O

Cr2O3+ FeO = Fe(CrO2)2
– хромит железа(
II) —
сплавление

Сr(OH)3 —
амфотерный гидроксид, серо-зеленого цвета.

Cr(OH)3 + 3NaOH = Na3[Cr(OH)6]
гексагидроксохромит натрия (координационное число хрома (
III) = 6)

Данный
комплекс разрушается в кислой среде:

2Na3[Cr(OH)6]
+ 6HCl = CrCl3 + 3 NaCl + 6H2O,

Является
хорошим восстановителем ( галогены,
H2O2, NaBrO)

2Na3[Cr(OH)6]
+ 3Br2 + 4NaOH = 2Na2CrO4 + 6 NaBr + 8H2O

СТЕПЕНЬ
ОКИСЛЕНИЯ +6 (получают окислением оксида хрома (
III) в
щелочной среде)

Cr2O3+4KOH+окислитель→2K2CrO4
(при сплавлении)

 Сr2О3
H2O2+   4KOH  = 2K2CrO4  + 3H2O

Cr2O3
+ KClO3 + 2K2CO3 = 2K2CrO4 +
KCl + 2 CO2

СrO3
 — оксид хрома (VI), кислотный оксид, красного цвета.
Образует  сильные кислоты-окислители: HCrO4 — хромовая
кислота (CrO42- — хроматы  — желтого
цвета);

CrO3
(недост.) + H2O → H2CrO4,

и
H2Cr2O7дихромовая кислота.

2CrO3
(изб.) + H2O → H2Cr2O7. (Сr2O72- — бихроматы —
оранжевого цвета)

В
зависимости от среды (кислой или щелочной) — хроматы и бихроматы переходят
друг в друга:

зависимость от среды

Смесь
  К2Cr2O7 + H2SO4 (
K2SO4)
называют хромпиком.

Окислительно-восстановительные
свойства:

Соединения
Cr (VI) – сильные окислители, в ОВР переходят в  кислой среде в
производные Cr +3

К2Cr2O7
+ 3
К2SO3 +4H2SO4
= Cr2(SO4)3  + 4K2SO4 +
4H2O

К2Cr2O7
+ 3SO2 +H2SO4 = Cr2(SO4)3 
+ K2SO4 + H2O

В
нейтральной среде
образуется гидроксид Cr (III):

K2Cr2O7
+ 3(NH4)2S + H2O = 2Cr(OH)3 + 3S↓ +
6NH3↑ + 2KOH

В
щелочной

образуются производные анионного комплекса [Cr(OH)6]3-.

Переходы
дихромата в ОВР  можно выразить схемой:

Организационная диаграмма

Хром

Твердый металл голубовато-белого цвета. Этимология слова «хром» берет начало от греч. χρῶμα — цвет, что связано с большим
разнообразием цветов соединений хрома. Массовая доля этого элемента в земной коре составляет 0.02% по массе.

Хром элемент

Для хрома характерны степени окисления +2, +3 и +6. У соединений, где хром принимает степень окисления +2, свойства основные, +3 — амфотерные,
+6 — кислотные.

Степени окисления хрома и его свойства

В природе хром встречается в виде следующих соединений.

  • Fe(CrO2)2 — хромистый железняк, хромит
  • (Mg, Fe)Cr2O4 — магнохромит
  • (Fe, Mg)(Cr, Al)2O4 — алюмохромит

Природные соединения хрома

Получение

В промышленности хром получают прокаливанием хромистого железняка с углеродом. Также применяют алюминотермию для вытеснения хрома из
его оксида.

Fe(CrO2)2 + C = Fe + Cr + CO

Cr2O3 + Al = Al2O3 + Cr

Химические свойства

  • Реакции с неметаллами
  • Уже на воздухе вступает в реакцию с кислородом: на поверхности металла образуется пленка из оксида хрома (III) — Cr2O3
    происходит пассивирование. Реагирует с неметаллами при нагревании.

    Cr + O2 = (t) Cr2O3

    Cr + S = (t) Cr2S3

    Cr + N2 = (t) CrN

    Cr + C = Cr2C3

    Оксид хрома (III)

  • Реакция с водой
  • Протекает в раскаленном состоянии.

    Cr + H2O = (t) Cr(OH)3 + H2

  • Реакции с кислотами
  • Cr + HCl = CrCl2 + H2

    Хлорид хрома (II)

    Cr + H2SO4(разб.) = CrSO4 + H2

    С холодными концентрированными серной и азотной кислотой реакция не идет. Она начинается только при нагревании.

    Cr + H2SO4 = (t) Cr2(SO4)3 + SO2↑ + H2O

  • Реакции с солями менее активных металлов
  • Хром способен вытеснить из солей металлы, стоящие в ряду напряжений правее него.

    Cr + CuSO4 = CrSO4 + Cu

Соединения хрома (II)

Соединение хрома (II) носят основный характер. Оксид хрома (II) окисляется кислородом воздуха до более устойчивой формы — оксида хрома (III),
реагирует с кислотами, кислотными оксидами.

Оксид хрома (II)

CrO + O2 = Cr2O3

CrO + H2SO4 = CrSO4 + H2O

CrO + SO3 = CrSO4

Гидроксид хрома (II), как нерастворимый гидроксид, легко разлагается при нагревании на соответствующий оксид и воду, реагирует с кислотами,
кислотными оксидами.

Гидроксид хрома (II)

Cr(OH)2 = (t) CrO + H2O

Cr(OH)2 + HCl = CrCl2 + H2O

Cr(OH)2 + SO3 = CrSO4 + H2O

Соединения хрома (III)

Это наиболее устойчивые соединения, которые носят амфотерный характер. К ним относятся оксид хрома (III) гидроксид хрома (III).

Оксид и гидроксид хрома (III)

Оксид хрома (III) реагирует как с щелочами, так и с кислотами. В реакциях с щелочами при нормальной температуре (в растворе) образуются комплексные соли, при прокаливании — смешанные оксиды. С кислотами оксид хрома (III) образует различные соли.

H2O + NaOH + Cr2O3 → Na3[Cr(OH)6] (в растворе, гексагидроксохромат натрия)

Cr2O3 + Ba(OH)2 → (t°) Ba(CrO2)2 + H2O (прокаливание, хромит бария)

Cr2O3 + 2NaOH → (t°) 2NaCrO2 + H2O (прокаливание, хромит натрия)

Cr2O3 + HCl = CrCl3 + H2O (сохраняем степень окисления Cr+3)

Хлорид хрома (III)

Оксид хрома (III) реагирует с более активными металлами (например, при алюминотермии).

Cr2O3 + Al = Al2O3 + Cr

При окислении соединение хрома (III) получают соединения хрома (VI) (в щелочной среде).

K3[Cr(OH)6] + H2O2 = K2CrO4 + KOH + H2O

Cr2O3 + 8NaOH + O2 = (t) Na2CrO4 + H2O

Соединения хрома (VI)

В этой степени окисления хром проявляет кислотные свойства. К ним относится оксид хрома (VI) — CrO3, и две кислоты, находящиеся в
растворе в состоянии равновесия: хромовая — H2CrO4 и дихромовая кислоты — H2Cr2O7.

Принципиально важно помнить окраску хроматов и дихроматов (часто она бывает дана в заданиях в качестве подсказки). Хроматы окрашивают
раствор в желтый цвет, а дихроматы — в оранжевый цвет.

Хроматы желтые, дихроматы оранжевые

Хроматы переходят в дихроматы с увеличением кислотности среды (часто в реакциях с кислотами). Цвет раствора меняется с желтого на оранжевый.

Na2CrO4 + H2SO4 = Na2Cr2O7 + Na2SO4 + H2O

Если же оранжевому раствору дихромата прилить щелочь, то он сменит свой цвет на желтый — образуется хромат.

Na2Cr2O7 + NaOH = Na2CrO4 + H2O

Разложение дихромата аммония выглядит очень эффектно и носит название «вулканчик» :)

(NH4)2Cr2O7 = (t) Cr2O3 + N2↑ + H2O

Дихроматный вулканчик

В степени окисления +6 соединения хрома проявляют выраженные окислительные свойства.

K2Cr2O7 + HCl = CrCl3 + KCl + Cl2↑ + H2O

Железо

Является одним из самых распространенных элементов в земной коре (после алюминия), составляет 4,65% ее массы.

Железо

Для железа характерны две основные степени окисления +2, +3, +6.

Степени окисления железа и его свойства

В природе железо встречается в виде следующих соединений:

  • Fe2O3 — красный железняк, гематит
  • Fe3O4 — магнитный железняк, магнетит
  • Fe2O3*H2O — бурый железняк, лимонит
  • FeS2 — пирит, серый или железный колчедан
  • FeCO3 — сидерит

Природные соединения железа

Получение

Получают железо восстановлением из его оксида — руды. Восстанавливают с помощью угарного газа, водорода.

CO + Fe2O3 = Fe + CO2

H2 + Fe2O3 = Fe + H2O

Основными сплавами железа являются чугун и сталь. В стали содержание углерода менее 2%, меньше содержится P, Mn, Si, S. Чугун отличается
бо́льшим содержанием углерода (2-6%), содержит больше P, Mn, Si, S.

Чугун и сталь

Химические свойства

  • Реакции с неметаллами
  • Fe + S = FeS (t > 700°C)

    Fe + S = FeS2 (t < 700°C)

    Fe + O2 = Fe3O4 (при горении железа образуется железная окалина — Fe3O4 — смесь двух оксидов
    FeO*Fe2O3)

    При нагревании железо взаимодействует с галогенами, азотом, фосфором, углеродом, кремнием и другими.

    Fe + Cl2 = (t) FeCl3

    Fe + P = (t) FeP

    Fe + C = (t) Fe3C

    Fe + Si = (t) FeSi

    Хлорид железа (III)

  • Реакции с кислотами
  • Железо активнее водорода, способно вытеснить его из кислот.

    Fe + HCl = FeCl2 + H2

    На воздухе железо покрывается пленкой оксида, из-за чего пассивируется во многих реакциях, в том числе с концентрированными холодными
    серной и азотной кислотами.

    Fe + H2SO4(разб.) = FeSO4 + H2

    Реакция с концентрированными кислотами идет только при нагревании. В холодных серной и азотной кислотах железо пассивируется.

    Пассивирование железа в холодной концентрированной азотной кислоте

    Fe + H2SO4(конц.) = Fe2(SO4)3 + SO2↑ + H2O

  • Реакции с солями
  • Железо способно вытеснить из солей металлы, стоящие в ряду напряжений правее железа.

    CuCl2 + Fe = FeCl2 + Cu

  • Восстановительные свойства
  • Железо способно восстанавливать соединения железа +3 до +2.

    Fe + Fe2O3 = (t) FeO

    Fe + FeCl3 = (t) FeCl2

Соединения железа (II) проявляют основные свойства. Реагируют c кислотами. При разложении гидроксид железа (II)
распадается на соответствующий оксид и воду.

FeO + H2SO4 = FeSO4 + H2O

Fe(OH)2 + HCl = FeCl2 + H2O

Fe(OH)2 = (t) FeO + H2O

Гидроксид железа (II)

При хранении на открытом воздухе соли железа (II) приобретают коричневый цвет из-за окисления до железа +3.

FeCl2 + H2O + O2 = Fe(OH)Cl2

Качественной реакцией на ионы Fe2+ в растворе является реакция с красной кровяной солью — K3[Fe(CN)6] —
гексацианоферратом (III) калия. В результате реакции образуется берлинская лазурь (прусский синий).

FeCl2 + K3[Fe(CN)6] = KFe[Fe(CN)6] + KCl

Качественной реакцией на ионы Fe2+ также является взаимодействие с щелочью (гидроксидом натрия). В результате
выпадает осадок зеленого цвета.

FeCl2 + NaOH = Fe(OH)2 + NaCl

Соединения железа (III) проявляют амфотерные свойства. Оксид и гидроксид железа (III) реагирует и с кислотами, и с щелочами.

Fe(OH)3 + H2SO4 = Fe2(SO4)3 + H2O

Fe(OH)3 + KOH = K3[Fe(OH)6] (гексагидроксоферрат калия)

При сплавлении комплексные соли не образуются из-за испарения воды.

Fe(OH)3 + KOH = (t) KFeO2 + H2O

Гидроксид железа (III) — ржавчина, образуется на воздухе в результате взаимодействия железа с водой в присутствии кислорода. При нагревании
легко распадается на воду и соответствующий оксид.

Гидроксид железа (III) - ржавчина

Fe + H2O + O2 = Fe(OH)3

Fe(OH)3 = (t) Fe2O3 + H2O

Качественной реакцией на ионы Fe3+ является взаимодействие с желтой кровяной солью K4[Fe(CN)6].
В результате реакции образуется берлинская лазурь (прусский синий).

FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6] + KCl

Реакция хлорида железа (III) с роданидом калия также является качественной, в результате нее образуется характерный раствор ярко
красного цвета.

FeCl3 + KCNS = Fe(CNS)3 + KCl

Реакция железа (III) с роданидом калия

И еще одна качественная реакция на ионы Fe3+ — взаимодействие с щелочью (гидроксидом натрия). В результате
выпадает осадок бурого цвета.

FeCl3 + NaOH = Fe(OH)3 + NaCl

Соединения железа (VI) — ферраты — соли несуществующей в свободном виде железной кислоты. Обладают выраженными
окислительными свойствами.

Ферраты можно получить в ходе электролизом щелочи на железном аноде, а также действием хлора на взвесь Fe(OH)3
в щелочи.

Fe + KOH + H2O = (электролиз) K2FeO4 + H2

Fe(OH)3 + Cl2 + KOH = K2FeO4 + KCl + H2O

Феррат калия

Медь

Один из первых металлов, освоенных человеком вследствие низкой температуры плавления и доступности получения руды.

Медь

Основные степени окисления меди +1, +2.

Степени окисления меди и ее свойства

Медь встречается в самородном виде и в виде соединений, наиболее известные из которых:

  • CuFeS2 — медный колчедан, халькопирит
  • Cu2S — халькозин
  • Cu2CO3(OH)2 — малахит

Природные соединения меди

Получение

Пирометаллургический метод получения основан на получении меди путем обжига халькопирита, который идет в несколько этапов.

CuFeS2 + O2 = Cu2S + FeS + SO2

Cu2S + O2 = Cu2O + SO2

Cu2O + Cu2S = Cu + SO2

Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте и дальнейшем вытеснении меди
более активными металлами, например — железом.

CuSO4 + Fe = Cu + FeSO4

Реакция железа и медного купороса

Медь, как малоактивный металл, выделяется при электролизе солей в водном растворе на катоде.

CuSO4 + H2O = Cu + O2 + H2SO4 (медь — на катоде, кислород — на аноде)

Химические свойства

  • Реакции с неметаллами
  • Во влажном воздухе окисляется с образованием основного карбоната меди.

    Cu + CO2 + H2O + O2 = (CuOH)2CO3

    При нагревании реагирует с кислородом, селеном, серой, при комнатной температуре с: хлором, бромом и йодом.

    4Cu + O2 = (t) 2Cu2O (при недостатке кислорода)

    2Cu + O2 = (t) 2CuO (в избытке кислорода)

    Оксид меди (II)

    Cu + Se = (t) Cu2Se

    Cu + S = (t) Cu2S

  • Реакции с кислотами
  • Медь способна реагировать с концентрированными серной и азотной кислотами. С разбавленной серной не реагирует, с разбавленной азотной
    — реакция идет.

    Cu + H2SO4(конц.) = (t) CuSO4 + SO2↑ + H2O

    Cu + HNO3(конц.) = Cu(NO3)2 + NO2↑ + H2O

    Cu + HNO3(разб.) = Cu(NO3)2 + NO↑ + H2O

    Реакция меди и азотной кислоты

    Реагирует с царской водкой — смесью соляной и азотной кислот в соотношении 1 объем HNO3 к 3 объемам HCl.

    Cu + HCl + HNO3 = CuCl2 + NO + H2O

  • С оксидами неметаллов
  • Медь способна восстанавливать неметаллы из их оксидов.

    Cu + SO2 = (t) CuO + S

    Cu + NO2 = (t) CuO + N2

    Cu + NO = (t) CuO + N2

Соединения меди I

В степени окисления +1 медь проявляет основные свойства. Соединения меди (I) можно получить путем восстановления соединений меди (II).

CuCl2 + Cu = CuCl

CuO + Cu = Cu2O

Оксид меди (I) можно восстановить до меди различными восстановителями: угарным газом, алюминием (алюминотермией), водородом.

Cu2O + CO = (t) Cu + CO2

Cu2O + Al = (t) Cu + Al2O3

Cu2O + H2 = (t) Cu + H2O

Оксид меди (I) окисляется кислородом до оксида меди (II).

Cu2O + O2 = (t) CuO

Оксид меди (I) вступает в реакции с кислотами.

Cu2O + HCl = CuCl + H2O

Гидроксид меди CuOH неустойчив и быстро разлагается на соответствующий оксид и воду.

CuOH → Cu2O + H2O

Соединения меди (II)

Степень окисления +2 является наиболее стабильной для меди. В этой степени окисления у меди есть оксид CuO и гидроксид Cu(OH)2.
Данные соединения проявляют преимущественно основные свойства.

Оксид меди (II) получают в реакциях термического разложения гидроксида меди (II), реакцией избытка кислорода с медью при нагревании.

Cu(OH)2 = (t) CuO + H2O

Cu + O2 = (t) CuO

Химические свойства

  • Реакции с кислотами
  • CuO + H2SO4 = CuSO4 + H2O

    CuO + HCl = CuCl2 + H2O

  • Разложение
  • CuO = (t) Cu2O + O2

  • Восстановление
  • CuO + CO = Cu + CO2

    CuO + C = Cu + CO

    CuO + H2 = Cu + H2O

Гидроксид меди (II) — Cu(OH)2 — получают в реакциях обмена между растворимыми солями меди и щелочью.

Гидроксид меди (II)

CuSO4 + KOH = K2SO4 + Cu(OH)2

  • Разложение
  • При нагревании гидроксид меди (II), как нерастворимое основание, легко разлагается на соответствующий оксид и воду.

    Cu(OH)2 = (t) CuO + H2O

  • Реакции с кислотами
  • Cu(OH)2 + HNO3 = Cu(NO3)2 + H2O

    Cu(OH)2 + HCl = CuCl2 + H2O

  • Реакции с щелочами
  • Как сказано выше, гидроксид меди (II) носит преимущественно основный характер, однако способен проявлять и амфотерные свойства.
    В растворе концентрированной щелочи он растворяется, образуя гидроксокомлпекс.

    Cu(OH)2 + LiOH = Li2[Cu(OH)4]

  • Реакции с кислотными оксидами
  • Cu(OH)2 + CO2 = (CuOH)2CO3 + H2O (дигидроксокарбонат меди (II) — (CuOH)2CO3)

    Обратите особое внимание на реакцию взаимодействия соли меди (II) — сульфата меди (II), карбоната натрия и воды.

    CuSO4 + Na2CO3 + H2O = (CuOH)2CO3 + Na2SO4 + CO2

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Химические свойства хрома

Задание 411
Хромит калия окисляется бромом в щелочной среде. Зеленая окраска раствора переходит в желтую. Составьте электронные и молекулярные уравнения реакции. Какие ионы обусловливают начальную и конечную окраску раствора?
Решение:

Уравнение реакции окисления-восстановления хромата калия бромом 

Уравнения электронного баланса:

хром

Ионно-молекулярное уравнение:

2Cr3+  + 3Br20 = 2Cr6+ + 6Br

Молекулярное уравнение реакции:

2KCrO2  + 3Br2  + 8NaOH = 2K2CrO4 + 6KBr  + 4H2O

Начальная, зелёная окраска обусловливается хромит-ионами CrO2, а конечная, жёлтая – хромат-ионами CrO42-


Задание 412
Составьте электронные и молекулярные уравнения реакций растворения: а) молибдена в азотной кислоте; б) вольфрама в щелочи в присутствии кислорода. Учтите, что молибден и вольфрам приобретают высшую степень окисления.
Решение:

Уравнения реакций растворения металлов в кислоте и щёлочи

а) Растворение молибдена в азотной кислоте

Уравнения электронного баланса:

хром

Ионно-молекулярное уравнение:

Mo0  + 2N5+ = Mo6+ + 2N2+

Молекулярное уравнение реакции:

Mo  + 2HNО3  = H2MoO4 + 2NO

б) Растворение вольфрама в щелочи в присутствии кислорода

Уравнения электронного баланса:

хром

Ионно-молекулярное уравнение:

2W0  + 3O20 = 2W6+ + 6O2-

Молекулярное уравнение реакции:

2W  + 3O2 + 4NaOH = 2Na2WO4 + 2H2O


Задание 413
При сплавлении хромита железа Fe(CrO2)2 с карбонатом натрия в присутствии кислорода хром (III) и железо (II) окисляются и приобретают соответственно степени окисления +6 и +3. Составьте электронные и молекулярное уравнения реакции.
Решение:

Уравнение реакции сплавления хромита железа с карбонатом натрия

Уравнения электронного баланса:

хром

Ионно-молекулярное уравнение:

4Fe(CrO2)2  + O20 = 8CrO42- + 4Fe3+ + 2O2-

Молекулярное уравнение реакции:

4Fe(CrO2)2  + O2 + 8Na2CO3   8Na2CrO4 + 2Fe2O3 + 8CO2


Задание 414
К подкисленному серной кислотой раствору дихромата калия прибавили порошок алюминия. Через некоторое время оранжевая окраска раствора перешла в зеленую. Составьте электронные и молекулярное уравнения реакции.
Решение:

Уравнение реакции серной кислоты с дихроматом калия

Уравнения электронного баланса:

хром

Ионно-молекулярное уравнение:

Al0  + Cr6+ = Al3+ + Cr3+

Молекулярное уравнение реакции:

2Al  + K2Cr2O7 + 3H2SO4  = Al2(SO4)3 + 2KCrO2 + 3H2O


Задание 415
Хром получают методом алюминотермии из его оксида (III), а вольфрам — восстановлением оксида вольфрама (VI) водородом. Составьте электронные и молекулярные уравнения соответствующих реакций.
Решение:

Уравнениие реакции получения хрома методом  алюминотермии

а) Получение хрома методом алюминотермии

Уравнения электронного баланса:

хром

Ионно-молекулярное уравнение:

Al0  + Cr6+ = Al3+ + Cr3+

Молекулярное уравнение реакции:

2Al  + Cr2O3  = Al2О3 + 2Cr

б) Получение вольфрама методом алюминотермии

Уравнения электронного баланса:

хром

Ионно-молекулярное уравнение:

20  + W6+ = 6H+ + W0

Молекулярное уравнение реакции:

2  + WO3 = 3H2O + W


Чтобы поделиться, нажимайте

Для атома хрома характерно явления «проскок» электрона

elektronnaya-konfiguraciya

Химические свойства хрома

При обычных условиях хром реагирует только со фтором. При высоких температурах (выше 600°C) взаимодействует с кислородом, галогенами, азотом, кремнием, бором, серой, фосфором.

4Cr + 3O2  –  →2Cr2O3

2Cr + 3Cl2  –→  2CrCl3

2Cr + N2  –→  2CrN

2Cr + 3S   –→  Cr2S3

В раскалённом состоянии реагирует с парами воды:

2Cr + 3H2O → Cr2O3 + 3H2

Хром растворяется в разбавленных сильных кислотах (HCl, H2SO4)

В отсутствии воздуха образуются соли Cr2+, а на воздухе – соли Cr3+.

Cr + 2HCl → CrCl2 + H2­

2Cr + 6HCl + O2 → 2CrCl3 + 2H2O + H2­

Наличие защитной окисной плёнки на поверхности металла объясняет его пассив-ность по отношению к концентрированным растворам кислот – окислителей.

 Соединения хрома

Оксид хрома (II) и гидроксид хрома (II) имеют основной характер.

Cr(OH)2 + 2HCl → CrCl2 + 2H2O

Соединения хрома (II) – сильные восстановители; переходят в соединения хрома (III) под действием кислорода воздуха.

2CrCl2 + 2HCl → 2CrCl3 + H2­

4Cr(OH)2 + O2 + 2H2O → 4Cr(OH)3 

Оксид хрома (III) Cr2O3 – зелёный, нерастворимый в воде порошок. Может быть получен при прокаливании гидроксида хрома (III) или дихроматов калия и аммония:

2Cr(OH)3  –→  Cr2O3 + 3H2O

4K2Cr2O7  –→  2Cr2O3 + 4K2CrO4 + 3O2­

(NH4)2Cr2O7  –→  Cr2O3 + N2­+ 4H2

Амфотерный оксид. При сплавлении Cr2O3 со щелочами, содой и кислыми солями получаются соединения хрома со степенью окисления (+3):

Cr2O3 + 2NaOH → 2NaCrO2 + H2O

Cr2O3 + Na2CO3 → 2NaCrO2 + CO2­

При сплавлении со смесью щёлочи и окислителя получают соединения хрома в степени окисления (+6):

2Cr2O3 + 4KOH + KClO3 → 2KCrO4+ KCl + 2H2O

Гидроксид хрома (III) Сr(ОН)3 . Амфотерный гидроксид. Серо-зеленый, разлагается при нагревании, теряя воду и образуя зеленый метагидроксид СrО(ОН). Не растворяется в воде. Из раствора осаждается в виде серо-голубого и голубовато-зеленого гидрата. Реагирует с кислотами и щелочами, не взаимодействует с гидратом аммиака.

Обладает амфотерными свойствами – растворяется как в кислотах, так и в щелочах:

2Cr(OH)3 + 3H2SO4 → Cr2(SO4)3 + 6H2O                                 Сr(ОН)3 + ЗН+ = Сr3+ + 3H2O

Cr(OH)3 + KOH → K[Cr(OH)4] ,                                                Сr(ОН)3 + ЗОН(конц.) = [Сr(ОН)6]3-

Cr(OH)3 + KOH → KCrO2+2H2O                                 Сr(ОН)3 + МОН = МСrO2(зел.) + 2Н2O       (300—400 °С, М = Li, Na)

Сr(ОН)3 →(120oCH2O) СrO(ОН) →(430-10000С –H2O) Cr2O3

2Сr(ОН)3 + 4NаОН(конц.) + ЗН2O2(конц.) =2Na2СrO4 + 8Н20

Получение: осаждение гидратом аммиака из раствора солей хрома(Ш):

Сr3+ + 3(NH3 Н2O) = Сr(ОН)3 + ЗNН4+

Cr2(SO4)3 + 6NaOH → 2Cr(OH)3 ↓+ 3Na2SO4 (в избытке щелочи – осадок растворяется)

Соли хрома (III) имеют фиолетовую или тёмно-зелёную окраску. По химическим свойствам напоминают бесцветные соли алюминия.

Соединения Cr (III) могут проявлять и окислительные, и восстановительные свойства:

Zn + 2Cr+3Cl3 → 2Cr+2Cl2 + ZnCl2

2Cr+3Cl3 + 16NaOH + 3Br2 → 6NaBr + 6NaCl + 8H2O + 2Na2Cr+6O4

Соединения шестивалентного хрома

Оксид хрома (VI) CrO3 – ярко-красные кристаллы, растворимые в воде.

Получают из хромата (или дихромата) калия и H2SO4(конц.).

K2CrO4 + H2SO4 → CrO3 + K2SO4 + H2O

K2Cr2O7 + H2SO4 → 2CrO3 + K2SO4 + H2O

CrO3 – кислотный оксид, со щелочами образует жёлтые хроматы CrO42-:

CrO3 + 2KOH → K2CrO4 + H2O

В кислой среде хроматы превращаются в оранжевые дихроматы Cr2O72-:

2K2CrO4 + H2SO4 → K2Cr2O7 + K2SO4 + H2O

В щелочной среде эта реакция протекает в обратном направлении:

K2Cr2O7 + 2KOH → 2K2CrO4 + H2O

Дихромат калия – окислитель в кислой среде:

К2Сr2O7 + 4H2SO4 + 3Na2SO3 = Cr2(SO4)3 + 3Na2SO4 + K2SO4 + 4H2O

K2Cr2O7 + 4H2SO4 + 3NaNO2 = Cr2(SO4)3 + 3NaNO3 + K2SO4 + 4H2O

K2Cr2O7 + 7H2SO4 + 6KI = Cr2(SO4)3 + 3I2 + 4K2SO4 + 7H2O

K2Cr2O7 + 7H2SO4 + 6FeSO4 = Cr2(SO4)3 + 3Fe2(SO4)3 + K2SO4 + 7H2O

Хромат калия К2 CrО4. Оксосоль. Желтый, негигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде (желтая окраска раствора отвечает иону СrO42-), незначительно гидролизуется по аниону. В кислотной среде переходит в К2Cr2O7. Окислитель (более слабый, чем К2Cr2O7). Вступает в реакции ионного обмена.

     Качественная реакция на ион  CrO42- – выпадение желтого осадка хромата бария, разлагающегося в сильнокислотной среде. Применяется как протрава при крашении тканей, дубитель кож, селективный окислитель, реактив в аналитической химии.

Уравнения важнейших реакций:

2K2CrO4+H2 SO4(30%)=K2Cr2O7 +K2SO4 +H2O

2K2CrO4(т)+16HCl3(конц.,гор.) =2CrCl3+3Cl3↑+8H2O+4KCl

2K2CrO4+2H2O+3H2S=2Cr(OH)3↓+3S↓+4KOH

2K2CrO4+8H2O+3K2S=2K[Сr(ОН)6]+3S↓+4KOH

2K2CrO4+2AgNO3=KNO3+Ag2CrO4(красн.)

Качественная реакция:

К2СгO4 + ВаСl2 = 2КСl + ВаCrO4

2ВаСrO4(т)+ 2НСl (разб.) = ВаСr2O7(p)+ ВаС12 + Н2O

Получение: спекание хромита с поташом на воздухе:

4(Сr2Fe‖‖)O4 + 8К2CO3 + 7O2 = 8К2СrO4 + 2Fе2O3 + 8СO2 (1000 °С)

Дихромат калия K2Cr2O7 .  Оксосоль. Техническое название хромпик. Оранжево-красный, негигроскопичный. Плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворим в воде  (оранжевая окраска раствора отвечает иону Сr2O72- ). В щелочной среде образует К2CrO4 . Типичный окислитель в растворе и при сплавлении. Вступает в реакции ионного обмена.

     Качественные реакции – синее окрашивание эфирного раствора в присутствии Н2O2 , синее окрашивание водного раствора при действии атомарного водорода.

Применяется как дубитель кож, протрава при крашении тканей, компонент пиротехнических составов, реагент в аналитической химии, ингибитор коррозии металлов, в смеси с Н2SO4 (конц.) – для мытья химической посуды.

Уравнения важнейших реакций:

2Cr2O7=4K2CrO4+2Cr2O3+3O(500-600o C)

K2Cr2O7(т)+14HCl (конц) =2CrCl3+3Cl2↑+7H2O+2KCl  (кипячение)

K2Cr2O7(т)+2H2SO4(96%) ⇌2KHSO4+2CrO3+H2O   (“хромовая смесь”)

K2Cr2O7+KOH (конц ) =H2O+2K2CrO4

Cr2O72- +14H+ +6I=2Cr3+ +3I2↓+7H2O

Cr2O72- +2H+ +3SO2(г)=2Cr3+ +3SO42- +H2O

Cr2O72- +H2O +3H2S(г)=3S↓+2OH +2Cr2(OH)3

Cr2O72- (конц )+2Ag+(разб.) =Ag2Cr2O7 (т. красный)

Cr2O72- (разб.) +H2O +Pb2+=2H+ + 2PbCrO4 (красный)

K2Cr2O7(т) +6HCl+8H0(Zn)=2CrCl2(син)+7H2O+2KCl

     Получение: обработка К2СrO4  серной кислотой:

2СrO4 + Н2SO4 (30%) = К2Cr2O7 + К2SO4 + Н2O

xrom-oksid-xroma-svojstva-ximiya-691x1024

Like this post? Please share to your friends:
  • Цепочки с фосфором егэ
  • Цепочки с карбоновыми кислотами егэ
  • Цепочки реакций по химии органика егэ
  • Цепочки реакций по неорганической химии для егэ
  • Цепочки превращений по химии егэ 2022