Цикл кребса егэ химия

1.      Матрикс митохондрии
содержит все ферменты цикла Кребса. В митохондриях ПВК превращается в ацетил-кофермент А (за счет присоединения КоА). В КоА входит адениловый нуклеотид, а также пантотеновая кислота (синтезируется в кишечнике человека бактериями). Надо помнить, что окисляться могут и жирные кислоты, и аминокислоты — но в результате всегда создается именно ацетил-КоА. При этом идет восстановление HAДН из НАД+ и выделяется СО2.

2.      Ацетил-КоА объединяется с молекулой щавелеускусной кислоты, происходит образование лимонной кислоты.

3.      Дальше лимонная кислота продолжает окисляться в процессе ферментных реакций.

1)      Восстанавливаются 3 молекулы НАДН, одна молекула ФАДН2, и ГТФ (гуанозинтрифосфат).

2)      ГТФ используется для фосфорилирования АДФ и образования АТФ.

3)      Лимонная кислота утрачивает 2 углеродных атома, в результате чего возникают две молекулы СО2.

4.      Пройдя одну за другой семь реакций, лимонная кислота вновь превращается в щавелеуксусную, а та, в свою очередь, вновь соединяется с ацетил-КоА. Цикл замыкается.

1)      В лимонной кислоте словно бы сгорает присоединившийся ранее остаток ацетил-КоА.

2)      Протоны водорода и электроны переносятся на акцепторы — НАД+ и ФАД.

3)      В итоге энергия органических соединений аккумулируется в молекулах НАДН, ФАДН2, АТФ.

4)      К тому же, подчеркнем, в цикле Кребса идет выделение CO2.

Цепь переноса электронов. Окислительное фосфорилирование

1.      Электроны от НАДН и ФАДН2 переносятся по цепи переноса электронов (которая имеет много звеньев) к конечному акцепторукислороду. В ходе этого процесса освобождается энергия электронов НАДН и ФАДН2, которая идет на синтез АТФ из АДФ. Именно потому данный процесс и назван фосфорилированием. При этом электроны концентрируются с внутренней стороны крист, а протоны с внешней (противоположно тому, как это было в хлоропластах).

2.      Перенос электронов идет по цепи, расположенной с внутренней стороны внутренней мембраны митохондрий, где находятся ряд переносчиков. Самый сильный акцептор электронов — в конце цепи — кислород. Промежуточные переносчики: убихинон, ФМН, НАДН-дегидрогеназа, цитохромы b, с1, с, цитохромоксидаза — комплекс цитохромов а и а3 (в них есть атомы меди).

3.      Куда идут атомы водорода и электроны? Атомы водорода, электроны от НАДН и ФАДН2 отправляются на внутреннюю сторону мембраны митохондрии. Протоны идут в межмембранное пространство, лежащее между двумя мембранами митохондрий, наружной и внутренней, формируя протонный резервуар. А электроны атома водорода остаются на внутренней стороне мембраны, где они и концентрируются. Так создается разность потенциалов.

4.      Протоны двигаются через канал в молекуле фермента АТФ-синтетазы
при достижении разности потенциалов определенной величины. АТФ-синтетазы встроены во внутренние мембраны митохондрий. Они образуют АТФ из АДФ. Энергия протонов при движении их через канал фермента расходуется на синтез АТФ. По мере образования АТФ протонный резервуар теряет свою энергию.

5.      Внутри митохондрий катионы водорода Н+, соединяясь с кислородом и электронами, образуют воду: 2Н+ + 0,5О2 = Н2О.

6.      Подведем итог. В цикле трикарбоновых кислот образуются НАДН, ФАДН2, СО2. При окислительном фосфорилировании образуются 34 АТФ, 6Н2О. В результате окисление одной молекулы глюкозы дает 38 АТФ, 6 СО2, 6Н2О.

1)      КПД кислородного этапа — 55 процентов.

2)      45 процентов энергии теряется в виде тепла.

3)      АТФ идет на химическую работу (биосинтез), механическую (мышцы), осмотическую (накопление и вывод веществ), электрическую (нервная ткань).

Энергетический обмен

Энергетический обмен
(катаболизм, диссимиляция) — совокупность реакций расщепления органических
веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при
распаде органических веществ, не сразу используется клеткой, а запасается в
форме АТФ и других высокоэнергетических соединений. АТФ — универсальный
источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех
организмов в процессе фосфорилирования — присоединения неорганического фосфата
к АДФ.

У аэробных
организмов (живущих в кислородной среде) выделяют три этапа энергетического
обмена: подготовительный, бескислородное окисление и кислородное окисление; у
анаэробных
организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода
— два этапа: подготовительный, бескислородное окисление.

Подготовительный этап

Заключается в
ферментативном расщеплении сложных органических веществ до простых: белковые
молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы —
до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных
органических соединений осуществляется или ферментами желудочно-кишечного
тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия
рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут
быть использованы в качестве «строительного материала» или могут подвергаться
дальнейшему расщеплению.

Бескислородное окисление, или гликолиз

Этот этап заключается в
дальнейшем расщеплении органических веществ, образовавшихся во время
подготовительного этапа, происходит в цитоплазме клетки и в присутствии
кислорода не нуждается. Главным источником энергии в клетке является глюкоза.
Процесс бескислородного неполного расщепления глюкозы —
гликолиз.

Потеря электронов
называется окислением, приобретение — восстановлением, при этом донор
электронов окисляется, акцептор восстанавливается.

Следует отметить, что
биологическое окисление в клетках может происходить как с участием кислорода:

А + О2
→ АО2,

так и без его участия,
за счет переноса атомов водорода от одного вещества к другому. Например,
вещество «А» окисляется за счет вещества «В»:

АН2
+ В → А + ВН2

или за счет переноса
электронов, например, двухвалентное железо окисляется до трехвалентного:

Fe2+
→ Fe3+ + e.

Гликолиз — сложный
многоступенчатый процесс, включающий в себя десять реакций. Во время этого
процесса происходит дегидрирование глюкозы, акцептором водорода служит
кофермент НАД+ (никотинамидадениндинуклеотид). Глюкоза в результате
цепочки ферментативных реакций превращается в две молекулы пировиноградной
кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная
форма переносчика водорода НАД·Н2:

С6Н12О6
+ 2АДФ + 2Н3РО4 + 2НАД+ → 2С3Н4О3
+ 2АТФ + 2Н2О + 2НАД·Н2.

Дальнейшая судьба ПВК
зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и
растений происходит спиртовое брожение, при котором сначала происходит
образование уксусного альдегида, а затем этилового спирта:

1.         
С3Н4О3 → СО2 + СН3СОН,

2.         
СН3СОН + НАД·Н2 → С2Н5ОН
+ НАД+.

3.     У
животных и некоторых бактерий при недостатке кислорода происходит молочнокислое
брожение с образованием молочной кислоты:

4.    
С3Н4О3 + НАД·Н2 → С3Н6О3
+ НАД+.

5.     В
результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых
120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.

6.     Кислородное
окисление, или дыхание

7.     Заключается
в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при
обязательном присутствии кислорода.

8.     Пировиноградная
кислота транспортируется в митохондрии (строение и функции митохондрий ). Здесь
происходит дегидрирование (отщепление водорода) и декарбоксилирование
(отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной
группы, которая вступает в цикл реакций, получивших название реакций цикла
Кребса. Идет дальнейшее окисление, связанное с дегидрированием и
декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из
митохондрии удаляется три молекулы СО2; образуется пять пар атомов
водорода, связанных с переносчиками (4НАД·Н2, ФАД·Н2), а
также одна молекула АТФ.

Кислородное окисление

Суммарная реакция
гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа
выглядит следующим образом:

С6Н12О6
+ 6Н2О → 6СО2 + 4АТФ + 12Н2.

Две молекулы АТФ
образуются в результате гликолиза, две — в цикле Кребса; две пары атомов
водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле
Кребса.

Последним этапом
является окисление пар атомов водорода с участием кислорода до воды с
одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим
ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной
цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются
электроны, которые в матриксе митохондрий в конечном итоге соединяются с
кислородом:

О2
+ e → О2.

Протоны закачиваются в
межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя
мембрана непроницаема для ионов водорода, с одной стороны она заряжается
отрицательно (за счет О2), с другой — положительно (за
счет Н+). Когда разность потенциалов на внутренней мембране
достигает 200 мВ, протоны проходят через канал фермента АТФ-синтетазы,
образуется АТФ, а цитохромоксидаза катализирует восстановление кислорода до
воды. Так в результате окисления двенадцати пар атомов водорода образуется 34
молекулы АТФ.

Кислородное окисление

1 —
наружная мембрана; 2 — межмембранное пространство, протонный резервуар;
3 — цитохромы; 4 — АТФ-синтетаза.

При перфорации
внутренних митохондриальных мембран окисление НАД·Н2 продолжается,
но АТФ-синтетаза не работает и образования АТФ в дыхательной цепи не
происходит, энергия рассеивается в форме тепла (клетки «бурого жира»
млекопитающих).

Суммарная реакция
расщепления глюкозы до углекислого газа и воды выглядит следующим образом:

С6Н12О6
+ 6О2 → 6СО2 + 6Н2О + 38АТФ + Qт,

где Qт — тепловая
энергия.

Фотосинтез
— синтез органических веществ из углекислого газа и воды с обязательным
использованием энергии света:

6СО2
+ 6Н2О + Qсвета → С6Н12О6
+ 6О2.

У высших растений
органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты
(строение хлоропластов — лекция
№7). В мембраны тилакоидов хлоропластов встроены фотосинтетические
пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов
хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле
хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и
фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру,
является гидрофильной и поэтому лежит на той поверхности мембраны, которая
обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого
удерживает молекулу хлорофилла в мембране.

Фотосинтез

Хлорофиллы поглощают
красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям
характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов
организованы в
фотосистемы. У
растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у
фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может
разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный
многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы:
реакции
световой фазы и реакции темновой
фазы
.

Световая фаза

Эта фаза происходит
только в присутствии света в мембранах тилакоидов при участии хлорофилла,
белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта
света электроны хлорофилла возбуждаются, покидают молекулу и попадают на
внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно.
Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды,
находящейся во внутритилакоидном пространстве. Это приводит к распаду или
фотолизу воды:

Н2О
+ Qсвета → Н+ + ОН.

Ионы гидроксила отдают
свои электроны, превращаясь в реакционноспособные радикалы •ОН:

ОН
→ •ОН + е.

Радикалы •ОН
объединяются, образуя воду и свободный кислород:

4НО• →
2О + О2.

Кислород при этом
удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в
«протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет
Н+ заряжается положительно, с другой за счет электронов —
отрицательно. Когда разность потенциалов между наружной и внутренней сторонами
мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы
АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет
на восстановление специфического переносчика НАДФ+
(никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

+
+ 2е + НАДФ → НАДФ·Н2.

Таким образом, в
световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими
процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3)
образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2
транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

Световая фаза фотосинтеза

1 —
строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в
строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они
происходят не только на свету, но и в темноте. Реакции темновой фазы
представляют собой цепочку последовательных преобразований углекислого газа
(поступает из воздуха), приводящую к образованию глюкозы и других органических
веществ.

Первая реакция в этой
цепочке — фиксация углекислого газа; акцептором углекислого газа является
пятиуглеродный сахар
рибулозобифосфат
(РиБФ); катализирует реакцию фермент
рибулозобифосфат-карбоксилаза
(РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата
образуется неустойчивое шестиуглеродное соединение, которое сразу же
распадается на две молекулы
фосфоглицериновой кислоты
(ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных
продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях
используются энергии АТФ и НАДФ·Н2, образованных в световую фазу;
цикл этих реакций получил название «цикл Кальвина»:

6СО2
+ 24Н+ + АТФ → С6Н12О6 + 6Н2О.

Кроме глюкозы, в
процессе фотосинтеза образуются другие мономеры сложных органических соединений
— аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время
различают два типа фотосинтеза: С3— и С4-фотосинтез.

С3-фотосинтез

С3-фотосинтез

Это тип фотосинтеза,
при котором первым продуктом являются трехуглеродные (С3)
соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза
(М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая
фаза». Характерные особенности С3-фотосинтеза: 1) акцептором
углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует
РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется
шестиуглеродное соединение, которое распадается на две ФГК. ФГК
восстанавливается до
триозофосфатов
(ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Фотодыхание

Фотодыхание:
1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое
поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века
было установлено, что кислород подавляет фотосинтез. Как оказалось, для
РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и
кислород:

О2
+ РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом
называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором
фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат
становится гликолатом, который растение должно утилизировать. Он поступает в
пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где
окисляется до серина, при этом происходит потеря уже фиксированного углерода в
виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в
одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений
на 30–40% (
С3-растения — растения, для
которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез
— фотосинтез, при котором первым продуктом являются четырехуглеродные (С4)
соединения. В 1965 году было установлено, что у некоторых растений (сахарный
тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются
четырехуглеродные кислоты. Такие растения назвали
С4-растениями.
В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений
практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый
газ. Путь превращений углерода в С4-растениях стали называть
путем
Хэтча-Слэка
.

Для С4-растений
характерно особое анатомическое строение листа. Все проводящие пучки окружены
двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки.
Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор —
фосфоенолпируват
(ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С).
Процесс катализируется
ФЕП-карбоксилазой.
В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2
и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла
много гран, где активно идут реакции световой фазы. В хлоропластах клеток
обкладки идут реакции темновой фазы.

Оксалоацетат (4С)
превращается в малат, который через плазмодесмы транспортируется в клетки
обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата,
СО2 и НАДФ·Н2.

Пируват возвращается в
клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь
фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует
энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

С4-фотосинтез

Строение С4-растений

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки
обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 —
много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны,
крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

Значение фотосинтеза

Благодаря фотосинтезу,
ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются
миллиарды тонн кислорода; фотосинтез является основным источником образования
органических веществ. Из кислорода образуется озоновый слой, защищающий живые
организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый
лист использует лишь около 1% падающей на него солнечной энергии,
продуктивность составляет около 1 г органического вещества на 1 м2
поверхности в час.

Хемосинтез

Синтез органических
соединений из углекислого газа и воды, осуществляемый не за счет энергии света,
а за счет энергии окисления неорганических веществ, называется
хемосинтезом.
К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие
бактерии
окисляют аммиак до азотистой, а затем до азотной кислоты (NH3
→ HNO2 → HNO3).

Железобактерии
превращают закисное железо в окисное (Fe2+ → Fe3+).

Серобактерии
окисляют сероводород до серы или серной кислоты (H2S + ½O2
→ S + H2O, H2S + 2O2 → H2SO4).

В результате реакций
окисления неорганических веществ выделяется энергия, которая запасается
бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза
органических веществ, который проходит аналогично реакциям темновой фазы
фотосинтеза.

Хемосинтезирующие
бактерии способствуют накоплению в почве минеральных веществ, улучшают
плодородие почвы, способствуют очистке сточных вод и др.

Значение цикла Кребса в реакциях обмена веществ и клеточного дыхания

История изучения

Биологическая роль некоторых реакций цикла Кребса (ЦК) была изучена американским биохимиком венгерского происхождения Альбертом Сент-Дьердьи. В частности, он выделил ключевой компонент ЦТК — фумарат. Исследования в этом направлении продолжил Ганс Кребс. В итоге он установил всю последовательность реакций и соединений, образующиеся на всех этапах процесса. Ученый не смог определить, с преобразования какой кислоты начинается цикл — лимонной или изолимонной. Сейчас известно, что это лимонная кислота. Поэтому ЦК называют также цитратным или циклом лимонной кислоты.

Позднее американец Альберт Ленинджер, занимающийся биоэнергетикой, определил, что все реакции ЦК протекают в митохондриях клеток. С получением доступа к изотопам углерода появилась возможность более досконального изучения и уточнения данных о промежуточных соединениях на разных этапах цикла.

С пищей в организм поступают три основные группы сложных биохимических соединений — белки, жиры и углеводы. Они являются первичными метаболитами, потому что участвуют в обмене веществ или в метаболизме. Этот процесс происходит между любыми живыми клетками и окружающей средой непрерывно. Суть цикла Кребса заключается в том, что он является областью схождения двух путей метаболизма. Это следующие процессы:

  • катаболизм, при котором происходит распад более сложных веществ на простые, в частности, глюкозы на моносахариды;
  • анаболизм — синтез сложных веществ из простых, например, белков из аминокислот.

Механизм запуска и описание сути процесса

После попадания в пищеварительную систему сложные вещества расщепляются под действием ферментов на более простые, которые внутри клеток превращаются сначала в пируват (пировиноградную кислоту), а затем — в ацетильный остаток. Все эти преобразования можно назвать подготовкой к ЦК, а образование остатка — его запуском или начальным этапом.

Дальнейшие стадии цикла трикарбоновых кислот являются частью катаболизма. Процесс идет каскадно. Каждый предыдущий этап запускает последующий, а промежуточные продукты химических реакций служат не только для продолжения цикла, но и при определенных потребностях организма могут пополнять запасы веществ, необходимых для синтеза новых соединений (анаболизма).

Клеточное дыхание

Цикла Кребса в реакциях обмена веществ и клеточного дыхания

Для нормальной жизнедеятельности живым клеткам постоянно требуется энергия. Ее главный универсальный источник — аденозинтрифосфат (АТФ), способный встраиваться в белки организма напрямую. Это соединение получается в результате ряда реакций окисления, носящих общее название «клеточное дыхание». При этом происходит постепенный распад органических веществ вплоть до простейших неорганических — углекислого газа CO2 и воды H2O.

Структурное строение молекул АТФ содержит фосфорангидридные связи, которые имеют свойство накапливать высвобожденную при прохождении реакций клеточного дыхания энергию, поэтому называются макроэргическими. Так создаются энергетические запасы клеток, которые могут высвобождается при необходимости разрывом этих связей. Процесс синтеза АТФ и класса вспомогательных соединений включает три этапа:

  1. Гликолиз происходит в цитоплазме.
  2. В матриксе митохондрий проходят все химические реакции цикла Кребса.
  3. Окислительное фосфорилирование на внутренней мембране митохондрий.

Преобразование аденозиндифосфата (АДФ) в АТФ характерно для всех этапов. Но наибольшее суммарное количество молекул с макроэргическими связями образуется при фосфорилировании. Это не значит, что процессы гликолиза и ЦК менее важны. Многие соединения, образующиеся во время их протекания, участвуют в регуляции клеточного дыхания.

Описание процесса

Что такое цикл Кребса

Протекание ЦК достаточно экономно с точки зрения энергозатрат. Такой эффект достигается благодаря тому, что он связывает два метаболических направления. В процесс вовлекаются вещества, подлежащие утилизации, которые либо служат энергетическим «топливом», либо возвращаются в круг анаболизма. Подготовительная стадия ЦК заключается в распаде глюкозы, аминокислот и жирных кислот на молекулы пирувата или лактата.

Органеллы митохондрий способны преобразовывать пируват в ацетильный остаток (ацетил-коэнзим А или ацетил-КоА), представляющий собой вместе с тиольной группой, которая может его переносить, кофермент А. Некоторое соединения могут сразу распадаться до ацетил-КоА, минуя стадию пирувата. При этом пировиноградная кислота может вовлекаться непосредственно в ЦК, не преобразуясь в ацетил-КоА.

Начальные этапы

Стадии цикла

Первая стадия необратима и состоит из конденсации ацетил-КоА с четырехуглеродным веществом — оксалоацетатом (щавелевоуксусной кислотой или ЩУК), что приводит к образованию шестиуглеродного цитрата (лимонной кислоты). Во время реакции метильная группа ацетил-КоА соединяется с карбонильной группой ЩУК. Благодаря быстрому гидролизу промежуточного соединения цитроил-КоА этот этап проходит без затрат энергии извне.

На второй стадии образуется изоцитрат (изолимонная кислота) из цитрата через цис-аконитат. Это реакция обратимой изомеризации через образование промежуточной трикарбоновой кислоты, в которой катализатором выступает фермент аконитатгидратаза.

Далее происходит дегидрирование и декарбоксилирование изоцитрата до промежуточного соединения оксалосукцинат с выделением углекислого газа. После декарбоксилирования оксалосукцината образуется енольное соединение, которое перестраивается и превращается в пятиуглеродную кислоту — α-кетоглутарат (оксоглутарата), чем и завершает третью ступень ЦК. Четвертый этап — α-кетоглутарат декарбоксилирует и реагирует с ацетил-КоА. При этом получается сукцинил-КоА, соединение янтарной кислоты и коэнзима-А, выделяется СО2.

Замыкание цикла

Биохимия всех стадий цикла трикарбоновых кислот.

На пятой стадии сукцинил-КоА преобразуется в сукцинат (янтарную кислоту). Для этого этапа характерно субстратное фосфолирование, подобное синтезу АТФ при гликолизе. Введение в ЦК фосфорной группы РО3 становится возможным благодаря присутствию фермента ГДФ (гуанозиндифосфата) или АДФ (аденозиндифосфата), которые в процессе синтеза сукцината из дифосфатов становятся трифосфатами.

Начиная с шестой стадии, цикл начинает постепенно замыкаться. Сначала сукцинат под действием каталитического фермента сукцинатдегидрогеназы дегидрирует до фумарата. Дальнейшее дигидрирование приводит к седьмому этапу — образованию L-малата (яблочной кислоты) из фуратата через переходное соединение с карбанионом.

Последняя реакция цикла трикарбоновых кислот малат окисляется до щавелевоуксусной кислоты. Первая стадия следующего ЦК начинается с новой молекулы ацетил-КоА.

Значение и функции

Этот восьмиэтапный циклический процесс, итогом которого является окисление ацетильного остатка до углекислого газа, может показаться излишне сложным. Тем не менее, он имеет огромное значение в метаболизме промежуточных реакций и выполняет ряд функций. К ним относятся:

  • энергетическая;
  • анаболическая;
  • катаболическая;
  • транспортная.

Цикл Кребса участвуют в катаболизме жиров и углеводов. Соединения, образующиеся на разных стадиях процесса, участвуют в синтезе многих необходимых для организма веществ — глутамина, порфиринов, глицина, фенилаланина, цистеина и других. Когда промежуточные продукты покидают ЦК для участия в синтезе, происходит их замещение с помощью так называемых анаплеротических реакций, которые катализируются регуляторными ферментами, например, пируваткарбоксилазой.

Транспортная функция ЦК заключается в содействии гликолизу. Глюкозу невозможно превратить сразу в АТФ, поэтому механизм гликолиза действует поэтапно и сопровождается постоянным перемещением атомов и катионов водорода от одних соединений к другим. Для их транспортировки нужны специальные соединения, которые получаются на одной из стадий ЦТК. Участвующие в гликолизе коферменты цикла Кребса:

  • НАД*H+(Никотинамидадениндинуклеотид с катионом водорода). Образуется на III стадии ЦК.
  • ФАД*H2 (Флавинадениндинуклеотид с молекулой водорода). Появляется на V стадии ЦК.

Реакции ЦК имеют и большое клиническое значение. Хотя для людей не свойственны мутации, связанные с генами ферментов, участвующих в цикле, однако их редкие проявления губительны для здоровья. Они могут приводить к опухолям мышц и почек, нарушениям работы нервной системы.

Существует множество видов визуального и слухового отображения цикла Кребса — схемы с формулами, уравнения химических реакций, разнообразные таблицы и даже мнемонические способы для полного запоминания его главных «участников».

Читайте также:

  • Эксперимент Милгрэма
  • Плазмолиз и деплазмолиз

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 38    1–20 | 21–38

Добавить в вариант

Что характерно для кислородного этапа энергетического процесса?

1)  протекает в цитоплазме клетки

2)  образуются молекулы ПВК

3)  встречается у всех известных организмов

4)  протекает процесс в матриксе митохондрий

5)  наблюдается высокий выход молекул АТФ

6)  имеются циклические реакции


Установите соответствие между процессами и стадиями клеточного дыхания: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРОЦЕССЫ

А)  окислительное фосфорилирование

Б)  транспорт электронов по цепи переносчиков

В)  образование пировиноградной кислоты

Г)  расщепление шестиуглеродного сахара

Д)  активация глюкозы с затратой АТФ

Е)  цикл трикарбоновых кислот

СТАДИИ КЛЕТОЧНОГО ДЫХАНИЯ

1)  бескислородный этап

2)  кислородный этап

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д Е

На каком из этапов энергетического обмена синтезируются две молекулы АТФ

2) подготовительного этапа

4) поступления веществ в клетку


Синтез молекул АТФ происходит в процессе

3) подготовительного этапа энергетического обмена

4) кислородного этапа энергетического обмена


Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны.

Какие из перечисленных ниже признаков можно использовать для описания кислородного этапа клеточного дыхания?

1)  окислительное фосфорилирование

2)  окисление НАДН

3)  происходит в цитозоле

4)  образуется этанол

5)  выделяется углекислый газ

6)  образуется пировиноградная кислота


Окислительное фосфорилирование кислородного этапа энергетического обмена протекает

1)  в цитоплазме

2)  в лизосомах

3)  на внешней мембране митохондрий

4)  на кристах митохондрий

Источник: ЕГЭ 18.04.2015. Досрочная волна.


В процессе кислородного этапа катаболизма образовалось 972 молекулы АТФ. Определите, какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образовалось в результате гликолиза и полного окисления? Ответ поясните.


В процессе кислородного этапа катаболизма образовалось 1368 молекулы АТФ. Определите, какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образовалось в результате гликолиза и полного окисления? Ответ поясните.


Обеспечение организма человека молекулами АТФ происходит в процессе

1) кислородного этапа энергетического обмена

2) синтеза белков на иРНК

3) подготовительного этапа энергетического обмена

4) синтеза иРНК на ДНК

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Центр, Урал. Вариант 4.


В результате кислородного этапа энергетического обмена в клетках синтезируются молекулы


В результате кислородного этапа энергетического обмена в клетках синтезируются молекулы


К каким последствиям приведет снижение активности ферментов, участвующих в кислородном этапе энергетического обмена животных?


В процессе обмена веществ в клетке энергия АТФ может использоваться

1)  для выделения углекислого газа из клетки

2)  на поступление веществ в клетку через плазматическую мембрану

3)  при расщеплении биополимеров

4)  для образования воды на кислородном этапе энергетического обмена

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Дальний Восток. Вариант 2.


Экспериментатор снизил активность действия ферментов, участвующих в кислородном этапе энергетического обмена животной клетки. Как изменились количество синтезируемых молекул АТФ и количество продуктов неполного окисления после начала эксперимента?

Для каждой величины определите соответствующий характер её изменения:

1)  увеличилось

2)  уменьшилось

3)  не изменилось

Запишите в таблицу выбранные цифры для каждой величины. Цифры в ответе могут повторяться.

Количество

молекул АТФ

Количество продуктов

неполного окисления


Все перечисленные ниже признаки, кроме двух, используются для описания бескислородного этапа дыхания у человека. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  образование углекислого газа и воды

2)  происходит в цитоплазме

3)  формируется 36 молекул АТФ

4)  начинается с активации глюкозы

5)  в процессе образуется пировиноградная кислота


Установите соответствие между процессом и этапом энергетического обмена, на котором он происходит.

ПРОЦЕСС

А)  образование молочной кислоты

Б)  полное окисление до СО$_2$,Н$_2$О

В)  образование пировиноградной кислоты

Г)  расщепление глюкозы

Д)  синтез 36 молекул АТФ

ЭТАП ЭНЕРГЕТИЧЕСКОГО

ОБМЕНА

1)  бескислородный

2)  кислородный

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д

Источник: ЕГЭ 18.04.2015. Досрочная волна.


Какие процессы происходят на этапах энергетического обмена?


Установите соответствие между характеристиками и этапами энергетического обмена: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ

А)  Образуется этиловый спирт и углекислый

газ.

Б)  Запасается более 30 молекул АТФ при

расщеплении одной молекулы глюкозы.

В)  Пировиноградная кислота распадается на

воду и углекислый газ.

Г)  Данный этап свойствен как анаэробным,

так и аэробным организмам.

Д)  Процесс протекает в митохондриях.

ЭТАПЫ

ЭНЕРГЕТИЧЕСКОГО

ОБМЕНА

1)  бескислородный

2)  кислородный

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д

Источник: ЕГЭ по биологии 2019. Досрочная волна


Установите соответствие между характеристикой энергетического обмена и его этапом

ХАРАКТЕРИСТИКА

A)  происходит в анаэробных условиях

Б)  происходит в митохондриях

B)  образуется молочная кислота

Г)  образуется пировиноградная кислота

Д)  синтезируется 36 молекул АТФ

ЭТАП ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

1)  гликолиз

2)  кислородное окисление

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Дальний Восток. Вариант 2.


Установите соответствие между процессом и этапом энергетического обмена, в котором он происходит.

ПРОЦЕСС

A)  расщепление глюкозы

Б)  синтез 36 молекул АТФ

B)  образование молочной кислоты

Г)  полное окисление до СО2, Н2О

Д)  образование ПВК, НАД · 2Н

ЭТАП ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

1)  бескислородный

2)  кислородный

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Сибирь. Вариант 1.

Всего: 38    1–20 | 21–38

Понятие метаболизма

Метаболизм — совокупность всех химических реакций, протекающих в живом организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией.

Выделяют две составные части метаболизма — катаболизм и анаболизм.

Составные части метаболизма

Часть Характеристика Примеры Затраты энергии
Катаболизм (энергетический обмен, диссимиляция) Совокупность химических реакций, приводящих к образованию простых веществ из более сложных Гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и других веществ Энергия выделяется
Анаболизм (пластический обмен, ассимиляция) Совокупность химических реакций синтеза сложных веществ из более простых Образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза Энергия поглощается

Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.

Роль ФТФ в метаболизме

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.

АТФ (аденозинтрифосфорная кислота) — мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.

В этих связях запасена энергия, которая высвобождается при их разрыве:
АТФ + H2O → АДФ + H3PO4 + Q1
АДФ + H2O → АМФ + H3PO4 + Q2
АМФ + H2O → аденин + рибоза + H3PO4 + Q3,
где АТФ — аденозинтрифосфорная кислота; АДФ — аденозиндифосфорная кислота; АМФ — аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование — присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.

Энергетический обмен

Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций. Важнейшим соединением, выступающим в роли топлива, является глюкоза.
По отношению к свободному кислороду организмы делятся на три группы.

Классификация организмов по отношению к свободному кислороду

Группа Характеристика Организмы
Аэробы (облигатные аэробы) Организмы, способные жить только в кислородной среде Животные, растения, некоторые бактерии и грибы
Анаэробы (облигатные анаэробы) Организмы, неспособные жить в кислородной среде Некоторые бактерии
Факультативные формы (факультативные анаэробы) Организмы, способные жить как в присутствии кислорода, так и без него Некоторые бактерии и грибы

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа: подготовительный, бес- кислородный и кислородный. В результате органические вещества распадаются до неорганических соединений. У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения, еще богатые энергией.

Этапы катаболизма

1. Первый этап — подготовительный — заключается в ферментативном расщеплении сложных органических соединений на более простые. Белки расщепляются до аминокислот, жиры — до глицерина и жирных кислот, полисахариды — до моносахаридов, нуклеиновые кислоты — до нуклеотидов. У многоклеточных организмов это происходит в желудочно-кишечном тракте, у одноклеточных — в лизосомах под действием гидролитических ферментов. Высвобождающаяся при этом энергия рассеивается в виде теплоты. Образовавшиеся органические соединения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений.
2. Второй этап — неполное окисление (бескислородный) — заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное окисление глюкозы называется гликолизом. В результате гликолиза одной молекулы глюкозы образуется по две молекулы пировиноградной кислоты (ПВК, пируват) CH3COCOOH, АТФ и воды, а также атомы водорода, которые связываются молекулой-переносчиком НАД+ и запасаются в виде НАД·Н.
Суммарная формула гликолиза имеет следующий вид:
C6H12O6 + 2H3PO4 + 2АДФ + 2НАД+ → 2C3Н4O3 + 2H2O + 2АТФ + 2НАД·Н.
Далее при отсутствии в среде кислорода продукты гликолиза (ПВК и НАД·Н) перерабатываются либо в этиловый спирт — спиртовое брожение (в клетках дрожжей и растений при недостатке кислорода)
CH3COCOOH → СО2 + СН3СОН
СН3СОН + 2НАД·Н → С2Н5ОН + 2НАД+,
либо в молочную кислоту — молочнокислое брожение (в клетках животных при недостатке кислорода)
CH3COCOOH + 2НАД·Н → C3Н6O3 + 2НАД+.
При наличии в среде кислорода продукты гликолиза претерпевают дальнейшее расщепление до конечных продуктов.
3. Третий этап — полное окисление (дыхание) — заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях при обязательном участии кислорода.
Он состоит из трёх стадий:
А) образование ацетилкоэнзима А;
Б) окисление ацетилкоэнзима А в цикле Кребса;
В) окислительное фосфорилирование в электронотранспортной цепи.

А. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует 1) диоксид углерода, который выводится из клетки; 2) атомы водорода, которые молекулами-переносчиками доставляются к внутренней мембране митохондрии; 3) ацетилкофермент А (ацетил-КоА).
Б. На второй стадии происходит окисление ацетилкоэнзима А в цикле Кребса. Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) — это цепь последовательных реакций, в ходе которых из одной молекулы ацетил-КоА образуются 1) две молекулы диоксида углерода, 2) молекула АТФ и 3) четыре пары атомов водорода, передаваемые на молекулы-переносчики — НАД и ФАД. Таким образом, в результате гликолиза и цикла Кребса молекула глюкозы расщепляется до СО2, а высвободившаяся при этом энергия расходуется на синтез 4 АТФ и накапливается в 10 НАД·Н и 4 ФАД·Н2.
В. На третьей стадии атомы водорода с НАД·Н и ФАД·Н2 окисляются молекулярным кислородом О2 с образованием воды. Один НАД·Н способен образовывать 3 АТФ, а один ФАД·Н2–2 АТФ. Таким образом, выделяющаяся при этом энергия запасается в виде ещё 34 АТФ.
Этот процесс протекает следующим образом. Атомы водорода концентрируются около наружной стороны внутренней мембраны митохондрии. Они теряют электроны, которые по цепи молекул-переносчиков (цитохромов) электронотранспортной цепи (ЭТЦ) переносятся на внутреннюю сторону внутренней мембраны, где соединяются с молекулами кислорода:
О2 + е → О2.
В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт О2), а снаружи — положительно (за счёт Н+), так что между её поверхностями создаётся разность потенциалов. Во внутреннюю мембрану митохондрий встроены молекулы фермента АТФ- синтетазы, обладающие ионным каналом. Когда разность потенциалов на мембране достигает критического уровня, положительно заряженные частицы H+ силой электрического поля начинают проталкиваться через канал АТФазы и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду:
1/2О2 +2H+ → Н2О.
Энергия ионов водорода H+, транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования АДФ в АТФ:
АДФ + Ф → АТФ.
Такое образование АТФ в митохондриях при участии кислорода называется окислительным фосфорилированием.
Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания:
C6H12O6 + 6O2 + 38H3PO4 + 38АДФ → 6CO2 + 44H2O + 38АТФ.
Таким образом, в ходе гликолиза образуются 2 молекулы АТФ, в ходе клеточного дыхания — ещё 36 молекул АТФ, в целом при пол- ном окислении глюкозы — 38 молекул АТФ.

Пластический обмен

Пластический обмен, или ассимиляция, представляет собой совокупность реакций, обеспечивающих синтез сложных органических соединений из более простых (фотосинтез, хемосинтез, биосинтез белка и др.).

Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул:
органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе фото- и хемосинтеза происходит образование простых органических соединений, из которых в дальнейшем синтезируются макромолекулы:
неорганические вещества (СО2, Н2О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).

Фотосинтез

Фотосинтез — синтез органических соединений из неорганических за счёт энергии света. Суммарное уравнение фотосинтеза:

Фотосинтез протекает при участии фотосинтезирующих пигментов, обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важным является пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот — во впячивания цитоплазматической мембраны.
Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов гран содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы.
Процесс фотосинтеза состоит из двух фаз: световой и темновой.
1. Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны.
К ней относятся поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды.
Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбуждённое состояние:

Эти электроны передаются переносчиками на наружную, то есть обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются.
Одновременно внутри тилакоидов происходит фотолиз воды, то есть её разложение под действием света:

Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их. Молекулы хлорофилла возвращаются в стабильное состояние.
Протоны водорода, образовавшиеся при фотолизе воды, накапливаются внутри тилакоида, создавая Н+-резервуар. В результате внутренняя поверхность мембраны тилакоида заряжается положительно (за счёт Н+), а наружная — отрицательно (за счёт е). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении критической величины разности потенциалов сила электрического поля начинает проталкивать протоны через канал АТФ-синтетазы. Выделяющаяся при этом энергия используется для фосфорилирования молекул АДФ:
АДФ + Ф → АТФ.

Образование АТФ в процессе фотосинтеза под действием энергии света называется фотофосфорилированием.
Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат):
+ + 4е + НАДФ+ → НАДФ·Н2.
Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ·Н2. Кислород диффундирует в атмосферу, а АТФ и НАДФ·Н2 участвуют в процессах темновой фазы.
2. Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО2, поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счёт энергии АТФ. В цикле Кальвина СО2 связывается с водородом из НАДФ·Н2 с образованием глюкозы.
В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений — аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и всё живое на Земле необходимыми органическими веществами и кислородом.
Сравнительная характеристика фотосинтеза и дыхания эукариот представлена в таблице.

Сравнительная характеристика фотосинтеза и дыхания эукариот

Признак Фотосинтез Дыхание
Уравнение реакции 6СО2 + 6Н2О + энергия света → C6H12O6 + 6O2 C6H12O6 + 6O2 → 6СО2 + 6Н2О + энергия (АТФ)
Исходные вещества Углекислый газ, вода Органические вещества, кислород
Продукты реакции Органические вещества, кислород Углекислый газ, вода
Значение в круговороте веществ Синтез органических веществ из неорганических Разложение органических веществ до неорганических
Превращение энергии Превращение энергии света в энергию химических связей органических веществ Превращение энергии химических связей органических веществ в энергию макроэргических связей АТФ
Важнейшие этапы Световая и темновая фаза (включая цикл Кальвина) Неполное окисление (гликолиз) и полное окисление (включая цикл Кребса)
Место протекания процесса Хлоропласты Гиалоплазма (неполное окисление) и митохондрии (полное окисление)

Генетическая информация у всех организмов хранится в виде определённой последовательности нуклеотидов ДНК (или РНК у РНК-содержащих вирусов). Прокариоты содержат генетическую информацию в виде одной молекулы ДНК. В эукариотических клетках генетический материал распределён в нескольких молекулах ДНК, организованных в хромосомы.
ДНК состоит из кодирующих и некодирующих участков. Кодирующие участки кодируют РНК. Некодирующие области ДНК выполняют структурную функцию, позволяя участкам генетического материала упаковываться определённым образом, или регуляторную функцию, участвуя во включении генов, направляющих синтез белка.
Кодирующими участками ДНК являются гены. Ген — участок молекулы ДНК, кодирующей синтез одной мРНК (и соответственно полипептида), рРНК или тРНК.
Участок хромосомы, где расположен ген называется локусом. Совокупность генов клеточного ядра представляет собой генотип, совокупность генов гаплоидного набора хромосом — гено́м, совокупность генов внеядерных ДНК (митохондрий, пластид, цитоплазмы) — плазмон.
Реализация информации, записанной в генах, через синтез белков называется экспрессией (проявлением) генов. Генетическая информация хранится в виде определённой последовательности нуклеотидов ДНК, а реализуется в виде последовательности аминокислот в белке. Посредниками, переносчиками информации выступают РНК. То есть реализация генетической информации происходит следующим образом:
ДНК → РНК → белок.
Этот процесс осуществляется в два этапа:
1) транскрипция;
2) трансляция.

Транскрипция (от лат. transcriptio — переписывание) — синтез РНК с использованием ДНК в качестве матрицы. В результате образуются мРНК, тРНК и рРНК. Процесс транскрипции требует больших затрат энергии в виде АТФ и осуществляется ферментом РНК-полимеразой.

Одновременно транскрибируется не вся молекула ДНК, а лишь отдельные её отрезки. Такой отрезок (транскриптон) начинается промотором — участком ДНК, куда присоединяется РНК-полимераза и откуда начинается транскрипция, а заканчивается терминатором — участком ДНК, содержащим сигнал окончания транскрипции. Транскриптон — это ген с точки зрения молекулярной биологии.
Транскрипция, как и репликация, основана на способности азотистых оснований нуклеотидов к комплементарному связыванию. На время транскрипции двойная цепь ДНК разрывается, и синтез РНК осуществляется по одной цепи ДНК.

В процессе транскрипции последовательность нуклеотидов ДНК переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка.
Гены прокариот состоят только из кодирующих нуклеотидных последовательностей.

Гены эукариот состоят из чередующихся кодирующих (экзонов) и некодирующих (интронов) участков.

После транскрипции участки мРНК, соответствующие интронам, удаляются в ходе сплайсинга, являющегося составной частью процессинга.

Процессинг — процесс формирования зрелой мРНК из её предшественника пре-мРНК. Он включает два основных события. 1.Присоединение к концам мРНК коротких последовательностей нуклеотидов, обозначающих место начала и место конца трансляции. Сплайсинг — удаление неинформативных последовательностей мРНК, соответствующих интронам ДНК. В результате сплайсинга молекулярная масса мРНК уменьшается в 10 раз.
Трансляция (от лат. translatio — перевод) — синтез полипептидной цепи с использованием мРНК в роли матрицы.

В трансляции участвуют все три типа РНК: мРНК является информационной матрицей; тРНК доставляют аминокислоты и узнают кодоны; рРНК вместе с белками образуют рибосомы, которые удерживают мРНК, тРНК и белок и осуществляют синтез полипептидной цепи.

Этапы трансляции

Этап Характеристика
Инициация Сборка комплекса, участвующего в синтезе полипептидной цепи. Малая субчастица рибосомы соединяется с инициаторной мет-трнк, а затем с мрнк, после чего происходит образование целой рибосомы, состоящей из малой и большой субчастиц.
Элонгация Удлинение полипептидной цепи. Рибосома перемещается вдоль мрнк, что сопровождается многократным повторением цикла присоединения очередной аминокислоты к растущей полипептидной цепи.
Терминация Завершение синтеза полипептидной молекулы. Рибосома достигает одного из трёх стоп-кодонов мрнк, а так как не существует трнк с антикодонами, комплементарными стоп-кодонам, синтез полипептидной цепи прекращается. Она высвобождается и отделяется от рибосомы. Рибосомные субчастицы диссоциируют, отделяются от мрнк и могут принять участие в синтезе следующей полипептидной цепи.

Реакции матричного синтеза. К реакциям матричного синтеза относятся

  • самоудвоение ДНК (репликация);
  • образование мРНК, тРНК и рРНК на молекуле ДНК (транскрипция);
  • биосинтез белка на мРНК (трансляция).

Все эти реакции объединяет то, что молекула ДНК в одном случае или молекула мРНК в другом выступают в роли матрицы, на которой происходит образование одинаковых молекул. Реакции матричного синтеза являются основой способности живых организмов к воспроизведению себе подобных.
Регуляция экспрессии генов. Тело многоклеточного организма построено из разнообразных клеточных типов. Они отличаются структурой и функциями, то есть дифференцированы. Различия проявляются в том, что помимо белков, необходимых любой клетке организма, клетки каждого типа синтезируют ещё и специализированные белки: в эпидермисе образуется кератин, в эритроцитах — гемоглобин и т. д. Клеточная дифференцировка обусловлена изменением набора экспрессируемых генов и не сопровождается какими-либо необратимыми изменениями в структуре самих последовательностей ДНК.

Обмен веществ

Обмен веществ (метаболизм) складывается из процессов расщепления и синтеза — диссимиляции и ассимиляции, постоянно
протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться)
количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.

Энергетический и пластический обмен веществ

Энергетический обмен

Энергетический обмен (диссимиляция — от лат. dissimilis ‒ несходный) — обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров,
белков, углеводов, нуклеиновых кислот до простых веществ.

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество
этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об
организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Обсудим этапы энергетического обмена более подробно:

  • Подготовительный этап
  • Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть
    которой рассеивается в виде тепла.

    Под действием ферментов белки расщепляются на аминокислоты, жиры — на глицерин и жирные кислоты, сложные углеводы — до простых сахаров.

    Этапы энергетического обмена веществ

  • Бескислородный этап (анаэробный) — гликолиз
  • Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза
    происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК).
    Происходит данный этап в цитоплазме клеток.

  • Кислородный этап (аэробный)
  • Этот этап доступен только для аэробов — организмов, живущих в кислородной среде. Из каждой молекулы ПВК, образовавшейся на
    этапе гликолиза, синтезируется 18 молекул АТФ — в сумме с двух ПВК выход составляет 36 молекул АТФ.

    Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

    Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

    Энергетический обмен

АТФ — аденозинтрифосфорная кислота

Трудно переоценить роль в клетке АТФ — универсального источника энергии. Молекула АТФ состоит из азотистого основания —
аденина, углевода — рибозы и трех остатков фосфорной кислоты.

Между остатками фосфорной кислоты находятся макроэргические связи — ковалентные связи, которые гидролизуются с выделением
большого количества энергии. Их принято обозначать типографическим знаком тильда «∽».

Строение АТФ

АТФ гидролизуется до АДФ (аденозиндифосфорная кислота), а затем и до АМФ (аденозинмонофосфорная кислота).
Гидролиз АТФ сопровождается выделением энергии (E) на каждом этапе и может быть представлен такой схемой:

  • АТФ + H2O = АДФ + H3PO4 + E
  • АДФ + H2O = АМФ + H3PO4 + E
  • АМФ + H2O = аденин + рибоза + H3PO4 + E
Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций
пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции),
удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

Пластической обмен

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Понравилась статья? Поделить с друзьями:
  • Цикл кребса егэ кратко
  • Цикл широкого лентеца биология егэ
  • Цикл кребса для егэ по биологии
  • Цикл цветковых растений егэ
  • Цикл кошачьей двуустки егэ