Цитоскелет биология егэ

Строение клетки

Строение прокариотических и эукариотических клеток

Основными структурными компонентами клеток являются плазматическая мембрана, цитоплазма и наследственный аппарат. В зависимости от особенностей организации различают два основных типа клеток: прокариотические и эукариотические. Главным отличием прокариотических клеток от эукариотических является организация их наследственного аппарата: у прокариот он находится непосредственно в цитоплазме (эта область цитоплазмы называется нуклеоидом) и не отделен от нее мембранными структурами, тогда как у эукариот бульшая часть ДНК сосредоточена в ядре, окруженном двойной мембраной. Кроме того, генетическая информация прокариотических клеток, находящаяся в нуклеоиде, записана в кольцевой молекуле ДНК, а у эукариот молекулы ДНК незамкнутые.

В отличие от эукариот, цитоплазма прокариотических клеток содержит также небольшое количество органоидов, тогда как для эукариотических характерно значительное разнообразие этих структур.

Строение и функции биологических мембран

Строение биомембраны. Мембраны, ограничивающие клетки и мембранные органоиды эукариотических клеток, имеют общий химический состав и строение. В их состав входят липиды, белки и углеводы. Липиды мембраны представлены в основном фосфолипидами и холестерином. Большинство белков мембран относится к сложным белкам, например гликопротеинам. Углеводы не встречаются в мембране самостоятельно, они связаны с белками и липидами. Толщина мембран составляет 7–10 нм.

Согласно общепринятой в настоящее время жидкостно-мозаичной модели строения мембран, липиды образуют двойной слой, или липидный бислой, в котором гидрофильные «головки» молекул липидов обращены наружу, а гидрофобные «хвосты» спрятаны вовнутрь мембраны. Эти «хвосты» благодаря своей гидрофобности обеспечивают разделение водных фаз внутренней среды клетки и ее окружения. С липидами с помощью различных типов взаимодействия связаны белки. Часть белков расположена на поверхности мембраны. Такие белки называют периферическими, или поверхностными. Другие белки частично или полностью погружены в мембрану — это интегральные, или погруженные белки. Белки мембран выполняют структурную, транспортную, каталитическую, рецепторную и другие функции.

Мембраны не похожи на кристаллы, их компоненты постоянно находятся в движении, вследствие чего между молекулами липидов возникают разрывы — поры, через которые в клетку могут попадать или покидать ее различные вещества.

Биологические мембраны различаются по расположению в клетке, химическому составу и выполняемым функциям. Основные типы мембран — плазматическая и внутренние. Плазматическая мембрана содержит около 45 % липидов (в т. ч. гликолипидов), 50 % белков и 5 % углеводов. Цепочки углеводов, входящих в состав сложных белков-гликопротеинов и сложных липидов-гликолипидов, выступают над поверхностью мембраны. Гликопротеины плазмалеммы чрезвычайно специфичны. Так, например, по ним происходит взаимное узнавание клеток, в том числе сперматозоида и яйцеклетки.

На поверхности животных клеток углеводные цепочки образуют тонкий поверхностный слой — гликокаликс. Он выявлен почти во всех животных клетках, но степень его выраженности неодинакова (10–50 мкм). Гликокаликс обеспечивает непосредственную связь клетки с внешней средой, в нем происходит внеклеточное пищеварение; в гликокаликсе размещены рецепторы. Клетки бактерий, растений и грибов, помимо плазмалеммы, окружены еще и клеточными оболочками.

Внутренние мембраны эукариотических клеток разграничивают различные части клетки, образуя своеобразные «отсеки» — компартменты, что способствует разделению различных процессов обмена веществ и энергии. Они могут различаться по химическому составу и выполняемым функциям, но общий план строения у них сохраняется.

Функции мембран:

  1. Ограничивающая. Заключается в том, что они отделяют внутреннее пространство клетки от внешней среды. Мембрана является полупроницаемой, то есть ее свободно преодолевают только те вещества, которые необходимы клетке, при этом существуют механизмы транспорта необходимых веществ.
  2. Рецепторная. Связана в первую очередь с восприятием сигналов окружающей среды и передачей этой информации внутрь клетки. За эту функцию отвечают специальные белки-рецепторы. Мембранные белки отвечают еще и за клеточное узнавание по принципу «свой-чужой», а также за образование межклеточных соединений, наиболее изученными из которых являются синапсы нервных клеток.
  3. Каталитическая. На мембранах расположены многочисленные ферментные комплексы, вследствие чего на них происходят интенсивные синтетические процессы.
  4. Энерготрансформирующая. Связана с образованием энергии, ее запасанием в виде АТФ и расходованием.
  5. Компартментализация. Мембраны разграничивают также пространство внутри клетки, разделяя тем самым исходные вещества реакции и ферменты, которые могут осуществлять соответствующие реакции.
  6. Образование межклеточных контактов. Несмотря на то, что толщина мембраны настолько мала, что ее невозможно различить невооруженным глазом, она, с одной стороны, служит достаточно надежным барьером для ионов и молекул, в особенности водорастворимых, а с другой — обеспечивает их перенос в клетку и наружу.
  7. Транспортная.

Мембранный транспорт. В связи с тем, что клетки как элементарные биологические системы являются открытыми системами, для обеспечения обмена веществ и энергии, поддержания гомеостаза, роста, раздражимости и других процессов требуется перенос веществ через мембрану — мембранный транспорт. В настоящее время транспорт веществ через мембрану клетки делят на активный, пассивный, эндо- и экзоцитоз.

Пассивный транспорт — это вид транспорта, который происходит без затраты энергии от большей концентрации к меньшей. Растворимые в липидах небольшие неполярные молекулы (О2, СО2) легко проникают в клетку путем простой диффузии. Нерастворимые же в липидах, в том числе заряженные небольшие частицы, подхватываются белкамипереносчиками или проходят через специальные каналы (глюкоза, аминокислоты, К+, PO43-). Такой вид пассивного транспорта называется облегченной диффузией. Вода поступает в клетку через поры в липидной фазе, а также по специальным каналам, выстланным белками. Транспорт воды через мембрану называется осмосом.

Осмос имеет чрезвычайно важное значение в жизни клетки, так как если ее поместить в раствор с более высокой концентрацией солей, чем в клеточном растворе, то вода начнет выходить из клетки, и объем живого содержимого начнет уменьшаться. У животных клеток происходит съеживание клетки в целом, а у растительных — отставание цитоплазмы от клеточной стенки, которое называется плазмолизом. При помещении клетки в менее концентрированный, чем цитоплазма, раствор, транспорт воды происходит в обратном направлении — в клетку. Однако существуют пределы растяжимости цитоплазматической мембраны, и животная клетка в конце концов разрывается, а у растительной этого не позволяет сделать прочная клеточная стенка. Явление заполнения клеточным содержимым всего внутреннего пространства клетки называется деплазмолизом. Внутриклеточную концентрацию солей следует учитывать при приготовлении лекарственных препаратов, особенно для внутривенного введения, так как это может приводить к повреждению клеток крови (для этого используют физиологический раствор с концентрацией 0,9 % хлорида натрия). Это не менее важно при культивировании клеток и тканей, а также органов животных и растений.

Активный транспорт протекает с затратой энергии АТФ от меньшей концентрации вещества к большей. Он осуществляется с помощью специальных белков-насосов. Белки перекачивают через мембрану ионы К+, Na+, Са2+ и другие, что способствует транспорту важнейших органических веществ, а также возникновению нервных импульсов и т. д.

Эндоцитоз — это активный процесс поглощения веществ клеткой, при котором мембрана образует впячивания, а затем формирует мембранные пузырьки — фагосомы, в которых заключены поглощаемые объекты. Затем с фагосомой сливается первичная лизосома, и образуется вторичная лизосома, или фаголизосома, или пищеварительная вакуоль. Содержимое пузырька расщепляется ферментами лизосом, а продукты расщепления поглощаются и усваиваются клеткой. Непереваренные остатки удаляются из клетки путем экзоцитоза. Различают два основных вида эндоцитоза: фагоцитоз и пиноцитоз.

Фагоцитоз — это процесс захвата клеточной поверхностью и поглощения клеткой твердых частиц, а пиноцитоз — жидкости. Фагоцитоз протекает в основном в животных клетках (одноклеточные животные, лейкоциты человека), он обеспечивает их питание, а часто и защиту организма . Путем пиноцитоза происходит поглощение белков, комплексов антиген-антитела в процессе иммунных реакций и т. д. Однако путем пиноцитоза или фагоцитоза в клетку также попадают многие вирусы. В клетках растений и грибов фагоцитоз практически невозможен, так как они окружены прочными клеточными оболочками.

Экзоцитоз — процесс, обратный эндоцитозу. Таким образом выделяются непереваренные остатки пищи из пищеварительных вакуолей, выводятся необходимые для жизнедеятельности клетки и организма в целом вещества. Например, передача нервных импульсов происходит благодаря выделению посылающим импульс нейроном химических посредников — медиаторов, а в растительных клетках так выделяются вспомогательные углеводы клеточной оболочки.

Клеточные оболочки клеток растений, грибов и бактерий. Снаружи от мембраны клетка может выделять прочный каркас — клеточную оболочку, или клеточную стенку.

У растений основу клеточной оболочки составляет целлюлоза, упакованная в пучки по 50–100 молекул. Промежутки между ними заполняют вода и другие углеводы. Оболочка растительной клетки пронизана канальцами — плазмодесмами, через которые проходят мембраны эндоплазматической сети. По плазмодесмам осуществляется транспорт веществ между клетками. Однако транспорт веществ, например воды, может происходить и по самим клеточным стенкам. Со временем в клеточной оболочке растений накапливаются различные вещества, в том числе дубильные или жироподобные, что приводит к одревеснению или опробковению самой клеточной стенки, вытеснению воды и отмиранию клеточного содержимого. Между клеточными стенками соседних клеток растений располагаются желеобразные прокладки — срединные пластинки, которые скрепляют их между собой и цементируют тело растения в целом. Они разрушаются только в процессе созревания плодов и при опадании листьев.

Клеточные стенки клеток грибов образованы хитином — углеводом, содержащим азот. Они достаточно прочны и являются внешним скелетом клетки, но все же, как и у растений, препятствуют фагоцитозу.

У бактерий в состав клеточной стенки входит углевод с фрагментами пептидов — муреин, однако его содержание существенно различается у разных групп бактерий. Поверх от клеточной стенки могут выделяться также иные полисахариды, образующие слизистую капсулу, защищающую бактерии от внешних воздействий.

Оболочка определяет форму клетки, служит механической опорой, выполняет защитную функцию, обеспечивает осмотические свойства клетки, ограничивая растяжение живого содержимого и предотвращая разрыв клетки, увеличивающейся вследствие поступления воды. Кроме того, клеточную стенку преодолевают вода и растворенные в ней вещества, прежде чем попасть в цитоплазму или, наоборот, при выходе из нее, при этом по клеточным стенкам вода транспортируется быстрее, чем по цитоплазме.

Цитоплазма

Цитоплазма — это внутреннее содержимое клетки. В нее погружены все органоиды клетки, ядро и разнообразные продукты жизнедеятельности.

Цитоплазма связывает все части клетки между собой, в ней протекают многочисленные реакции обмена веществ. Цитоплазма отделяется от окружающей среды и делится на отсеки мембранами, то есть клеткам присуще мембранное строение. Она может находиться в двух состояниях — золя и геля. Золь — это полужидкое, киселеобразное состояние цитоплазмы, при котором процессы жизнедеятельности протекают наиболее интенсивно, а гель — более плотное, студнеобразное состояние, затрудняющее протекание химических реакций и транспорт веществ.

Жидкая часть цитоплазмы без органоидов называется гиалоплазмой. Гиалоплазма, или цитозоль, представляет собой коллоидный раствор, в котором находится своеобразная взвесь достаточно крупных частиц, например белков, окруженных диполями молекул воды. Осаждения этой взвеси не происходит вследствие того, что они имеют одинаковый заряд и отталкиваются друг от друга.

Органоиды

Органоиды — это постоянные компоненты клетки, выполняющие определенные функции.

В зависимости от особенностей строения их делят на мембранные и немембранные. Мембранные органоиды, в свою очередь, относят к одномембранным (эндоплазматическая сеть, комплекс Гольджи и лизосомы) или двумембранным (митохондрии, пластиды и ядро). Немембранными органоидами являются рибосомы, микротрубочки, микрофиламенты и клеточный центр. Прокариотам из перечисленных органоидов присущи только рибосомы.

Строение и функции ядра. Ядро — крупный двумембранный органоид, лежащий в центре клетки или на ее периферии. Размеры ядра могут колебаться в пределах 3–35 мкм. Форма ядра чаще сферическая или эллипсоидная, однако имеются также палочковидные, веретеновидные, бобовидные, лопастные и даже сегментированные ядра. Некоторые исследователи считают, что форма ядра соответствует форме самой клетки.

Большинство клеток имеет одно ядро, но, например, в клетках печени и сердца их может быть два, а в ряде нейронов — до 15. Волокна скелетных мышц содержат обычно много ядер, однако они не являются клетками в полном смысле этого слова, поскольку образуются в результате слияния нескольких клеток.

Ядро окружено ядерной оболочкой, а его внутреннее пространство заполнено ядерным соком, или нуклеоплазмой (кариоплазмой), в которую погружены хроматин и ядрышко. Ядро выполняет такие важнейшие функции, как хранение и передача наследственной информации, а также контроль жизнедеятельности клетки.

Роль ядра в передаче наследственной информации была убедительно доказана в экспериментах с зеленой водорослью ацетабулярией. В единственной гигантской клетке, достигающей в длину 5 см, различают шляпку, ножку и ризоид. При этом она содержит только одно ядро, расположенное в ризоиде. В 1930-е годы И. Хеммерлинг пересадил ядро одного вида ацетабулярии с зеленой окраской в ризоид другого вида, с коричневой окраской, у которого ядро было удалено. Через некоторое время у растения с пересаженным ядром выросла новая шляпка, как у водоросли- донора ядра. В то же время отделенные от ризоида шляпка или ножка, не содержащие ядра, через некоторое время погибали.

Ядерная оболочка образована двумя мембранами — наружной и внутренней, между которыми есть пространство. Межмембранное пространство сообщается с полостью шероховатой эндоплазматической сети, а наружная мембрана ядра может нести рибосомы. Ядерная оболочка пронизана многочисленными порами, окантованными специальными белками. Через поры происходит транспорт веществ: в ядро попадают необходимые белки (в т. ч. ферменты), ионы, нуклеотиды и другие вещества, и покидают его молекулы РНК, отработанные белки, субъ единицы рибосом. Таким образом, функциями ядерной оболочки являются отделение содержимого ядра от цитоплазмы, а также регуляция обмена веществ между ядром и цитоплазмой.

Нуклеоплазмой называют содержимое ядра, в которое погружены хроматин и ядрышко. Она представляет собой коллоидный раствор, по химическому составу напоминающий цитоплазму. Ферменты нуклеоплазмы катализируют обмен аминокислот, нуклеотидов, белков и др. Нуклеоплазма связана с гиалоплазмой через ядерные поры. Функции нуклеоплазмы, как и гиалоплазмы, состоят в обеспечении взаимосвязи всех структурных компонентов ядра и осуществлении ряда ферментных реакций.

Хроматином называют совокупность тонких нитей и гранул, погруженных в нуклеоплазму. Выявить его можно только при окрашивании, так как коэффициенты преломления хроматина и нуклеоплазмы приблизительно одинаковы. Нитчатый компонент хроматина называют эухроматином, а гранулярный — гетерохроматином. Эухроматин слабо уплотнен, поскольку с него считывается наследственная информация, тогда как более спирализованный гетерохроматин является генетически неактивным.

Хроматин представляет собой структурное видоизменение хромосом в неделящемся ядре. Таким образом, хромосомы постоянно присутствуют в ядре, изменяется лишь их состояние в зависимости от функции, которую ядро выполняет в данный момент.

В состав хроматина в основном входят белки-нуклеопротеины (дезоксирибонуклеопротеины и рибонуклеопротеины), а также ферменты, важнейшие из которых связаны с синтезом нуклеиновых кислот, и некоторые другие вещества.

Функции хроматина состоят, во-первых, в синтезе специфических для данного организма нуклеиновых кислот, которые направляют синтез специфических белков, во-вторых, в передаче наследственных свойств от материнской клетки дочерним, для чего хроматиновые нити в процессе деления упаковываются в хромосомы.

Ядрышко — сферическое, хорошо заметное под микроскопом тельце диаметром 1–3 мкм. Оно формируется на участках хроматина, в которых закодирована информация о структуре рРНК и белках рибосом. Ядрышко в ядре часто одно, однако в тех клетках, где происходят интенсивные процессы жизнедеятельности, ядрышек может быть два и более. Функции ядрышек — синтез рРНК и сборка субъединиц рибосом путем объединения рРНК с белками, поступающими из цитоплазмы.

Митохондрии — двумембранные органоиды округлой, овальной или палочковидной формы, хотя встречаются и спиралевидные (в сперматозоидах). Диаметр митохондрий составляет до 1 мкм, а длина — до 7 мкм. Пространство внутри митохондрий заполнено матриксом. Матрикс — это основное вещество митохондрий. В него погружены кольцевая молекула ДНК и рибосомы. Наружная мембрана митохондрий гладкая, она непроницаема для многих веществ. Внутренняя мембрана имеет выросты — кристы, увеличивающие площадь поверхности мембран для протекания химических реакций. На поверхности мембраны расположены многочисленные белковые комплексы, составляющие так называемую дыхательную цепь, а также грибовидные ферменты АТФ-синтетазы. В митохондриях протекает аэробный этап дыхания, в ходе которого происходит синтез АТФ.

Пластиды — крупные двумембранные органоиды, характерные только для растительных клеток. Внутреннее пространство пластид заполнено стромой, или матриксом. В строме находится более или менее развитая система мембранных пузырьков — тилакоидов, которые собраны в стопки — граны, а также собственная кольцевая молекула ДНК и рибосомы. Различают четыре основных типа пластид: хлоропласты, хромопласты, лейкопласты и пропластиды.

Хлоропласты — это зеленые пластиды диаметром 3–10 мкм, хорошо различимые под микроскопом. Они содержатся только в зеленых частях растений — листьях, молодых стеблях, цветках и плодах. Хлоропласты в основном имеют овальную или эллипсоидную формы, но могут быть также чашевидными, спиралевидными и даже лопастными. Количество хлоропластов в клетке в среднем составляет от 10 до 100 штук. Однако, например, у некоторых водорослей он может быть один, иметь значительные размеры и сложную форму — тогда его называют хроматофором. В других случаях количество хлоропластов может достигать нескольких сотен, при этом их размеры невелики. Окраска хлоропластов обусловлена основным пигментом фотосинтеза — хлорофиллом, хотя в них содержатся и дополнительные пигменты — каротиноиды. Каротиноиды становятся заметными только осенью, когда хлорофилл в стареющих листьях разрушается. Основной функцией хлоропластов является фотосинтез. Световые реакции фотосинтеза протекают на мембранах тилакоидов, на которых закреплены молекулы хлорофилла, а темновые реакции — в строме, где содержатся многочисленные ферменты.

Хромопласты — это желтые, оранжевые и красные пластиды, содержащие пигменты каротиноиды. Форма хромопластов может также существенно варьировать: они бывают трубчатыми, сферическими, кристаллическими и др. Хромопласты придают окраску цветкам и плодам растений, привлекая опылителей и распространителей семян и плодов.

Лейкопласты — это белые или бесцветные пластиды в основном округлой или овальной формы. Они распространены в нефотосинтезирующих частях растений, например в кожице листа, клубнях картофеля и т. д. В них откладываются в запас питательные вещества, чаще всего крахмал, но у некоторых растений это могут быть белки или масло.

Пластиды образуются в растительных клетках из пропластид, которые имеются уже в клетках образовательной ткани и представляют собой небольшие двумембранные тельца. На ранних этапах развития разные виды пластид способны превращаться друг в друга: при попадании на свет лейкопласты клубня картофеля и хромопласты корнеплода моркови зеленеют.

Пластиды и митохондрии называют полуавтономными органоидами клетки, так как они имеют собственные молекулы ДНК и рибосомы, осуществляют синтез белка и делятся независимо от деления клеток. Эти особенности объясняются происхождением от одноклеточных прокариотических организмов. Однако «самостоятельность » митохондрий и пластид является ограниченной, так как их ДНК содержит слишком мало генов для свободного существования, остальная же информация закодирована в хромосомах ядра, что позволяет ему контролировать данные органоиды.

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭР), — это одномембранный органоид, представляющий собой сеть мембранных полостей и канальцев, занимающих до 30 % содержимого цитоплазмы. Диаметр канальцев ЭПС составляет около 25–30 нм. Различают два вида ЭПС — шероховатую и гладкую. Шероховатая ЭПС несет рибосомы, на ней происходит синтез белков. Гладкая ЭПС лишена рибосом. Ее функция — синтез липидов и углеводов, а также транспорт, запасание и обезвреживание токсических веществ. Она особенно развита в тех клетках, где происходят интенсивные процессы обмена веществ, например в клетках печени — гепатоцитах — и волокнах скелетных мышц. Вещества, синтезированные в ЭПС, транспортируются в аппарат Гольджи. В ЭПС происходит также сборка мембран клетки, однако их формирование завершается в аппарате Гольджи.

Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид, образованный системой плоских цистерн, канальцев и отшнуровывающихся от них пузырьков. Структурной единицей аппарата Гольджи является диктиосома — стопка цистерн, на один полюс которой приходят вещества из ЭПС, а с противоположного полюса, подвергшись определенным превращениям, они упаковываются в пузырьки и направляются в другие части клетки. Диаметр цистерн — порядка 2 мкм, а мелких пузырьков — около 20–30 мкм. Основные функции комплекса Гольджи — синтез некоторых веществ и модификация (изменение) белков, липидов и углеводов, поступающих из ЭПС, окончательное формирование мембран, а также транспорт веществ по клетке, обновление ее структур и образование лизосом. Свое название аппарат Гольджи получил в честь итальянского ученого Камилло Гольджи, впервые обнаружившего данный органоид (1898).

Лизосомы — небольшие одномембранные органоиды до 1 мкм в диаметре, в которых содержатся гидролитические ферменты, участвующие во внутриклеточном пищеварении. Мембраны лизосом слабопроницаемы для этих ферментов, поэтому выполнение лизосомами своих функций происходит очень точно и адресно. Так, они принимают активное участие в процессе фагоцитоза, образуя пищеварительные вакуоли, а в случае голодания или повреждения определенных частей клетки переваривают их, не затрагивая иных. Недавно была открыта роль лизосом в процессах клеточной гибели.

Вакуоль — это полость в цитоплазме растительных и животных клеток, ограниченная мембраной и заполненная жидкостью. В клетках простейших обнаруживаются пищеварительные и сократительные вакуоли. Первые принимают участие в процессе фагоцитоза, так как в них происходит расщепление питательных веществ. Вторые обеспечивают поддержание водно-солевого баланса за счет осморегуляции. У многоклеточных животных в основном встречаются пищеварительные вакуоли.

В растительных клетках вакуоли присутствуют всегда, они окружены специальной мембраной и заполнены клеточным соком. Мембрана, окружающая вакуоль, по химическому составу, строению и выполняемым функциям близка к плазматической мембране. Клеточный сок представляет собой водный раствор различных неорганических и органических веществ, в том числе минеральных солей, органических кислот, углеводов, белков, гликозидов, алкалоидов и др. Вакуоль может занимать до 90 % объема клетки и оттеснять ядро на периферию. Эта часть клетки выполняет запасающую, выделительную, осмотическую, защитную, лизосомную и другие функции, поскольку в ней накапливаются питательные вещества и отходы жизнедеятельности, она обеспечивает поступление воды и поддержание формы и объема клетки, а также содержит ферменты расщепления многих компонентов клетки. К тому же биологически активные вещества вакуолей способны препятствовать поеданию этих растений многими животными. У ряда растений за счет разбухания вакуолей происходит рост клетки растяжением.

Вакуоли имеются также и в клетках некоторых грибов и бактерий, однако у грибов они выполняют только функцию осморегуляции, а у цианобактерий поддерживают плавучесть и участвуют в процессах усвоения азота из воздуха.

Рибосомы — небольшие немембранные органоиды диаметром 15–20 мкм, состоящие из двух субъединиц — большой и малой. Субъединицы рибосом эукариот собираются в ядрышке, а затем транспортируются в цитоплазму. Рибосомы прокариот, митохондрий и пластид меньше по величине, чем рибосомы эукариот. В состав субъединиц рибосом входят рРНК и белки.

Количество рибосом в клетке может достигать нескольких десятков миллионов: в цитоплазме, митохондриях и пластидах они находятся в свободном состоянии, а на шероховатой ЭПС — в связанном. Они принимают участие в синтезе белка, в частности, осуществляют процесс трансляции — биосинтеза полипептидной цепи на молекуле иРНК. На свободных рибосомах синтезируются белки гиалоплазмы, митохондрий, пластид и собственные белки рибосом, тогда как на прикрепленных к шероховатой ЭПС рибосомах осуществляется трансляция белков для выведения из клеток, сборки мембран, образования лизосом и вакуолей.

Рибосомы могут находиться в гиалоплазме поодиночке или собираться в группы при одновременном синтезе на одной иРНК сразу нескольких полипептидных цепей. Такие группы рибосом называются полирибосомами, или полисомами.

Микротрубочки — это цилиндрические полые немембранные органоиды, которые пронизывают всю цитоплазму клетки. Их диаметр составляет около 25 нм, толщина стенки — 6–8 нм. Они образованы многочисленными молекулами белка тубулина, которые сначала формируют 13 нитей, напоминающих бусы, а затем собираются в микротрубочку. Микротрубочки образуют цитоплазматическую сеть, которая придает клетке форму и объем, связывают плазматическую мембрану с другими частями клетки, обеспечивают транспорт веществ по клетке, принимают участие в движении клетки и внутриклеточных компонентов, а также в делении генетического материала. Они входят в состав клеточного центра и органоидов движения — жгутиков и ресничек.

Микрофиламенты, или микронити, также являются немембранными органоидами, однако они имеют нитевидную форму и образованы не тубулином, а актином. Они принимают участие в процессах мембранного транспорта, межклеточном узнавании, делении цитоплазмы клетки и в ее движении. В мышечных клетках взаимодействие актиновых микрофиламентов с миозиновыми нитями обеспечивает сокращение.

Микротрубочки и микрофиламенты образуют внутренний скелет клетки — цитоскелет. Он представляет собой сложную сеть волокон, обеспечивающих механическую опору для плазматической мембраны, определяет форму клетки, расположение клеточных органоидов и их перемещение в процессе деления клетки.

Клеточный центр — немембранный органоид, располагающийся в животных клетках вблизи ядра; в растительных клетках он отсутствует. Его длина составляет около 0.2–0.3 мкм, а диаметр — 0.1–0.15 мкм. Клеточный центр образован двумя центриолями, лежащими во взаимно перпендикулярных плоскостях, и лучистой сферой из микротрубочек. Каждая центриоль образована девятью группами микротрубочек, собранных по три, т. е. триплетами. Клеточный центр принимает участие в процессах сборки микротрубочек, делении наследственного материала клетки, а также в образовании жгутиков и ресничек.

Органоиды движения. Жгутики и реснички представляют собой выросты клетки, покрытые плазмалеммой. Основу этих органоидов составляют девять пар микротрубочек, расположенных по периферии, и две свободные микротрубочки в центре. Микротрубочки связаны между собой различными белками, обеспечивающими их согласованное отклонение от оси — колебание. Колебания энергозависимы, то есть на этот процесс тратится энергия макроэргических связей АТФ. Восстановление утраченных жгутиков и ресничек является функцией базальных телец, или кинетосом, расположенных в их основании.

Длина ресничек составляет около 10–15 нм, а жгутиков — 20–50 мкм. За счет строго направленных движений жгутиков и ресничек осуществляется не только движение одноклеточных животных, сперматозоидов и др., но и происходит очистка дыхательных путей, продвижение яйцеклетки по маточным трубам, поскольку все эти части организма человека выстланы реснитчатым эпителием.

Включения

Включения — это непостоянные компоненты клетки, которые образуются и исчезают в процессе ее жизнедеятельности. К ним относят как запасные вещества, например, зерна крахмала или белка в растительных клетках, гранулы гликогена в клетках животных и грибов, волютина у бактерий, капли жира во всех типах клеток, так и отходы жизнедеятельности, в частности, непереваренные в результате фагоцитоза остатки пищи, образующие так называемые остаточные тельца.

Взаимосвязь строения и функций частей и органоидов клетки — основа ее целостности

Каждая из частей клетки, с одной стороны, является обособленной структурой со специфическим строением и функциями, а с другой — компонентом более сложной системы, называемой клеткой. Бульшая часть наследственной информации эукариотической клетки сосредоточена в ядре, однако само ядро не в состоянии обеспечить ее реализацию, поскольку для этого необходимы как минимум цитоплазма, выступающая как основное вещество, и рибосомы, на которых и происходит этот синтез. Большинство рибосом расположено на гранулярной эндоплазматической сети, откуда белки чаще всего транспортируются в комплекс Гольджи, а затем после модификации — в те части клетки, для которых они предназначены, или выводятся наружу. Мембранные упаковки белков и углеводов могут встраиваться в мембраны органоидов и цитоплазматическую мембрану, обеспечивая их постоянное обновление. От комплекса Гольджи отшнуровываются также выполняющие важнейшие функции лизосомы и вакуоли. Например, без лизосом клетки быстро превратились бы в свое образную свалку отработанных молекул и структур.

Протекание всех этих процессов требует энергии, вырабатываемой митохондриями, а у растений — и хлоропластами. И хотя эти органоиды являются относительно автономными, т. к. имеют собственные молекулы ДНК, часть их белков все равно кодируется ядерным геномом и синтезируется в цитоплазме.

Таким образом, клетка представляет собой неразрывное единство составляющих ее компонентов, каждый из которых выполняет свою уникальную функцию.

Органоиды (органеллы) клетки — специализированные структуры клетки, выполняющие различные жизненно необходимые
функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции
дыхания, выделения, пищеварения и многие другие.

Органоиды клетки подразделяются на:

  • Немембранные — рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
  • Одномембранные — ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
  • Двумембранные — пластиды, митохондрии

Ядро не включается в понятие «органоиды клетки», является структурой клетки, однако также будет рассмотрено нами в этой статье.

Строение клетки

Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо
упомянуть о том, без чего вообще не существует клетки — о клеточной мембране. Клеточная мембрана ограничивает клетку
от окружающего мира и формирует ее внутреннюю среду.

Клеточная мембрана (оболочка)

Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную,
жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз :) У клеток животных имеется
только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.

Клеточная мембрана представляет собой билипидный слой (лат. bi — двойной + греч. lipos — жир), который пронизывают молекулы
белков.

Строение мембраны

Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а
гидрофильные «головки» смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично — погруженные белки,
имеются также поверхностно лежащие белки — периферические.

Белки принимают участие в:

  • Поддержании постоянства структуры мембраны
  • Рецепции сигналов из окружающей среды (химического раздражения)
  • Транспорте веществ через мембрану
  • Ускорении (катализе) реакций, которые ассоциированы с мембраной

Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее.
«Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует
в избирательном транспорте веществ через мембрану.

Гликокаликс

Теперь вы знаете, что гликокаликс — надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных
сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется
только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны
регулируют жизнедеятельность клеток.

Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к
ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов
нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный
иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.

Инвазия ВИЧ в клетку

Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают
его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые
по мере необходимости открываются и закрываются :) Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой:
через мембрану вещества поступают в клетку и удаляются из нее.

Подведем итоги. Клеточная мембрана выполняет ряд важнейших функций:

  • Разделительная (барьерная) — образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
  • Поддержание обмена веществ между внешней средой и цитоплазмой
  • Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности — мочевина
    — удаляются из клетки во внешнюю среду.

  • Транспортная
  • Тесно связана с обменом веществ, однако здесь мне особенно хочется подчеркнуть варианты транспорта веществ через клетку.
    Выделяется два вида транспорта:

    • Пассивный — часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии
      или облегченной (с участием белка-переносчика) диффузии.
    • Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O,
      CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.

    • Активный
    • Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и
      энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы
      натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.

      Транспорт веществ через мембрану

Внутрь клетки крупные молекулы попадают путем эндоцитоза (греч. endo — внутрь) двумя путями:

  • Фагоцитоз (греч. phago — ем + cytos — клетка) — поглощение твердых пищевых частиц и бактерий фагоцитами
  • Пиноцитоз (греч. pino — пью) — поглощение клеткой жидкости, захват жидкости клеточной поверхностью

Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы
нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.

В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь
клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное
пищеварение.

Фагоцитоз и пиноцитоз

Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к
мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω — вне, снаружи). Таким образом, процессы экзоцитоза и
эндоцитоза противоположны.

Клеточная стенка

Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует.
Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму.
Клеточная стенка бактерий состоит из полимера муреина, у грибов — из хитина, у растений — из целлюлозы.

Клеточная стенка

Цитоплазма

Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме
происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты — удалить из клетки.

Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.

Цитоплазма

Прокариоты и эукариоты

Прокариоты (греч. πρό — перед и κάρυον — ядро) или доядерные — одноклеточные организмы, не обладающие в отличие от
эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды.
Их генетический материал представлен в виде кольцевой молекулы ДНК — нуклеоида (нуклеоид — ДНК–содержащая зона клетки прокариот). К прокариотам относятся бактерии, в их числе цианобактерии (цианобактерий по-другому называют — сине-зеленые водоросли).

Эукариоты (греч. εὖ — хорошо + κάρυον — ядро) или ядерные — домен живых организмов, клетки которых содержат оформленное
ядро. Растения, животные, грибы — относятся к эукариотам.

Прокариоты и эукариоты

Немембранные органоиды
  • Рибосома
  • Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа.
    Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая
    в ядрышке.

    Запомните ассоциацию: «Рибосома — фабрика белка». Именно здесь в ходе матричного биосинтеза — трансляции, с которой
    подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок — последовательность
    соединенных аминокислот в заданном иРНК порядке.

    Строение рибосомы

  • Микротрубочки и микрофиламенты
  • Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают
    определенную форму клетки, участвуют во внутриклеточном транспорте и процессе деления путем образования нитей веретена деления. Микротрубочки
    также образуют основу органоидов движения: жгутиков (у бактерий жгутик состоит из сократительного белка — флагеллина) и ресничек.

    Микрофиламенты — тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме,
    служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.

    Микротрубочки и микрофиламенты

  • Клеточный центр (центросома, от греч. soma — тело)
  • Этот органоид характерен только для животной клетки, в клетках низших грибов (мукор) и высших растений отсутствует. Клеточный
    центр состоит из 9 триплетов микротрубочек (триплет — три соединенных вместе). Участвует в образовании нитей веретена деления,
    располагается на полюсах клетки.

    Клеточный центр

  • Реснички и жгутики
  • Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек.
    Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.

    Жгутики и реснички

Одномембранные органоиды
  • Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum — сеть)
  • ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части
    (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу,
    что нарушит процессы жизнедеятельности.

    Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними
    имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая
    ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).

    Эндоплазматическая сеть (ЭПС)

  • Комплекс (аппарат) Гольджи
  • Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается
    вокруг ядра клетки, внешне напоминает стопку блинов. Это — «клеточный склад». В нем запасаются жиры и углеводы, с
    которыми здесь происходят химические видоизменения.

    Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они
    изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках
    эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.

    В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.

    Комплекс Гольджи

  • Лизосома (греч. lisis — растворение + soma — тело)
  • Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) — липазы, протеазы, фосфатазы.
    Лизосому можно ассоциировать с «клеточным желудком».

    Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце — вторичная лизосома с непереваренными остатками, которые удаляются из клетки.

    Процесс фагоцитоза

    Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком.
    В норме у каждой клетки жизненный цикл заканчивается апоптозом — запрограммированным процессом клеточной гибели.

    В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что
    нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.

    Лизосома

  • Пероксисомы (лат. per — сверх, греч. oxys — кислый и soma — тело)
  • Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2
    (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы
    к серьезным повреждениям клетки.

  • Вакуоли
  • Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных — сократительные
    вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором
    содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.

    Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление,
    придают клетке форму.

    Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют
    вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные
    органоиды на периферию.

    Вакуоли

Двумембранные органоиды
  • Митохондрия
  • Органоид палочковидной формы. Митохондрию можно сравнить с «энергетической станцией». Если в цитоплазме происходит
    анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный — аэробный этап (кислородный). В
    результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы)
    получаются 36 молекул АТФ.

    Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь — кристы, на которых имеется
    большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена
    матриксом.

    Митохондрия

    Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК — нуклеоида (ДНК–содержащая зона клетки прокариот), и рибосом. То есть
    митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.

    В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были
    самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.

    Митохондрий особенно много в клетках мышц, в том числе — в сердечной мышечной ткани. Эти клетки выполняют активную работу и
    нуждаются в большом количестве энергии.

  • Пластиды (др.-греч. πλαστός — вылепленный)
  • Двумембранные органоиды, встречающиеся только в клетках высших растений, водорослей и некоторых простейших. У
    подавляющего большинства животных пластиды отсутствуют. Подразделяются на три типа:

    • Хлоропласт (греч. chlōros — зелёный)
    • Получил свое название за счет содержащегося в нем зеленого пигмента — хлорофилла (греч. chloros — зеленый
      и phyllon — лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки — граны. Внутреннее
      пространство между тилакоидами и мембраной называется стромой.

      Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая
      (светонезависимая) фаза — в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении
      фотосинтеза в дальнейшем.

      Хлоропласт

      Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.

    • Хромопласты (греч. chromos – краска)
    • Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает
      красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.

      Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал,
      в них активируется биосинтез каротиноидов.

    • Лейкопласты (др.-греч. λευκός — белый )
    • Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается
      крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать
      процесс фотосинтеза.

      Пластиды

Ядро («ядро» по лат. — nucleus, по греч. — karyon)

Важнейшая структура эукариотической клетки — оформленное ядро, которое у прокариот отсутствует. Внутренняя часть
ядра представлена кариоплазмой, в которой расположен хроматин — комплекс ДНК, РНК и белков, и одно или несколько
ядрышек.

Ядрышко — место в ядре, где активно идет процесс матричного биосинтеза — транскрипция, с которым мы познакомимся
подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество
ядрышек или не найти ни одного.

Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение
между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала
дочерним клеткам.

Строение ядра

Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы
ДНК, связанные с белками.

Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать
вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы — во время деления, спирализованное ДНК), если же клетка не
делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин — деспирализованное ДНК).

Хроматин и хромосомы

Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом
называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.

Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна — трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).

Кариотип

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Цитоскелет — это развитая сеть белковых нитей (филаментов), образующих в цитоплазме эукариотической клетки опорно-двигательную систему. В клетке прокариот тоже есть цитоскелет, но построен он из схожих, имеющих общее происхождение (гомологичных) и особых белков. С биохимической точки зрения цитоскелет — это те белковые структуры, которые остаются в клетке после обработки ее неионными детергентами.

Цитоскелет заполняет всё пространство между ядерной мембраной (у эукариот) и плазмолеммой, он определяет форму клетки и участвует в тех её функциях, которые связаны с движением, делением и перемещением как самой клетки, так и органелл и отдельных соединений внутри неё. Компоненты цитоскелета были первоначально идентифицированы с помощью электронной микроскопии. Эти ранние исследования описывали систему цитоплазматических нитей, которые делились на три размерные группы следующим образом:

  • микротрубочки (диаметр 25 нм);
  • промежуточные филаменты (8-12 нм);
  • микрофиламенты (около 7 нм).

Элементы цитоскелета, фото

Элементы цитоскелета

Эти элементы входят в состав более сложно устроенных немембранных органелл:

  • ресничек и жгутиков с базальными тельцами;
  • микроворсинок;
  • клеточного центра.

Биохимические исследования, включающие извлечение белков цитоскелета из клеток с помощью детергентов и солей и трансляции специфической мРНК in vitro, показали, что каждый класс филаментов обладает уникальной белковой организацией. Когда белки цитоскелета были очищены, их использовали в качестве антигенов для выработки антител. Антитела применяются в качестве инструментов для локализации различных белков цитоскелета в клетке.

Все элементы цитоскелета являются немембранными органоидами клетки. В различных клетках степень развития его разная. Например:

  • клетки эпидермиса кожи богаты промежуточными филаментами;
  • в мышечных волокнах преобладают актиновые микрофиламенты;
  • в отростках нервной системы больше встречаются микротрубочки.

Общее свойство элементов цитоскелета то, что состоят они из белковых неветвящихся фибриллярных полимеров, способных как к увеличению площади поверхности, так и к разрушению. Такая нестабильность приводит к подвижности клетки, к изменению её размеров и формы. Некоторые компоненты цитоскелета способны стабилизироваться и образовывать каркас из фибриллярных ансамблей. При взаимодействии с другими специальными белками, которые относятся к моторным белками или транслокаторам, компоненты цитоскелета могут участвовать в разнообразных клеточных движениях.

Организация цитоскелета, фото

Организация цитоскелета. Источник: http://profil.adu.by/pluginfile.php/4315/mod_book/chapter/11919/12.1.jpg

Функции цитоскелета:

  1. движение клеток (перемещение клеток крови по стенкам кровеносных сосудов, миграция фибробластов во время заживления ран, перемещение клеток во время эмбрионального развития и т.д.),
  2. поддержка формы и прочность клетки,
  3. фагоцитоз,
  4. цитокинез — деление клетки,
  5. циклоз — движение цитоплазмы,
  6. адгезия клетка-клетка и клетка–внеклеточный матрикс,
  7. изменения в форме клеток,
  8. внутриклеточный транспорт.

Микрофиламенты

Микрофиламенты (актиновые нити, или плазматические нити) — это длинные и самые тонкие (диаметром в 4-10 нм, в среднем — 7 нм) белковые нити цитоскелета эукариотической клетки. Встречаются они во всей цитоплазме, состоят из двух белков: актина и миозина, у животных участвующих в мышечном сокращении.

Микрофиламенты, фото

Источник: https://s0.slide-share.ru/s_slide/8134ebbbd729484da68055222251be82/a22c8a95-c661-426e-890e-6b1dd7d5b1f6.jpeg

Актиновые нити состоят из глобулярных мономеров (G-актина), т.е. из белков, имеющих третичную структуру. Актин — важнейший белок эукариотических клеток. На его долю приходится 5-15% всех клеточных белков.

Гамма-актин (G-актина) объединяется (полимеризуется) в актиновые филаменты, представляющие собой фибриллярные белковые нити (F-актин), состоящие из двух, закрученных друг около друга спиралей, диаметром около 6 нм, длиной в несколько мкм.

Актин формирует трёхмерную сеть из нитей, собранных в пучки (в них не менее 20 нитей), составляющие цитоскелет. Все актиновые образования обратимы. Т.е. пучки разбираются на отдельные нити, нити на гамма-актин.

Актин является универсальным и распространённым компонентом, из которого построен цитоскелет. Он образует статические и сократительные пучки и нитевидные сети. Пучки F-актина присутствуют в микроворсинках кишечника, эпителиальных клетках почек, в волосковых клетках внутреннего уха, вместе со спектрином образует нитевидную сеть на внутренней поверхности мембраны эритроцитов.

В меньшем количестве в клетках эукариот содержится другого белка — миозина (0,3-1,5 % клеточного белка). Его молекула нитевидна, состоит из двух больших и нескольких малых субъединиц, образующих двойную спираль (вторичная структура белка). Один конец спирали миозина несёт две головки, которые присоединяет к себе актиновая нить. Делается это в определённых местах нитей актина — «сайтах», где есть вспомогательные белки. В присутствии ионов кальция и при помощи энергии расщепления АТФ (миозиновая АТФаза головки) миозиновые нити присоединяются к актиновым.

Актин и миозин в микрофиламентах, фото

Актин и миозин в микрофиламентах. Источник: https://d3i71xaburhd42.cloudfront.net/76c694e771815812bd3c112835b9c1b216e237f8/2-Figure1-1.png

Миозин — транспортный белок, передвигающийся по нитям актина и переносящий грузы. Выделившаяся при расщеплении АТФ энергия идёт на деформацию молекулы миозина: её головка подтягивается к хвосту. После головка миозина освобождается и молекула расправляется. Сайты закрываются при недостатке ионов кальция (например, в результате работы специальных ионных насосов).

В мышечных клетках животных молекулы миозина в большом количестве объединяются в тяжи, похожие на ёршик. Эти «ёршики» располагаются между параллельно натянутыми многочисленными нитями актина. В процессе сокращения деформирующиеся миозиновые молекулы как бы подтягивают в одном направлении близлежащие актиновые волокна и слаженная работа многих таких актинмиозиновых структур обеспечивает мышечное сокращение.

Молекулярный состав микрофиламентов - цитоскелет, фото

Молекулярный состав микрофиламентов — цитоскелет. Источник: https://schoolbag.info/biology/mcat/mcat.files/image126.jpg

В эритроцитах цитоскелет из сети микрофиламентов прикрепляется к пронизывающим мембрану белкам и определяет не только специфическую форму этих клеток, но и гибкость, позволяющую им проходить по самым узким капиллярам.

В растительных клетках в гиалоплазме актиновые микрофиламенты нередко образуют плазматические волокна, которые располагаются параллельно и близко друг к другу. Они могут принимать и вид трехмерной сети. Здесь миозиновые молекулы выполняют транспортную роль. Актиновые микрофиламенты служат как бы рельсами. Миозиновые молекулы «хвостом» прикрепляются к органоидам (к белковым молекулам мембран) и «перебирают» по актиновым «рельсам» головками, перемещая органоиды. Аналогично миозин может прикрепляться к плазмалемме и втягивать ее внутрь, обеспечивая экзоцитоз.

Благодаря своей динамической нестабильности и полярности молекул цитоскелет из микрофиламентов способен выполнять следующие функции:

  • обеспечение движения цитоплазмы (циклоза) благодаря способности осуществлять переход золевого состояния цитоплазмы в гелевое и наоборот;
  • движение органоидов;
  • образование выпячиваний плазмалеммы (плазмоподий).

Промежуточные филаменты

Промежуточные филаменты (ПФ) — белковые нити, из которых состоит цитоскелет многих эукариот. Они есть как в цитоплазме, так и в ядре клетки не всех эукариот, нет их у растений, грибов и некоторых групп животных. Названы так потому, что имеют средний (промежуточный) размер между микрофиламентами и микротрубочками. Их диаметр равен 9-12 нм, что меньше чем у микротрубочек, но больше, чем у микрофиламентов.

Промежуточные филаменты, фото

Источник: https://s0.slide-share.ru/s_slide/31de732740b438ab712980269ca1d787/bbe5d03d-ea4f-4243-9157-e0ca8e93030a.jpeg

Локализуются главным образом в околоядерной зоне, в пучках фибрилл, отходящих к периферии клеток и располагающихся под плазматической мембраной. Топографически в клетке расположение промежуточных филаментов повторяет расположение микротрубочек, они как бы идут бок о бок.

В отличие от других элементов цитоскелета ПФ состоят из разных, хотя и схожих белков (изобелков). Причём построены они из димеров, а ни из мономеров. В зависимости от особенностей аминокислотного состава и строения составляющих из белков, выделяют 4 типа промежуточных филаментов:

  1. Кератины — наиболее разнообразная группа промежуточных филаментов. Среди них выделяют две основные группы: эпителиальные кератины и кератины волос (из них построен цитоскелет клеток волос, ногтей, чешуи пресмыкающихся, рогов многих животных). В эпителиях встречается до 20 форм кератинов, 10 форм других кератинов найдено в волосах и ногтях.
  2. Второй тип белков ПФ включает в себя три вида белков, имеющих сходный молекулярный вес (45-53 тыс.). Это — виметин, характерный для клеток мезенхимного происхождения, входящий в состав цитоскелета клеток соединительной ткани, эндотелия, клеток крови. Десмин — встречается в мышечных клетках, как гладких, так и исчерченных. Глиальный фибриллярный белок входит в состав ПФ некоторых клеток нервной глии — в астроциты и некоторые Шванновские клетки. Периферин — встречается в составе периферических и центральных нейронов.
  3. Третий тип — белки нейрофиламентов (мол. вес от 60 до 130 тыс.) образуются в аксонах нервных клеток.
  4. Ядерные ламины — содержатся в клеточном ядре. Хотя эти последние имеют ядерную локализацию, они сходны по строению и свойствам со всеми белками промежуточных филаментов.

Функции:

  • ПФ в ряде случаев обеспечивают механическую прочность клеток, их отростков или эпителиальных слоев.
  • Они участвуют в образовании межклеточных контактов — десмосом и гемидесмосом.

Промежуточные волокна выглядят как туго скрученные косы: как если бы из спирали из двух нитей сделали новую спираль с другими двумя нитями, потом еще и еще. Из-за своей структуры они очень хорошо растягиваются — во много раз по сравнению с исходными размерами. В отличие от микротрубочек и микрофиламентов ПФ неполярны, они строятся и разрушаются с любого конца. Объясняется это тем, что нити, из которых построены спирали ПФ антипараллельны. На концах филаментов расположены глобулярные белки.

Цитоплазматические ПФ состоят из спирально закрученных филаментов. Белки ядерной ламины образуют димеры с головками на одном конце и полимеризуются, образуя рыхлую прямоугольную решетку. Такие слои ламины быстро разрушаются во время митоза при фосфорилировании. Цитоплазматические же промежуточные филаменты относятся к самым стабильным и долгоживущим элементам цитоскелета.

Микротрубочки

Микротрубочки — полые белковые цилиндры, обнаруженные практически во всех эукариотических клетках. Из них строится цитоскелет, клеточный центр, реснички и жгутики эукариот. Каждую микротрубочку образуют 13 продольных нитей (протофиламентов), окружающих центральную полость. А протофиламент состоит из двух типов глобулярных молекул белка тубулина.

Микротрубочки, фото

Микротрубочки — весьма динамичные структуры: они постоянно разбираются и вновь образуются. Тубулин изменяет свою конфигурацию в ответ на некоторые химические воздействия, например, под влиянием ионов Са 2+. Как и микрофиламенты, микротрубочки полярны, у них различают (+)- и (-)-концы. (-)-концы стабильны (либо медленно разбираются, либо не разбираются совсем) и располагаются обычно вместе в «центре организации микротрубочек» (ЦОМТ) близ плазмалеммы обычно на экваторе клетки.

(+)-концы нестабильны — с этого конца микротрубочки то собираются, то, наоборот, разбираются. Они растут, формируя радиальную структуру.

Элемент цитоскелета - микротрубочка, фото

Построение микротрубочек зависит от энергии ГТФ (аналог АТФ с гуанином вместо аденина в составе). Снижение его концентрации приводит к быстрой разборке микротрубочек. С микротрубочками ассоциирована масса вспомогательных белков, благодаря которым происходит прикрепление их, например, к органоидам, хромосомам и т.п.

Микротрубочки расположены в кортикальном слое цитоплазмы (экзоплазме), подстилают плазмалемму. Они участвуют в транспорте внутриклеточных компонентов. В сравнении с микрофиламентами они — как скоростные магистрали, по которым от центра клетки к ее периферии и обратно происходит их быстрое перемещение, микрофиламенты — как обычные дороги, по которым происходит более медленная, но точная доставка компонентов.

Транспортными белками, передвигающимися по микротрубочкам являются кинезины и динеины.

Кинезины — крупное семейство моторных белков, у которых можно выделить две части, каждая их половина состоит из тяжелой и лёгкой цепи. Их глобулярная головка, сформированная из тяжелой цепи, шагает по микротрубочке, а сверху находятся закрученные «ножки», на которых располагаются легкие цепи — хвосты. Эти-то хвосты и несут груз. Маршрут кинезинов постоянен — от минус-концов микротрубочек к плюс-концам, чаще всего от центра к краям клетки, но иногда и от одних органелл к другим.

Динеины несколько отличаются от кинезинов по строению и функциям. Во-первых, динеины ходят в обратную сторону: от плюс-концов к минус-концам (хотя в литературе описаны и случаи обратного хода). Во-вторых, динеины могут участвовать в правильном расположении отдельных органелл в толще цитоплазмы — например, они могут позиционировать аппарат Гольджи («склад» клетки, в котором формируются везикулы с веществами). Кроме того, помимо стандартного транспорта везикул, динеины могут переносить хромосомы и даже участки микротрубочек.

Источник: https://knife.media/moving-proteins/

Кинезин и динеин, фото

Кинезин и динеин

Функции микротрубочек:

  • движение жгутиков (перемещение клеток водорослей и подвижных гамет);
  • обеспечение структуры гиалоплазмы и формы протопласта;
  • перемещение хромосом во время митоза и мейоза. В делящихся клетках микротрубочки собираются в агрегаты — волокна митотического веретена или фрагмопласта;
  • участие в транспорте органоидов и веществ по цитоплазме;
  • ориентация целлюлозных микрофибрилл при построении клеточной оболочки.

Цитоскелет прокариот

Изначально (после открытия элементов цитоскелета эукариот) считалось, что у прокариот цитоскелета нет. Открывать его элементы начали с 1992 года. Постепенно стало ясно, что он состоит из аналогичных белков цитоскелета эукариот и из тех, что не имеют у них аналогов.

Цитоскелет прокариот, фото

Цитоскелет прокариот

Элементы цитоскелета играют важные роли в делении клеток, защите, поддержании формы и определении полярности у различных прокариот. К настоящему времени найдены бактериальные гомологи всех трех типов элементов цитоскелета эукариот — тубулина, актина и промежуточных филаментов. Также было установлено, что как минимум одна группа белков бактериального цитоскелета, MinD/ParA, не имеет эукариотических аналогов.

Про белки цитоскелета эукариот можно узнать тут: https://ru.wikipedia.org/wiki/Цитоскелет_прокариот

Клеточный центр

Клеточный центр (центросома) образован центросферой (микротрубочками) и двумя центриолями, построенными из микротрубочек. Располагается в геометрическом центре клетки многих эукариот (животных, высших грибов, некоторых простейших). Является центром организации микротрубочек, принимает участие в клеточном делении.

Клеточный центр, фото

Клеточный центр

Центриоли клеточного центра обычно располагаются в паре под прямым углом друг к другу — диплосома, они окружены зоной более светлой цитоплазмы, от которой радиально отходят тонкие фибриллы. В делящихся клетках эти органеллы принимают участие в формировании веретена деления, располагаясь на его полюсах. В неделящихся клетках он часто располагается вблизи комплекса Гольджи.

Тонкое строение центриолей удалось изучить только с помощью электронного микроскопа. В основе строения центриоли лежат, расположенные по окружности 9 триплетов микротрубочек, образующих полый цилиндр. Систему микротрубочек центриоли можно описать формулой (9х3)+0, подчёркивая отсутствие микротрубочек в её центральной части.

Веретено деления и центросомы, фото

Центриоли в паре не одинаковы, различают материнскую (зрелую) и дочернюю (незрелую) центриоль. Конец дочерней центриоли направлен к поверхности материнской. Вокруг каждой из них располагается бесструктурный, или тонковолокнистый матрикс. Часто можно обнаружить несколько дополнительных структур, связанных с центриолями:

  • спутники (сателлиты);
  • фокусы схождения микротрубочек;
  • дополнительные микротрубочки, образующие особую зону;
  • ценросферу вокруг центриоли.

При подготовке клетки к митотическому делению происходит удвоение (дупликация) центриолей. Этот процесс в разных клетках осуществляется в разное время — в процессе синтеза ядерной ДНК или после него. Две центриоли расходятся и около каждой из них возникает по одной новой — дочерней. То есть в клетке перед митотическим делением образуется две диплосомы т.е. 4 попарно связанные центриоли. Увеличение числа центриолей не связано с их делением, почкованием или фрагментацией, а происходит за счёт образования зачатка — процентриоли вблизи и перпендикулярно к исходной материнской центриоли.

Функции центриолей:

  • участие в индукции полимеризации тубулина при образовании микротрубочек в интерфазе. Перед митозом центриоль является одним из центров полимеризации микротрубочек веретена клеточного деления;
  • являться центром роста микротрубочек аксонем жгутиков и ресничек;
  • индуцирование полимеризации тубулинов новой процентриоли.

Реснички и жгутики

Это органы движения, встречающиеся в некоторых клетках разных организмов, в том числе и одноклеточных эукариот. Под световым микроскопом они выглядят как тонкие выросты клетки. В основании ресничек (cilium) и жгутика (flagellum) в цитоплазме видны базальные тельца (corpusculum basale) — хорошо окрашивающиеся мелкие гранулы. Длина ресничек 5-10 мкм, а длина жгутиков может достигать 150 мкм.

Строение реснички, фото

Реснички — это тонкие цилиндрические выросты цитоплазмы с постоянным диаметром в 300 нм. Вырост по всей длине покрыт цитоплазматической мембраной. Внутри выроста расположена аксонема («осевая нить») — сложная структура, состоящая в основном из микротрубочек. Базальное тело реснички погружено в цитоплазму. Базальное тело по своей структуре очень схоже с центриолью, состоит оно из 9 триплетов микротрубочек. Часто в основании реснички лежат два базальных тела, располагающихся под прямым углом друг к другу.

Аксонема в своём составе имеет 9 дуплетов микротрубочек, образующих стенку аксонемы и связанных друг с другом рядом выростов. В центре аксонемы располагается ещё пара микротрубочек. В целом систему микротрубочек реснички описывают как (9х2)+2 в отличие от (9х3)+0 системы центриолей и базальных телец.

Строение жгутика и реснички эукариот, фото

Свободные клетки, имеющие реснички и жгутики, обладают способностью передвигаться, неподвижные клетки биением ресничек могут перемещать жидкость и мелкие частицы. При движении ресничек и жгутиков длина их не уменьшается, поэтому называть их сокращением неправильно. Основной их белок — тубулин не способен к сокращению. У разных клеток движение этих органов может быть маятникообразным, крючкообразным или волнообразным.

Движение ресничек осуществляется за счёт активности белка динеина, расположенного в «ручках» дублетов микротрубочек. Незначительное смещение дублетов микротрубочек друг относительно друга вызывают изгиб всей реснички, а если такое локальное смещение будет происходить вдоль всего жгутика, то возникает волнообразное движение.

В этом уроке мы поговорим об обязательной структуре всего живого – клетке. Клетка — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов, о которых нередко говорят, как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению (животные, растения и грибы), либо является одноклеточным организмом (многие простейшие и бактерии). Вы уже знаете, что раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. В последнее время принято также говорить о биологии клетки, или клеточной биологии.

Строение клеток

Все клеточные формы жизни на Земле можно разделить на два надцарства на основании строения составляющих их клеток:

  • прокариоты (доядерные) — более простые по строению и возникли в процессе эволюции раньше;
  • эукариоты (ядерные) — более сложные, возникли позже. Клетки, составляющие тело человека, в основном, являются эукариотическими.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Содержимое клетки отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариоты (от лат. Pro — перед, до и греч. Κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды. Основное содержимое клетки, заполняющее весь её объём, — вязкая зернистая цитоплазма.

Эукариоты (эвкариоты) (от греч. Ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Строение прокариотической клетки

Рисунок 1. Прокариотическая клетка бактерий

Клетки двух основных групп прокариот — бактерий и архей — похожи по структуре: характерными их признаками являются отсутствие ядра и мембранных органелл.

Основными компонентами прокариотической клетки являются:

  • Клеточная стенка, которая окружает клетку извне, защищает её, придаёт устойчивую форму, предотвращающую от осмотического разрушения. У бактерий клеточная стенка состоит из муреина, построенного из длинных полисахаридных цепей, соединенных между собой короткими пептидными перемычками. Клеточная стенка архей не содержит муреина, а построена в основном из разнообразных белков и полисахаридов.
  • Жгутики — органеллы движения некоторых бактерий. Бактериальный жгутик построен значительно проще эукариотического, и он в 10 раз тоньше, внешне не покрыт плазматической мембраной и состоит из одинаковых молекул белков, которые образуют цилиндр. В мембране жгутик закреплен при помощи базального тела.
  • Плазматическая и внутренние мембраны. Общий принцип устройства клеточных мембран не отличается от эукариот, однако химическом составе мембраны есть немало различий, в частности, в мембранах прокариот отсутствуют молекулы холестерина и некоторых липидов, присущих мембранам эукариот. Большинство прокариотических клеток (в отличие от эукариотических) не имеют внутренних мембран, которые разделяют цитоплазму на отделы (компартменты). Только у некоторых фотосинтетических и аэробных бактерий плазмалемма образует вгибание внутрь клетки, что выполняет соответствующие метаболические функции.
  • Нуклеоид — не ограниченный мембранами участок цитоплазмы, в котором расположена кольцевая молекула ДНК — «бактериальная хромосома», где хранится весь генетический материал клетки.
  • Плазмиды — небольшие дополнительные кольцевые молекулы ДНК, несущие обычно всего несколько генов. Плазмиды, в отличие от бактериальной хромосомы, не являются обязательным компонентом клетки. Обычно они придают бактерии определенные полезные для неё свойства, такие как устойчивость к антибиотикам, способность усваивать из среды определенные энергетические субстраты, способность инициировать половой процесс и тд.
  • Рибосомы прокариот, как и у всех других живых организмов, отвечают за осуществление процесса трансляции (одного из этапов биосинтеза белка). Однако бактериальные рибосомы несколько меньше, чем эукариотические и имеют другой состав белков и РНК. Из-за этого бактерии, в отличие от эукариот, чувствительны к таким антибиотикам, как эритромицин и тетрациклин, которые избирательно действуют на прокариотические рибосомы.
  • Споры (эндоспоры) — окруженные плотной оболочкой структуры, содержащие ДНК бактерии и обеспечивающее выживание в неблагоприятных условиях. К образованию спор способны лишь некоторые виды прокариот, например в частности возбудитель столбняка, возбудитель ботулизма и возбудитель сибирской язвы. Для образования эндоспоры клетка реплицирует свою ДНК и окружает копию плотной оболочкой, из созданной структуры удаляется избыток воды, и в ней замедляется метаболизм. Споры бактерий могут выдерживать довольно жесткие условия среды, такие как длительное высушивание, кипячение, коротковолновое облучение.

Сравнительная характеристика клеток эукариот и прокариот

Признак

Прокариоты

Эукариоты

Размеры клеток

Средний диаметр 0,5 —10 мкм

Средний диаметр 10 — 100 мкм

Организация генетического материала

   

Форма, количество и расположение молекул ДНК

Обычно имеется одна кольцевая молекула ДНК, размещенная в цитоплазме

Обычно есть несколько линейных молекул ДНК — хромосом, локализованных в ядре. В интерфазном ядре (вне деления) хромосомы представляют собой хроматин: ДНК компактизируется в комплексе с белками

Деление

   

Тип деления

Простое бинарное деление. Веретено деления не образуется

Мейоз или митоз

Органеллы

   

Наличие мембранных органелл

Окруженные мембранами органеллы отсутствуют, иногда плазмалемма образует выпячивание внутрь клетки

Имеется большое количество одномембранных и двумембранных органелл

Строение эукариотической клетки

Поверхностный комплекс клетки

Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана, толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию.

Поверхностый аппарат животных клеток дополнительно включает гликокаликс. Гликокаликс представляет собой «заякоренные» в плазмалемме молекулы углеводов. Гликокаликс выполняет рецепторную и маркерную функции.

У большинства грибов и растений есть клеточная стенка — жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции.

Цитоплазма

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами», и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к шероховатому (гранулярному) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому ЭПР, принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки.

Аппарат Гольджи

Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. То есть это органоид, который упаковывает синтезированные в клетке вещества и побочные продукты для дальнейшей секреции или расщепления.

Ядро

Клеточное ядро содержит молекулы ДНК, на которых записана генетическая информация организма. В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего они выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками. Оболочка ядра двумембранная, сливается с шероховатым ЭПР. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой.

Лизосомы

Лизосома — небольшое тельце, ограниченное от цитоплазмы одинарной мембраной. В ней находятся литические ферменты, способные расщепить все биополимеры, это и есть ее основная функция. Еще одна из функций лизосом — автолиз — то есть расщепление отдельных органоидов и участков цитоплазмы клетки.

Вакуоль

Вакуоль — одномембранный органоид, содержащийся в некоторых эукариотических клетках и выполняющий различные функции (секреция, экскреция и хранение запасных веществ, аутофагия, автолиз и др.). Вакуоли развиваются из мембранных пузырьков — провакуолей. Провакуоли являются производными эндоплазматического ретикулума и комплекса Гольджи, они сливаются и образуют вакуоли. Вакуоли и их содержимое рассматриваются как обособленный от цитоплазмы компартмент. Различают пищеварительные и сократительные (пульсирующие) вакуоли, регулирующие осмотическое давление и служащие для выведения из организма продуктов распада. Вакуоли особенно хорошо заметны в клетках растений: во многих зрелых клетках растений они составляют более половины объёма клетки, при этом они могут сливаться в одну гигантскую вакуоль. Одна из важных функций растительных вакуолей — накопление ионов и поддержание тургора (тургорного давления). Вакуоль — это место запаса воды.

Мембрана, в которую заключена вакуоль, называется тонопласт, а содержимое вакуоли — клеточный сок. Клеточный сок состоит из воды и растворенных в ней веществ.

Цитоскелет

К элементам цитоскелета относят белковые фибриллярные структуры, расположенные в цитоплазме клетки: микротрубочки, актиновые и промежуточные филаменты. Микротрубочки принимают участие в транспорте органелл, входят в состав жгутиков, из микротрубочек строится митотическое веретено деления. Актиновые филаменты необходимы для поддержания формы клетки, псевдоподиальных реакций. Роль промежуточных филаментов, по-видимому, также заключается в поддержании структуры клетки. Белки цитоскелета составляют несколько десятков процентов от массы клеточного белка.

Центриоли

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет, за исключением низших водорослей). Центриоль представляет собой цилиндр, боковая поверхность которого образована микротрубочками.

Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путём синтеза новой структуры, перпендикулярной существующей.

Митохондрии

Митохондрии — особые органеллы клетки, основной функцией которых является синтез АТФ — универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счёт энзиматических систем митохондрий.

Внутренний просвет митохондрий, называемый матриксом, отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии.

Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы, что, безусловно, указывает на симбиотическое происхождение этих органелл. В ДНК митохондрий закодированы совсем не все митохондриальные белки, большая часть генов митохондриальных белков находятся в ядерном геноме, а соответствующие им продукты синтезируются в цитоплазме, а затем транспортируются в митохондрии. Геномы митохондрий отличаются по размерам: например геном человеческих митохондрий содержит всего 13 генов.

Пластиды

Пластиды (от др.-греч. Πλαστόс — вылепленный) — полуавтономные органеллы высших растений, водорослей и некоторых фотосинтезирующих простейших. Пластиды имеют от двух до четырёх мембран, собственный геном и белоксинтезирующий аппарат.

Согласно симбиогенетической теории пластиды, как и митохондрии, произошли в результате «захвата» древней цианобактерии предшественником эукариотической «хозяйской» клетки. При этом внешняя мембрана пластид соответствует плазматической мембране хозяйской клетки, межмембранное пространство — внешней среде, внутренняя мембрана пластид — мембране цианобактерии, а строма пластид — цитоплазме цианобактерии. Наличие трёх (эвгленовые и динофлагелляты) или четырёх (золотистые, бурые, жёлто-зелёные, диатомовые водоросли) мембран считается результатом двух- и трёхкратного эндосимбиоза соответственно.

Хлоропласты (от греч. Χλωρός — «зелёный») — зелёные пластиды, которые встречаются в клетках фотосинтезирующих эукариот. С их помощью происходит фотосинтез. Хлоропласты содержат хлорофилл.

В одной клетке листа может находиться 15—20 и более хлоропластов, а у некоторых водорослей — лишь 1 -2 гигантских хлоропласта (хроматофора) различной формы.

Хлоропласты ограничены двумя мембранами — наружной и внутренней. Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта — строму (матрикс) . В строме содержатся белки, липиды, ДНК (кольцевая молекула) , РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна), а также ферменты, участвующие в фиксации углекислого газа.

Внутренняя мембрана хлоропласта образует впячивания внутрь стромы — тилакоиды, которые имеют форму уплощенных мешочков (цистерн) . Несколько таких тилакоидов, лежащих друг над другом, образуют грану, и в этом случае они называются тилакоидами граны. Именно в мембранах тилакоидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света.

Межклеточные контакты

У высших животных и растений клетки объединены в ткани и органы, в составе которых они взаимодействуют между собой, в частности, благодаря прямым физическим контактам. В растительных тканях отдельные клетки соединяются между собой с помощью плазмодесм, а животные образуют различные типы клеточных контактов, в основном десмосомы.

Плазмодесмы растений — это тонкие цитоплазматические каналы, которые проходят через клеточные стенки соседних клеток, соединяя их между собой. Полость плазмодесм устлана плазмалеммой. Совокупность всех клеток, объединенных плазмодесмами, называется симпластом, между ними возможен регулируемый транспорт веществ.

Осмотическое давление в клетке

Осмотическое давление — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану (осмос). Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

Мера градиента осмотического давления, то есть различия водного потенциала двух растворов, разделённых полупроницаемой мембраной, называется тоничностью. Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.

Тургор тканей — напряжённое состояние оболочек живых клеток. Тургорное давление — внутреннее давление, которое развивается в растительной клетке, когда в неё в результате осмоса входит вода и цитоплазма прижимается к клеточной стенке; это давление препятствует дальнейшему проникновению воды в клетку.

Тургор обуславливается тремя факторами: внутренним осмотическим давлением клетки, которое вызывает напряжение клеточной оболочки, внешним осмотическим давлением, а также упругостью клеточной оболочки.

Дифференцировка клеток многоклеточного организма

Многоклеточные организмы состоят из клеток, которые в той или иной степени отличаются по строению и функциям, например, у взрослого человека около 230 различных типов клеток. Все они являются потомками одной клетки — зиготы (в случае полового размножения) — и приобретают различия в результате процесса дифференцировки. Дифференцировка в подавляющем большинстве случаев не сопровождается изменением наследственной информации клетки, а обеспечивается лишь путем регуляции активности генов, специфический характер экспрессии генов наследуется во время деления материнской клетки обычно благодаря эпигенетическим механизмам. Однако есть исключения: например, при образовании клеток специфической иммунной системы позвоночных происходит перестройка некоторых генов, эритроциты млекопитающих полностью теряют всю наследственную информацию, а половые клетки — её половину.

Рисунок 2. Эпителиальные клетки тонкого кишечника

Различия между клетками на первых этапах эмбрионального развития появляются, во-первых, вследствие неоднородности цитоплазмы оплодотворенной яйцеклетки, из-за чего во время процесса дробления образуются клетки, различающиеся по содержанию определенных белков и РНК; во-вторых, важную роль играет микроокружение клетки — её контакты с другими клетками и средой.

Возникновение клеток

Доподлинно неизвестно, когда на Земле появилась первая клетка и каким путем она возникла. Наиболее ранние вероятные ископаемые остатки клеток, приблизительный возраст которых оценен в 3,49 млрд лет, найдены на востоке Пилбары (Австралия), хотя биогенность их происхождения было поставлено под сомнение. О существовании жизни в раннем архее свидетельствуют также строматолиты того же периода.

Возникновению первых клеток должно было предшествовать накопление органических веществ в среде и появление определенной формы пребиотического метаболизма. Протоклетки содержали как минимум два обязательных элемента: наследственную информацию в виде молекул, способных к саморепликации, и определенного рода оболочки, которая ограждала внутреннее содержимое первых клеток от окружающей среды. Наиболее вероятным кандидатом на роль саморепликативных молекул является РНК, поскольку она может одновременно выступать и носителем наследственной информации, и катализатором; кроме того, РНК, в отличие от ДНК, самодостаточна для осуществления биосинтеза белков.

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 1000    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Почему в ходе эксперимента изменяется объем живой части клетки (протопласта)? Изменится ли объем живой части клетки (протопласта), если в эксперименте вместо 10% раствора поваренной соли (хлорида натрия) использовать раствор с равной протопласту концентрацией соли? Ответ поясните.

Показать

1

Какая переменная в этом эксперименте будет зависимой (изменяющейся), а какая  — независимой (задаваемой)? Объясните, как в данном эксперименте можно поставить отрицательный контроль*. С какой целью необходимо такой контроль ставить?

*Отрицательный контроль  — это экспериментальный контроль, при котором изучаемый объект не подвергается экспериментальному воздействию).


Установите соответствие между особенностями строения и клетками, которым они свойственны: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ОСОБЕННОСТИ СТРОЕНИЯ

А)  наличие пластид

Б)  клеточная стенка из муреина

В)  способность к фагоцитозу

Г)  клеточная стенка из хитина

Д)  наличие микроворсинок

Е)  рибосомы исключительно 70S типа

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д Е

Показать

1

Каким номером на рисунке обозначена клетка, для которой нехарактерен митоз?

Раздел кодификатора ФИПИ: 2.1 Клеточное строение организмов, 2.2 Многообразие клеток. Прокариоты и эукариоты., 2.4 Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки, 4.1 Многообразие организмов. Основные систематические категории. Вирусы, 4.2 Царство бактерий, строение, жизнедеятельность, размножение, роль в природе, 4.3 Царство грибов, строение, жизнедеятельность, размножение, 4.4 Царство растений. Строение, жизнедеятельность и размножение растительного организма

Раздел кодификатора ФИПИ: 2.2 Многообразие клеток. Прокариоты и эукариоты., 2.4 Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки, 4.2 Царство бактерий, строение, жизнедеятельность, размножение, роль в природе, 4.3 Царство грибов, строение, жизнедеятельность, размножение, 4.4 Царство растений. Строение, жизнедеятельность и размножение растительного организма


Экспериментатор изучал зависимость объёма живой части растительной клетки от концентрации соли в среде. В экперимента он использовал клетки эпидермиса листа традесканции. Изолированные клетки помещал в 15%-ный раствор поваренной соли. Спустя равные промежутки времени, экспериментатор зарисовал вид клетки. Результаты эксперимента приведены на рисунке. Какой параметр в данном эксперименте задавался экспериментатором (независимая переменная), а какой параметр менялся в зависимости от этого (зависимая переменная)? Почему в результате эксперимента изменился объём живой части клетки? Что произойдёт с клеткой эпидермиса, если на стадии четырёх минут её обработать 0,2%-ным раствором соли? Как называется содержимое растительной клетки без клеточной стенки?

0 минут

2 минуты

4 минуты

6 минут


Все перечисленные ниже признаки, кроме двух, можно использовать для описания изображённого на рисунке органоида клетки. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  содержится в клетках растений и животных

2)  характерен для прокариотических клеток

3)  участвует в образовании лизосом

4)  образует секреторные пузырьки

5)  двумембранный органоид


Все перечисленные ниже признаки, кроме двух, используются для описания изображённого на рисунке органоида клетки.

Определите два признака, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  состоит из мембранных мешочков, цистерн и пузырьков

2)  осуществляет транспорт веществ во все части клетки

3)  участвует в образовании пероксисом

4)  участвует во встраивании белков в плазматическую мембрану

5)  синтезирует липиды и белки


Все перечисленные ниже признаки, кроме трёх, используются для описания изображённой на рисунке клетки. Определите три признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  способна к кислородному дыханию

2)  клеточная стенка содержит муреин

3)  автотрофный тип питания

4)  способна к фагоцитозу

5)  ДНК содержится в линейных хромосомах

6)  имеет центриоли


Установите соответствие между строением органоида клетки и органоидом.

СТРОЕНИЕ ОРГАНОИДА

A)  двумембранный органоид

Б)  есть собственная ДНК

B)  имеет секреторный аппарат

Г)  состоит из мембраны, пузырьков, цистерн

Д)  состоит из тилакоидов гран и стромы

Е)  одномембранный органоид

ОРГАНОИД

1)  хлоропласт

2)  аппарат Гольджи

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д Е

Выберите структуры, характерные только для растительной клетки.

1)  митохондрии

2)  хлоропласты

3)  целлюлозная клеточная стенка

4)  рибосомы

5)  крупные вакуоли с клеточным соком

6)  аппарат Гольджи


Установите соответствие между функциями клеточных структур и структурами, изображёнными на рисунке: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ФУНКЦИИ

А)  осуществляет активный транспорт веществ

Б)  изолирует клетку от окружающей среды

В)  обеспечивает избирательную проницаемость веществ

Г)  образует секреторные пузырьки

Д)  распределяет вещества клетки по органеллам

Е)  участвует в образовании лизосом

СТРУКТУРЫ

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д Е

Все перечисленные ниже признаки, кроме двух, используются для описания изображённой на рисунке клетки. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны

1)  наличие ядрышка с хроматином

2)  наличие целлюлозной клеточной оболочки

3)  наличие митохондрий

4)  прокариотическая клетка

5)  способность к фагоцитозу


Установите соответствие между особенностями строения органоидов клетки и органоидами: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ОСОБЕННОСТИ СТРОЕНИЯ ОРГАНОИДОВ

А)  основу составляет липидный бислой

Б)  имеет двумембранную пористую оболочку

В)  содержит кариоплазму

Г)  в органоиде множество ферментов окислительного цикла

Д)  содержит кольцевую хромосому

Е)  осуществляет фаго- и пиноцитоз у животных

ОРГАНОИДЫ

1)  клеточная мембрана

2)  ядро

3)  митохондрия

Запишите в таблицу выбранные цифры под соответствующими буквами

A Б В Г Д Е

Все перечисленные ниже признаки, кроме двух, можно использовать для описания изображённой на рисунке клетки. Определите два признака, «выпадающих» из общего списка; запишите в таблицу цифры, под которыми они указаны.

1)  есть клеточная мембрана

2)  клеточная стенка состоит из хитина

3)  наследственный аппарат заключён в кольцевой хромосоме

4)  запасное вещество  — гликоген

5)  клетка способна к фотосинтезу


Все перечисленные ниже признаки, кроме двух, используются для описания изображённой на рисунке клетки. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  аппарат Гольджи

2)  гетеротрофное питание

3)  фотосинтез

4)  кольцевая молекула ДНК в ядре

5)  митохондрии


Все перечисленные ниже термины, кроме двух, используют для описания клетки, изображённой на рисунке. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1.  мезосомы

2.  рибосомы

3.  нуклеоид

4.  клеточный центр

5.  митоз


Какая клеточная органелла обозначена на фотографии вопросительным знаком? В какой ткани листа растения, ассимиляционной или покровной, эта органелла будет присутствовать во всех клетках ткани? Ответ поясните.


Установите соответствие между характеристиками и типами клеток: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ

А)  запасной углевод — гликоген

Б)  содержит пластиды

В)  может соединяться с соседними клетками плазмодесмами

Г)  имеет клеточную стенку из хитина

Д)  клетки всегда гетеротрофны

ТИПЫ КЛЕТОК

1)  грибная

2)  растительная

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д

Установите соответствие между характеристиками и типами клеток: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ

А)  имеет гликокаликс

Б)  поддерживает форму клетки с помощью тургора

В)  содержит пластиды

Г)  способна к изменению формы клетки

Д)  запасает углеводы в форме гликогена

Е)  имеет крупную центральную вакуоль

ТИПЫ КЛЕТОК

1)  животная

2)  растительная

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д Е

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны.

Какие из перечисленных ниже признаков можно использовать для описания клетки грибов?

1)  клетка обладает аппаратом Гольджи

2)  клеточная стенка состоит из целлюлозы

3)  способна к фагоцитозу

4)  обладает линейной ДНК в ядре

5)  делится митозом

6)  запасает в пластидах крахмал


Какой цифрой на рисунке обозначена структура клетки, нарушение образования которой может привести к полиплоидизации?

Показать

1

Установите соответствие между признаками и элементами цитоскелета, обозначенными цифрами на рисунке: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРИЗНАКИ

А)  образуют веретено деления

Б)  участвуют в мышечном сокращении

В)  образуют реснички и жгутики

Г)  поддерживают форму микроворсинок кишечника

Д)  взаимодействуют с миозином

Е)  входят в состав центриолей

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д Е

Назовите клеточную структуру, изображенную на рисунке. Из какого вещества она состоит? Укажите особенность строения этой структуры и её функцию в клетке. Какие еще структуры клетки имеют схожее строение?

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи

Всего: 1000    1–20 | 21–40 | 41–60 | 61–80 …

Цитоплазма

Внутреннюю среду клетки составляет цитоплазма, в которой расположены органеллы, осуществляющие жизнедеятельность клетки. В цитоплазме проходят все процессы, связанные с обменом веществ, а также взаимодействием ядра и органоидов. Жизнь клетки без цитоплазмы, очевидно, невозможна. Несмотря на то, что функции синтеза, пищеварения, выведения и дыхания выполняют органоиды, без внутренней среды это бы не происходило. Аналогично человек не смог бы жить без крови, ведь питательные вещества, гормоны, кислород не разносились бы по организму.

Цитоплазма состоит из двух компонентов: гиалоплазмы и цитоскелета.

Гиалоплазма

Гиалоплазма – густой бесцветный раствор, преимущественно состоящий из воды (от 70% до 90%). В ней находятся и органические соединения (белки, липиды), и неорганические. Гиалоплазма не стоит на месте. Это весьма логично, для обменных процессов ей необходимо постоянно циркулировать внутри клетки. Вместе с ней по клетке путешествуют и органоиды. Такое движение называется циклозом.

Циклоз в клетках листа элодеи

Цитоскелет

Цитоскелет выполняет механическую функцию, он как каркас для клетки. Естественно, он не самый крепкий, но достаточно жесткий для того, чтобы придавать ей форму. Также при помощи микротрубочек переносятся некоторые вещества, так что они выполняют еще и транспортную функцию.

Цитоскелет имеет свои составляющие структуры: микротрубочки, микрофиламенты и промежуточные филаменты. Все эти компоненты не являются мембранными.

Микротрубочки собираются в клеточном центре из белка тубулина. Эти полые структуры пронизывают всю цитоплазму, не давая клетке слишком сильно сжаться или растянуться. Транспортную функцию выполняют именно микротрубочки, они же тубулиновые нити. Они полярны, поэтому во время деления клетки микротрубочки прикрепляются к хромосомам в определенном участке белковой природы – кинетохоре, а далее, в анафазе, хромосомы расходятся к полюсам клетки. Не все микротрубочки присоединяются к хромосомам, некоторые остаются без ничего. Благодаря полярности тубулиновые нити не присоединяются друг к другу.

Микрофиламенты – структуры, состоящие из белка актина и миозина, которые должны быть хорошо знакомы по теме «мышечная система организма», ведь актин и миозин осуществляют сокращение мышц, а значит, и все движения. Также в состав микрофиламентов входят другие сократительные белки. Микрофиламенты – структуры подвижные и пластичные, большое их количество расположено вблизи цитоплазматической мембраны, что позволяет одноклеточным организмам и некоторым клеткам осуществлять фаго- и пиноцитоз.

Структура и функции промежуточных филаментов изучена не до конца.

Клеточный центр = центросома

Клеточный центр располагается в непосредственной близости от ядра и состоит из 2 центриолей. Центриоли имеют вид цилиндров, они расположены перпендикулярно друг другу. Центриоли удваиваются и начинают расходиться в интерфазе, а уже в профазе стартует образование нитей веретена деления. Сами центриоли тоже состоят из микротрубочек и, следовательно, из белка тубулина. У высших растений клеточный центр имеет иное строение, в нем центриолей нет.

Рибосомы

Рибосомы – немембранные органоиды клетки.

Функция, выполняемая данными органоидами – синтез белка, а именно – процесс трансляции, то есть «переписывания» нуклеотидной последовательности в последовательность аминокислот.

Рибосома состоит из двух субъединиц – большой и малой. В свою очередь, каждая субъединица это рРНК (рибосомальная РНК) и белки.

Рибосомы образуются в ядрышках ядра, затем рибосомы выходят через ядерные поры в цитоплазму. До трансляции происходит процесс транскрипции, то один из концов цепи иРНК обхватывается субъединицами рибосомы. тРНК (транспортная РНК) подносит к иРНК аминокислоты, которые собираются в цепочку и выходят из рибосомы.

Процесс трансляции

Кроме как в ядре, рибосомы могут находится в свободном виде в гиалоплазме, тогда они занимаются синтезом белков, необходимых для жизнедеятельности клетки. Также рибосомы располагаются на шероховатой ЭПС, такие рибосомы тоже синтезируют белки, но не для этой клетки, а для выведения их в другие клетки или внеклеточное пространство.

Задание EB21524

Установите соответствие между названием органоидов и наличием или отсутствием у них клеточной мембраны: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ОРГАНОИДЫ НАЛИЧИЕ МЕМБРАНЫ

А) вакуоли

Б) лизосомы

В) клеточный центр

Г) рибосомы

Д) пластиды

Е) аппарат Гольджи

1) мембранные

2) немембранные

 Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д Е

Мембранные и немембранные органоиды нужно только выучить, никак по-другому не получится. Не отчаивайтесь, это не так сложно:

Клетка Основные положения клеточной теории Органоиды клетки

Классификация органоидов

Начать учить лучше с немембранных. Все, что связано с клеточным делением относится к немембранным органоидам.

Двумембранные: ядро и то, что связано с энергетической функцией.

Все остальное – одномембранные.

Ответ: 112211

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB12387

Установите соответствие между функцией органоида клетки и органоидом, выполняющим эту функцию.

ФУНКЦИЯ ОРГАНОИД

A) секреция синтезированных веществ

Б) биосинтез белков

B) расщепление органических веществ

Г) образование лизосом

Д) формирование полисом

Е) защитная

1) аппарат Гольджи

2) лизосома

3) рибосома

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д Е

Функции органоидов нужно учить и понимать, только тогда это задание можно будет выполнять без проблем.

Функции органоидов клетки

Обратимся к таблице выше.

Обычно не вызывают трудностей лизосомы. Они отвечают за внутриклеточное пищеварение. Это такие пузырьки с ферментами внутри. Они поглощают твердую частичку или каплю и переваривают ее. И вышедшие из строя органоиды они тоже уничтожают. Нам точно подходит вариант с расщеплением органических веществ. Вообще, лизосомы- маленькие разрушители, так что варианты с синтезом, формированием и прочим нам не походят. А вот защитить клетку они могут, переварив что-то нежелательное.

Если вы уже ознакомились с темой про ДНК, РНК, то должны были слышать про существование рибосомальной РНК. Как раз-такие за биосинтез белка отвечают рибосомы, процесс носит название «трансляция» или же переписывание информации с ДНК на РНК.

Осталось три варианта: начнем говорить про полисомы и про секрецию. Это не относится к лизосомам, так как не носит разрушительный характер. Обратимся к слову «полисомы». Приставка поли- значит много или сложный, есть еще часть «сомы», ее мы также встречаем в словах «лизосомы» и «рибосомы», больше нигде. Логично предположить, что относятся полисомы к рибосомам. Полисома- это комплекс рибосом.

Осталось еще образование лизосом. Сами себя они не образуют, рибосомы отвечают только за синтез белка, значит, задействован комплекс Гольджи.

Что же касается секреции, то это функция комплекса Гольджи.

Ответ: 132132

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Ксения Алексеевна | Просмотров: 3.4k

Биология ЕГЭ Задание 6 (2022 год) проверяет знания о структурной организации клеток живых организмов. Чтобы выполнить такое задание, необходимо понимать взаимосвязь строения и функций частей и органоидов клетки, иметь представление о химическом составе клетки, уметь анализировать информацию в графической форме.

Выбрать другое задание
  Вариант ЕГЭ с пояснениями
  Кодификатор ЕГЭ

Линия 6 ЕГЭ по Биологии. Клетка как биологическая система. Жизненный цикл клетки. Множественный выбор (с рис. и без рис). Коды проверяемых элементов содержания (КЭС): 2.1–2.7. Уровень сложности: Б. Максимальный балл: 2. Примерное время выполнения: 4 мин. Средний % выполнения: 70.

Задание представляет собой тестовый вопрос (с рисунком или без него) с пятью вариантами ответа. Два из них являются «выпадающими» из списка. В ответе надо записать цифры, под которыми указаны эти пункты. Цифры в ответе нужно располагать по возрастанию.

Алгоритм выполнения задания № 6

  1. Внимательно прочитайте задание.
  2. Проанализируйте, о каком признаке (организме, функции) идёт речь.
  3. Определите, какие из предложенных пунктов являются лишними.
  4. Запишите цифры в порядке возрастания в поле ответа КИМ и бланк ответов № 1.

Задание 6 (пример выполнения с пояснением)

Линия 06. Пример № 1.
 Все перечисленные ниже структуры, кроме двух, можно использовать для описания бактериальной клетки. Определите два пункта, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

  1. пили
  2. капсула
  3. ядро
  4. цитоплазма
  5. хлоропласты

Правильный ответ: 3 5

Пояснение: «Выпадающими» из списка являются пункты 3 (ядро) и 5 (хлоропласты), поскольку они отсутствуют у бактериальной клетки. Ядро — структура эукариотической клетки. Хлоропласты характерны для растительной клетки.

Теория, которую необходимо повторить

В период подготовки к экзамену ПОВТОРЯЕМ теорию по конспектам:

2.1. Современная клеточная теория, ее основные положения, роль в формировании современной естественнонаучной картины мира. Развитие знаний о клетке. Клеточное строение организмов — основа единства органического мира, доказательство родства живой природы Конспект 1,
Конспект 2
2.2. Многообразие клеток. Прокариоты и эукариоты. Сравнительная характеристика клеток растений, животных, бактерий, грибов Конспект
2.3. Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ (белков, нуклеиновых кислот, углеводов, липидов, АТФ), входящих в состав клетки. Роль химических веществ в клетке и организме человека Конспект
2.4. Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки — основа ее целостности Конспект
2.5. Обмен веществ и превращения энергии — свойства живых организмов. Энергетический обмен и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле Конспект 1,
Конспект 2,
Конспект 3 
2.6. Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот Конспект 1,
Конспект 2
2.7. Клетка — генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Соматические и половые клетки. Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. Развитие половых клеток у растений и животных. Деление клетки — основа роста, развития и размножения организмов. Роль мейоза и митоза Конспект 1,
Конспект 2,
Конспект 3,
Конспект 4

Нажмите на спойлер ниже, чтобы посмотреть краткий теоретический материал к данной линии (общие структуры для эукариотических клеток, сравнение структур клеток: бактериальной, грибной, растительной, животной).

Открыть справочный материал для задания № 4

Тренировочные задания с ответами

Выполните самостоятельно примеры задания № 4 и сверьте свой ответ с правильным (спрятан в спойлере).

Пример № 2.
 Все перечисленные ниже признаки, кроме двух, используются для описания изображённой на рисунке клеточной структуры. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

  • 1) двумембранный органоид клетки;
  • 2) ограничивает внутреннее содержимое клетки от внешней среды;
  • 3) состоит из целлюлозы;
  • 4) имеет слой гликокаликса;
  • 5) обладает избирательной проницаемостью.

Нажмите на спойлер, чтобы увидеть ОТВЕТ

Пример № 3.
 Все перечисленные ниже признаки, кроме двух, используются для описания изображённого на рисунке процесса деления клетки. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

  • 1) тип деления клетки — мейоз;
  • 2) фаза деления клетки — анафаза;
  • 3) центромера не делится;
  • 4) нити веретена деления растягивают отделившиеся друг от друга хроматиды к противоположным полюсам;
  • 5) разделённые хроматиды называются дочерними хромосомами.

Нажмите на спойлер, чтобы увидеть ОТВЕТ

Пример № 4.
 Все перечисленные ниже признаки, кроме двух, используются для описания изображённого на рисунке уровня организации белка. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

  • 1) образуется укладкой полипептидных цепей в спираль;
  • 2) образуется за счёт ковалентных пептидных связей между аминокислотными остатками;
  • 3) спираль имеет одинаковые расстояния между витками;
  • 4) характерна для глобулярных белков;
  • 5) включает небелковые компоненты: ионы металлов, коферменты.

Нажмите на спойлер, чтобы увидеть ОТВЕТ

Пример № 5.
 Все перечисленные ниже признаки, кроме двух, используются для описания изображённой на рисунке молекулы. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

  • 1) мононуклеотид;
  • 2) при полном расщеплении 1 г высвобождается 17,6 кДж энергии;
  • 3) образуется при дыхании, брожении и фотосинтезе;
  • 4) может существовать в ациклической и циклической формах;
  • 5) является универсальным хранителем и переносчиком энергии.

Нажмите на спойлер, чтобы увидеть ОТВЕТ

Пример № 6.

Все перечисленные ниже функции, кроме двух, в живых организмах способны выполнять углеводы. Определите две функции, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

  • 1) структурную;
  • 2) транспортную;
  • 3) запасающую;
  • 4) каталитическую;
  • 5) энергетическую.

Нажмите на спойлер, чтобы увидеть ОТВЕТ


Вы смотрели: Биология ЕГЭ Задание 6. Что нужно знать и уметь, план выполнения, примеры с ответами и пояснениями (комментариями) специалистов, анализ типичных ошибок.

Выбрать другое задание
  Вариант ЕГЭ с пояснениями
  Кодификатор ЕГЭ

Биология ЕГЭ Задание 4

Like this post? Please share to your friends:
  • Цитоплазматическая мембрана рисунок егэ
  • Цитоплазматическая изменчивость егэ
  • Цитоплазма егэ биология
  • Цитология с нуля егэ
  • Цитология кратко к экзамену