Давление света формулы егэ

Фотоны. Энергия и импульс фотона

Фотон (обозначение — $γ$) — элементарная частица, квант электромагнитного поля.

Развивая идею Планка об излучении электромагнитных волн квантами, А.Эйнштейн ввел гипотезу, согласно которой электромагнитное излучение само состоит из таких квантов, позднее названных фотонами.

Это свойство света было названо корпускулярным.

Масса покоя фотона равна нулю, следовательно, согласно СТО скорость его равна скорости света $с$, а энергия:

$E=hν={hc}/{λ}=pc$

Из $E=hν={hc}/{λ}=pc$ находим выражение для импульса:

$p={E}/{c}={hν}/{c}={h}/{λ}$

Импульс фотона направлен по световому лучу. Чем больше частота, тем больше энергия и импульс фотона и тем отчетливее выражены корпускулярные свойства света.

Фотоэффект

Фотоэффект — испускание электронов веществом при поглощении им квантов электромагнитного излучения (фотонов).

Фотоэффект был открыт в 1887 г. Г. Герцем, который установил, что длина искры в разряднике увеличивается при попадании на его металлические электроды света от искры второго разрядника. Первые исследования фотоэффекта были выполнены русским ученым А. Г. Столетовым (1888 г.). Ф. Ленард и Дж. Томсон (1889 г.) доказали, что при фотоэффекте испускаются электроны.

Опыты Столетова. Законы фооэффекта

Схема опытов и прибор Столетова по наблюдению фотоэффекта представлены на рисунке. Здесь $С$ — два металлических диска, установленных параллельно друг другу (один — латунная или железная металлическая сетка, второй диск — сплошной). Диски соединены между собой проволокой, в которую введены гальваническая батарея $В$ и чувствительный гальванометр с большим сопротивлением ($5212$ Ом), $А$ — источник света (лампа с вольтовой дугой). Таким образом, две металлические пластины представляют собой конденсатор, причем металлическая сетка является положительной обкладкой конденсатора. Свет от дуги $А$ через сетку попадает на отрицательно заряженную сплошную металлическую пластину. Из опытов Столетова следовало, что фототок через гальванометр сильнее всего растет при освещении ультрафиолетовыми лучами, сила фототока пропорциональна интенсивности освещения, и под действием света освобождаются только отрицательные заряды.

При изучении фотоэффекта строят зависимость тока $I$ от напряжения $U$, подаваемого к электродам, один из которых (исследуемый фотокатод) освещается светом. Из полученной зависимости $I(U)$ следует, что при $U=0$ ток не равен нулю, а для того, чтобы ток стал равным нулю, необходимо подать некоторое напряжение обратной полярности (к освещенному электроду «+», к неосвещенному — «—»), которое называется задерживающим напряжением $U_з$ и определяется максимальной кинетической энергией вылетающих электронов: ${mυ^2}/{2}=eU_з$.

В процессе исследования фотоэффекта были установлены следующие закономерности.

  1. Количество электронов, вырываемых светом с поверхности металла за $1$ с, прямо пропорционально поглощаемой за это время энергии световой волны.
  2. Скорость электронов, вылетающих из тела при фотоэффекте, определяется его частотой $ν$ и не зависит от интенсивности.
  3. Для каждого вещества существует предельная наименьшая частота света $ν_{min}$ (красная граница фотоэффекта), при которой возможен фотоэффект. Излучение с частотой $ν < ν_{min}$ не вызывает явления фотоэффекта.

Второй и третий законы фотоэффекта нельзя объяснить в рамках классической электромагнитной теории. Они имеют квантовый характер.

Уравнение Эйнштейна для фотоэффекта

Объяснение фотоэффекта было дано в 1905 г. Эйнштейном, развившим идею Планка о прерывистом испускании света. Согласно Эйнштейну, из явления фотоэффекта следует, что свет имеет прерывистую структуру: излученная порция световой энергии $E=hν$ сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком. Эта порция называется фотоном.

Если фотон передает электрону энергию $hν$, большую или равную величине работы $А$ по удалению электрона с поверхности металла, то электрон покидает поверхность этого металла. Разность между $hν$ и $А$ приведет к возникновению кинетической энергии электрона. Из закона сохранения энергии следует:

$hν=A+{mυ^2}/{2}$

Эта формула называется уравнением Эйнштейна. Оно описывает все законы фотоэффекта. Из уравнения Эйнштейна следует, что кинетическая энергия электрона линейно зависит от частоты $ν$ и не зависит от интенсивности излучения. Поскольку общее число электронов $n$, покидающих поверхность металла, пропорционально числу падающих фотонов, то величина $n$ пропорциональна интенсивности падающего излучения.

Красную границу фотоэффекта можно получить из ($hν=A+{mυ^2}/{2}$), если скорость электрона, покидающего металл, приравнять к нулю:

$ν_{min}={A}/{h}$

то есть красная граница фотоэффекта зависит только от работы выхода $А$. Учитывая, что $λ_{min}={c}/{ν_{min}}$, получим значение предельной длины волны:

$λ_{min}={ch}/{A}$

При длинах волн, больших $γ_{min}$, т. е. расположенных ближе к красным волнам, фотоэффект не наблюдается. Отсюда и название предельной длины волны $λ_{min}$ — красная граница фотоэффекта.

Корпускулярно-волновой дуализм. Волны де Бройля

Корпускулярно-волновой дуализм (от лат. dualis — двойственный) — важнейшее универсальное свойство природы, заключающееся в том, что всем микрообъектам присущи одновременно и корпускулярные, и волновые характеристики.

Так, например, электрон, нейтрон, фотон в одних условиях проявляют себя как частицы, движущиеся по классическим траекториям и обладающие определенной энергией и импульсом, а в других — обнаруживают свою волновую природу, характерную для явлений интерференции и дифракции частиц.

Впервые корпускулярно-волновой дуализм был установлен для света. Распространение света в виде потока фотонов и квантовый характер взаимодействия света с веществом подтверждены в многочисленных экспериментах. Однако целый ряд оптических явлений (поляризация, интерференция, дифракция) неопровержимо свидетельствуют о волновых свойствах света.

Классическая физика всегда четко разграничивала объекты, имеющие волновую природу (например, свет и звук), и объекты, имеющие дискретную корпускулярную структуру (например, системы материальных точек). Одно из наиболее значительных достижений современной физики — убеждение в ошибочности противопоставления волновых и квантовых свойств света. Рассматривая свет как поток фотонов, а фотоны — как кванты электромагнитного излучения, обладающие одновременно и волновыми, и корпускулярными свойствами, современная физика смогла объединить, казалось бы, непримиримые теории — волновую и корпускулярную. В результате возникло представление о корпускулярно-волновом дуализме, лежащее в основе современной физики (корпускулярно-волновой дуализм является первичным принципом квантовой механики и квантовой теории поля).

Квант света — не волна и не корпускула в понимании Ньютона. Фотоны — особые микрочастицы, энергия и импульс которых (в отличие от обычных материальных точек) выражаются через материальные характеристики — частоту и длину волны.

В 1924 г. французский ученый Луи де Бройль высказал гипотезу о том, что корпускулярно-волновой дуализм присущ всем без исключения видам материи — электронам, протонам, атомам, причем количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и установленные ранее для фотонов. То есть, если частица имеет энергию $Е$ и импульс, абсолютное значение которого равно $p$, то с этой частицей связана волна частотой $ν={E}/{h}$ и длиной

$λ={h}/{p}$

где $h$ — постоянная Планка.

Это знаменитая формула де Бройля — одна из основных в физике микромира.

Следует отметить, что длина волны де Бройля тем меньше, чем больше масса частицы $m$ и ее скорость $υ$: для частиц с $υ << c$ выполняется $λ={h}/{mυ}$. Так, частице массой $1$ г, движущейся со скоростью $1$ м/с, соответствует волна де Бройля длиной $λ≈10^{-18}$ А, настолько малой, что это недоступно наблюдению. Поэтому волновые свойства несущественны в механике макроскопических тел, что полностью согласуется с принципом соответствия.

Видеоурок: Давление света. Масса и импульс фотона

Лекция: Давление света. Давление света на полностью отражающую поверхность и на полностью поглощающую поверхность

Так как свет имеет корпускулярные свойства, то, как и все атомы любого вещества, он оказывает давление на действующую поверхность. Данное предположение было подтверждено П.Н. Лебедевым, а Максвелл вывел формулу, позволяющую определить, какое давление оказывают фотоны света.

Итак, вывести формулу достаточно просто. Предположим, что некоторая поверхность освещается светом, который падает перпендикулярно. Свет имеет определенную длину волны и частоту.

За некоторое время на ограниченную освещенную поверхность падает некоторое число фотонов.

Как мы знаем, во время попадания света на некоторую поверхность, он частично поглощается и частично отражается. Во время поглощения фотоны отдают свою энергию.

r — коэффициент отражения, который меньше единицы.

В результате многочисленных преобразований можно получить, что давление света определяется по следующей формуле:

n — концентрация фотонов.

48. Элементы квантовой оптики. Энергия, масса и импульс фотона. Вывод формулы давления света на основе квантовых представлений о природе света.

Таким образом, распространение света следует рассматривать не как непрерывный волновой про-

цесс, а как поток локализованных в пространстве дискретных частиц, движущихся со скоростью с распространения света в вакууме. Впоследствии (в 1926 г.) эти частицы получили название фотонов. Фотоны обладают всеми свойствами частицы (корпускулы).

Развитие гипотезы Планка привело к созданию представлений о квантовых свойствах света. Кванты света получили название фотонов. Согласно закону пропорциональности массы и энергии и гипотезе Планка, энергия фотона определяется по формулам

.

Приравнивая правые части этих уравнений, получим выражение для массы фотона

,

или с учетом, что ,

.

Импульс фотона определяется по формулам:

Масса покоя фотона равна нулю. Квант электромагнитного излучения существует только распространяясь со скоростью света, обладая при этом конечными значениями энергии и импульса. В монохроматическом свете с частотой ν все фотоны имеют одинаковую энергию, импульс и массу.

Давление света

Световое излучение может передавать свою энергию телу в виде механического давления.

Он доказал, что свет, полностью поглощенный зачерненной пластинкой, оказывает на нее силовое воздействие. Световое давление проявляется в том, что на освещаемую поверхность тела в направлении распространения света действует распределенная сила, пропорциональная плотности световой энергии и зависящая от оптических свойств поверхности.

В итоге применения к оптическим измерениям Лебедева законов механики получено чрезвычайно важное соотношение, показавшее, что энергия всегда эквивалентна массе. Впервые Эйнштейн указал, что уравнение mc2 = E универсально и должно быть справедливым для любых видов энергии.

Объяснить это явление можно с позиций как волновых, так и корпускулярных представлений о природе света. В первом случае это результат взаимодействия электрического тока, наведенного в теле электрическим полем световой волны, с ее магнитным полем по закону Ампера. Периодически меняющиеся в пространстве и во времени электрическое и магнитное поля световой волны при взаимодействии с поверхностью вещества оказывают силовое воздействие на электроны атомов вещества. Электрическое поле волны заставляет электроны совершать колебания. Сила Лоренца со стороны магнитного поля волны направлена вдоль направления распространения волны и представляет собой силу светового давления. Квантовая теория объясняет давление света тем, что фотоны обладают определенным импульсом и при взаимодействии с веществом они передают часть импульса частицам вещества, оказывая тем самым давление на его поверхность (можно провести аналогию с ударами молекул о стенку сосуда, при которых импульс, передаваемый стенке, определяет давление газа в сосуде).

При поглощении фотоны передают свой импульс телу, с которым взаимодействуют. Это и является причиной давления света.

Определим давление света на поверхность, используя квантовую теорию излучения.

Пусть перпендикулярно некоторой поверхности падает излучение с частотой ν (рис.5). Пусть это излучение, состоящие из N фотонов, падает на поверхность пло-

щади S в течение времени t. Поверхностью поглощается N1 фотонов, а отражает-

ся N2, т.е. N = N1 + N2.

Продолжение 48

Каждый поглощенный фотон (неупругий удар) передает поверхности импульс

, а каждый от-

раженный фотон (упругий удар) передает ей импульс

. Тогда все падающие фотоны переда-

дут импульс, равный

При этом свет будет действовать на поверхность с силой

,

т.е. оказывать давление

.

Умножим и разделим правую часть этого равенства на N, получим

Окончательно

,

где – энергия всех N фотонов, падающих на единицу площади в единицу времени, размер-

ность ; – коэффициент отражения.

Для черной поверхности ρ = 0 и давление будет равно .

представляет собой объемную плотность энергии, размерность ее .

Тогда концентрация n фотонов в пучке, падающем на поверхность, будет

.

Подставляя в уравнение для давления света (2.2), получаем

Давление, производимое светом при падении на плоскую поверхность можно вычислить по формуле

где Ее— интенсивность облучения поверхности (или освещенность), с — скорость распространения электромагнитных волн в вакууме, α, — доля падающей энергии, поглощаемая телом (коэффициент поглоще-

ния), ρ — доля падающей энергии, отражаемая телом (коэффициент отражения), θ — угол между направлением излучения и нормалью к облучаемой поверхности. Если тело не является прозрачным, то есть, все

падающее излучение отражается и поглощается, то α+ρ=1.

49 Элементы квантовой оптики. Эффект Комптона. Корпускулярно-волновой дуализм света (излучения).

3) Корпускулярноволновой дуализм электромагнитного излучения

Итак, изучение теплового излучения, фотоэффекта, эффекта Комптона показало, что электромагнитное излучение (в частности, свет), обладает всеми свойствами частицы (корпускулы). Однако большая группа оптических явлений — интерференция, дифракция, поляризация свидетельствует о волновых свойствах электромагнитного излучения, в частности, света.

Что же представляет собой свет — непрерывные электромагнитные волны, излучаемые источником или поток дискретных фотонов, беспорядочно для электромагнитной волны, не исключают свойств дискретности, характерных для фотонов.

Свет (электромагнитное излучение) одновременно обладает свойствами непрерывных электромагнитных волн и свойствами дискретных фотонов. В этом заключается корпускулярно-волновой дуализм (двойственность) электромагнитного излучения.

2)ЭффектКомптона Заключается в увеличении длины волны рентгеновского излучения при его рассеянии веществом. Изменение длины волны

= к(1-cos )=2 кsin2( /2), (9)

где к=h/(mc) — комптоновская длина волны, m — масса покоя элек-

трона. к=2.43*10 -12 м=0.0243 A (1 A=10-10 м).

Все особенности эффекта Комптона удалось объяснить, рассматривая рассеяние как процесс упругого столкновения рентгеновских фотонов со свободными электронами, при котором соблюдается закон сохранения энергии и закон сохранения импульса.

Согласно (9) изменение длины волны зависит только от угла рассеяния и не зависит ни от длины волны рентгеновского излучения, ни от вида вещества.

1)Элементы квантовой оптики. Фотоны, энергия, масса и импульс фотона

Чтобы объяснить распределение энергии в спектре теплового излучения Планк допустил, что электромагнитные волны испускаются порциями (квантами). Эйнштейн в 1905 г. пришел к выводу, что излучение не только испускается, но и распространяется и поглощается в виде квантов. Этот вывод позволил объяснить все экспериментальные факты (фотоэффект, эффект Комптона, и др.), которые не могла объяснить классическая электродинамика, исходившая из волновых представлений о свойствах излучения. Таким образом, распространение света следует рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных частиц, движущихся со скоростью сраспространения света в вакууме. Впоследствии (в 1926 г.) эти частицы получили название фотонов. Фотоны обладают всеми свойствами частицы (корпускулы).

1. Энергия фотона

=hv=

,(1)

где h=6.6*10

-34

Дж*с — постоянная Планка, =h/2

-34

=Дж1.055*10с также постоянная План-

ка,

— круговая=2 v частота.

В механике есть имеющая размерность «энергия

о-время»

тому постоянную Планка иногда называют квантом действия. Размерность , совпадает, например, с размерностью момента импульса (L=r mv).

Как следует из (1) энергия фотона увеличивается с ростом частоты (или с уменьшением длины волны),

и, например, фотон фиолетового света (

имеет=0.38большуюмкм) энергию, чем фотон красного све-

та (

=0.77 мкм).

2. Масса фотона определяется исходя из закона о взаимосвязи массы и энергии (Е=mc2)

(2)

3.Импульс фотона. Для любой релятивиской частицы энергия ее Поскольку у фотона m0=0, то импульс фотона

т.е. длина волны обратно пропорциональна импульсу

50. Ядерная модель атома по Резерфорду. Спектр атома водорода. Обобщенная формула Бальмера. Спектральные серии атома водорода. Понятие терма.

1)Резерфорд предложил ядерную модель атома. Согласно этой модели атом состоит из положительного ядра, имеющего заряд Zе (Z — порядковый номер элемента в таблице Менделеева, е — элементарный заряд), размер 10-5 -10-4 А (1А= 10-10 м) и массу практически равную массе атома. Вокруг ядра по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Так как атомы нейтральны, то вокруг ядра должно вращаться Z электронов, суммарный заряд которых — Zе. Размеры атома определяются размерами внешних орбит электронов и составляют порядка единиц А.

Масса электронов составляет очень малую долю массы ядра (для водорода 0,054%, для остальных элементов менее 0,03%). Понятие » размер электрона» не удается сформулировать непротиворечиво, хотя ro 10-3 А называют классическим радиусом электрона. Итак, ядро атома занимает ничтожную часть объема атома и в нем сосредоточена практически вся ( 99,95%) масса атома. Если бы ядра атомов располагались вплотную друг к другу, то земной шар имел бы радиус 200 м а не 6400 км (плотность вещества

атомных ядер 1,8

17

3

кг10/м )

2) Линейчатый спектр атома водорода

Спектр излучения атомарного водорода состоит из отдельных спектральных линий, которые располагаются в определенном порядке. В 1885 г. Бальмер установил, что длины волн (или частоты) этих линий могут быть представлены формулой.

, (9)

где R =1,0974 7 м-1 — называется также постоянной Ридберга.

10

На рис. 1 изображена схема энергeтических уровней атома водорода, расчитанных согласно (6) при z=1.

При переходе электрона с более высоких энергетических уровней на уровень n = 1 возникает ультрофиолетовое излучение или излучение серии Лаймана (СЛ).

Когда электроны переходя на уровень n = 2 возникает видимое излучение или излучение серии Бальмера (СБ).

При переходе электронов с более высоких уровней на уровень n =

3 возникает инфракрасное излучение, или излучение серии Пашена (СП) и т.д.

Частоты или длины волн, возникающего при этом излучения, определяются по формулам (8) или (9) при m=1 — для серии Лаймана, при m=2 — для серии Бальмера и при m = 3 — для серии Пашена. Энергия фотонов определяется по формуле (7), которую с учетом (6) можно привести для водородоподобных атомов к виду :

эВ(10)

50 продолжение

3)

4) Спектральные серии водорода — набор спектральных серий, составляющих спектр атома водорода. Поскольку водород — наиболее простой атом, его спектральные серии наиболее изучены. Они хорошо подчиняются формуле Ридберга:

,

где R = 109 677 см−1 — постоянная Ридберга для водорода, n′ — основной уровень серии. Спектральные линии, возникающие при переходах на основной энергетический уровень,

называютсярезонансными, все остальные — субординатными.

Серия Лаймана

Открыта Т. Лайманом[en] в 1906 году. Все линии серии находятся в ультрафиолетовом диапазоне. Серия соответствует формуле Ридберга при n′ = 1 и n = 2, 3, 4,

Серия Бальмера

Открыта И. Я. Бальмером в 1885 году. Первые четыре линии серии находятся в видимом диапазоне. Серия соответствует формуле Ридберга при n′ = 2 и n = 3, 4, 5

5) Спектра́льный терм или электро́нный терм атома, молекулы или иона — конфигу-

рация (состояние) электронной подсистемы, определяющая энергетический уровень. Иногда под словом терм понимают собственно энергию данного уровня. Переходы между термами определяют спектры испускания и поглощения электромагнитного излучения.

Термы атома принято обозначать заглавными буквами S, P, D, F и т. д., соответствующими значению квантового числа орбитального углового момента L=0, 1, 2, 3 и т. д. Квантовое число полного углового момента J дается индексом справа внизу. Малой цифрой вверху слева обозначается кратность (мультиплетность) терма. Например, ²P3/2 — дублет Р. Иногда (как правило, для одноэлектронных атомов и ионов) впереди символа терма указывают главное квантовое число (например, 2²S1/2).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Давление света можно объяснить с помощью электромагнитной теории Максвелла. Свет — это электромагнитная волна. Электрическое поле разгоняет электроны вещества. Из-за присутствия магнитного поля на движущиеся электроны действует сила Лоренца, которая направлена внутрь вещества.
В (1873) году с помощью своей теории Максвелл доказал, что давление света вычисляется по формуле:
(P=frac{2W}{c}).  ((1))
Давление света можно объяснить и с точки зрения квантовой теории, то есть рассматривая свет как поток частиц с энергией (E=hnu) и импульсом (p=hnu/c). Если энергетическая освещённость поверхности (W), то можно определить число фотонов, падающих на поверхность площадью (S) за время (Delta t):
(boxed{n=frac{W}{SDelta t hnu}}).  ((2))
Коэффициент отражения (R) показывает отношение количества отражённых фотонов к количеству падающих, поэтому в среднем фотон передаёт импульс:
(Delta p=p-R(-p)=(1+R)p=(1+R)frac{h}{c}.)  ((3))
Используя закон изменения импульса, можно записать, что:
(F=n frac{Delta p}{Delta t}).  ((4))
Если поверхность чёрная ((R=0)), то давление света выразится как:
(boxed{P_{черн}=frac{W}{SDelta t hnu} cdot frac{h}{c Delta t}=frac{W}{c}}).  ((5))
Зеркало можно представить как поверхность с коэффициентом отражения (R=1). В этом случае давление света определяется как:
(boxed{P_{зерк}=frac{W}{SDelta t hnu} cdot frac{2 h}{c Delta t}=frac{W}{c} =frac{2W}{c}}).  ((6))
Формула для подсчёта давления света в теории Максвелла ((1)) является частным случаем формулы ((6)) корпускулярной (квантовой) теории. Результаты, предсказанные формулами ((5)) и ((6)), с высокой точностью (погрешность (2) (%)) подтверждаются экспериментальными данными.

Фотон и его свойства

Фотон — материальная, электрически нейтральная частица, квант электромагнитного поля (переносчик электромагнитного взаимодействия).

Основные свойства фотона

  1. Является частицей электромагнитного поля.
  2. Движется со скоростью света.
  3. Существует только в движении.
  4. Остановить фотон нельзя: он либо движется со скоростьюравной скорости света, либо не существует; следовательно, масса покоя фотона равна нулю.

Энергия фотона:Энергия фотона.

Согласно теории относительности энергия всегда может быть вычислена как Согласно теории относительности энергия всегда может быть вычислена, Отсюда  — масса фотонамасса фотона

Импульс фотона Импульс фотона. Импульс фотона направлен по световому пучку.

Энергия фотона

масса фотона

Импульс фотона

Наличие импульса подтверждается экспериментально: существованием светового давления.

Давление света

В 1873 г. Дж. Максвелл, исходя из представлений об электромагнитной природе света, пришел к выводу: свет должен оказывать давление на препятствие(благодаря действию силы Лоренца; на рисунке v — направление скорости электронов под действием электрической составляющей электромагнитной волны).

Давление света

Квантовая теория света объясняет световое давление как результат передачи фотонами своего импульса атомам или молекулам вещества. Пусть на поверхность абсолютно черного тела площадью S перпендикулярно к ней ежесекундно падает N фотонов: ежесекундно падает N фотонов. Каждый фотон обладает импульсом обладает импульсом. Полный импульс, получаемый поверхностью тела, равен  Полный импульс. Световое давление: Световое давление

При падении света на зеркальную поверхность удар фотона считают абсолютно упругим, поэтому изменение импульса и давление в 2 раза больше, чем при падении на черную поверхность (удар неупругий).

Давление света

Это давление оказалось ~4.10-6 Па. Предсказание Дж. Максвеллом существования светового давления было экспериментально подтверждено П. Н.Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Теория и эксперимент совпали.

Опыты П. Н. Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом

Эффект Комптона (1923)

А. Комптон на опыте подтвердил квантовую теорию света. С точки зрения волновой теории  световые волны должны рассеиваться на малых частицах без какого-либо изменения частоты излучения,  что опытом не подтверждается.

При исследовании законов рассеяния рентгеновских лучей А. Комптон установил, что при прохождении рентгеновских лучей через вещество происходит увеличение длины волны рассеянного излучения по сравнению с длиной волны  падающего излучения. Чем больше угол рассеяния, тем больше потери энергии, а следовательно, и уменьшение частоты (увеличение длины волны). Если считать, что пучок рентгеновских лучей состоит из фотонов, которые летят со скоростью света, то результаты опытов А. Комптона можно объяснить следующим образом.

Законы сохранения энергии и импульса для системы фотон — электрон: Эффект Комптона (1923)

Эффект Комптона (1923)

где m0c2 — энергия неподвижного электрона; hv — энергия фотона до столкновения; hv — энергия фотона после столкноВЕНИЯ, P и p’ — импульсы фотона до и после столкновения; mv — импульс электрона после столкновения с фотоном.

Решение системы уравнений для энергии и импульса с учетом того, что Решение системы уравнений для энергии и импульса с учетом того дает формулу для измерения длины волны при рассеянии фотона на (неподвижных) электронах:

комптоновская длина волны где комптоновская длина волны— так называемая комптоновская длина волны.

Корпускулярно-волновой дуализм

Конец XIX в.: фотоэффект и эффект Комптона подтвердили теорию Ньютона, а явления дифракции, интерференции света подтвердили теорию Гюйгенса.

Таким образом, многие физики в начале XX в. пришли к выводу, что свет обладает двумя свойствами:

  1. При распространении он проявляет волновые свойства.
  2. При взаимодействии с веществом проявляет корпускулярные свойства. Его свойства не сводятся ни к волнам, ни к частицам.

Чем больше v, тем ярче выражены квантовые свойства света и менее — волновые.

Итак, всякому излучению присущи одновременно волновые и квантовые свойства. Поэтому то, как проявляет себя фотон — как волна или как частица,—зависит от характера проводимого над ним исследования.

Преподаватель который помогает студентам и школьникам в учёбе.

Давление света в физике — формулы и определение с примерами

Давление света:

Давление света с точки зрения квантовой теории

С точки зрения квантовой теории давление света создается ударами фотонов о поверхность тела. Пусть за 1 секунду N частиц света падает перпендикулярно на поверхность площадью 1 м2 . Часть из них поглощается поверхностью тела и передает этой поверхности свой импульс, равный:

Давление света в физике - формулы и определение с примерами

Отраженные от поверхности фотоны передают импульс вдвое больший:

Давление света в физике - формулы и определение с примерами

Давление света на поверхность будет равным импульсу, который передают за 1 с все N фотонов, падающих на 1 м2 поверхности тела. Если Давление света в физике - формулы и определение с примерами − коэффициент отражения света от произвольной поверхности, то Давление света в физике - формулы и определение с примерами − это число отраженных фотонов, а Давление света в физике - формулы и определение с примерами − число поглощенных фотонов. Следовательно, давление света, созданное всеми частицами, будет равным:

Давление света в физике - формулы и определение с примерами

Поскольку N – это число частиц света, перпендикулярно падающих на поверхность площадью 1 м2 за 1 секунду, то:

Давление света в физике - формулы и определение с примерами

Таким образом, давление света равно: Давление света в физике - формулы и определение с примерами

  • Заказать решение задач по физике

Опыт Лебедева

Давление света на твердые тела впервые было измерено русским физиком П.Н. Лебедевым в 1900 г., давление света на газы в 1907−1910 гг.

Лебедевым были созданы чувствительные крутильные весы, подвижной частью которых являлась подвешенная на тонкой нити легкая рамка с укрепленными на ней крылышками из металлической фольги. Они представляли собой светлые и черные диски диаметром 5 мм и толщиной до 0,01 мм. Из сосуда, внутри которого подвешена рамка на легкой стеклянной нити, был откачан воздух. Свет, падая на крылышки, оказывал на светлые и черные диски разное давление, в результате на рамку действовал вращающий момент, который закручивал нить подвеса (рис. 217). По углу закручивания нити Лебедев рассчитал давление света. Экспериментальные и теоретические расчеты дали одинаковые результаты.

Давление света в физике - формулы и определение с примерами

  • Химическое действие света
  • Корпускулярно-волновая природа света 
  • Фотоэффект в физике и его применение
  • Оптические явления в природе по физике
  • Фотоны в физике
  • Зеркала и изображение в плоском зеркале
  • Световой луч и световой пучок
  • Разложение белого света на цвета и образование цветов

Фотон в современной физике считается разновидностью элементарных частиц. В частности, он представляет собой квант электромагнитного излучения (квант — неделимая частица чего-либо).

Энергия и импульс фотона

Фотоны обладают определенной энергией и импульсом. Когда свет испускается или поглощается, он ведет себя подобно не волне, а потоку частиц, имеющих энергию Е = hν, которая зависит от частоты. Оказалось, что порция света по своим свойствам напоминает то, что принято называть частицей. Поэтому свойства света, обнаруживаемые при его излучении и поглощении, стали называть корпускулярными. Сама же световая частица была названа фотоном, или квантом электромагнитного излучения.

Как частица, фотон обладает определенной порцией энергии, которая равна . Энергию фотона часто выражают не через частоту v, а через циклическую частоту:ω = 2πν

При этом в формуле для энергии фотона в качестве коэффициента пропорциональности (постоянной Планка) используется другая величина, обозначаемая и равная:

=h2π1,0545726·1034 (Дж·с)

Учитывая это, формула для определения энергии фотона примет вид:

Е=ω

Согласно теории относительности, энергия частиц связана с массой следующим соотношением:

Е=mс2

Так как энергия фотона равна , то, следовательно, его масса m получается равной:

m=hνс2

У фотона нет собственной массы, поскольку он не может существовать в состоянии покоя. Появляясь, он уже имеет скорость света. Поэтому формула выше показывает только массу движущегося фотона.

По известной массе и скорости фотона можно найти его импульс:

p=mc=hνc=hλ

Внимание! Вектор импульса фотона всегда совпадает с направлением распространения луча света.

Чем больше частота ν, тем больше энергия Е и импульс р фотона и тем отчетливее свет проявляет свои корпускулярные свойства. Из-за того что постоянная Планка мала, энергия фотонов видимого излучения крайне незначительна. К примеру, фотоны, свойственные зеленому свету, имеют энергию, равную всего 4∙10–19 Дж. Несмотря на это, человеческий глаз способен различать изменение освещенности, даже если оно измеряется единичными квантами.

Пример №1. Каков импульс фотона, если длина световой волны λ = 5∙10–7 м?

Корпускулярно-волновой дуализм

Законы теплового излучения и фотоэффекта объясняются только при условии, если начать считать свет потоком частиц. Однако нельзя отрицать тот факт, что свету присущи такие явления как интерференция и дифракция света. Но эти явления встречаются только у волновых процессов. Поэтому в современной физике принято считать свет с дуализмом, иначе — двойственностью свойств.

Когда свет распространяется в средах, он проявляет волновые свойства. Когда он начинает взаимодействовать с веществом (поглощаться или излучаться), проявляются корпускулярные свойства (свойства частицы).

Гипотеза де Бройля

Длительное время электромагнитное поле представлялось как материя, которая распределена в пространстве непрерывно. Электроны же представлялись как очень маленькие частицы материи. Не нет ли здесь ошибки, обратной той, которая была допущена при определении света? Может быть, электрон и другие частицы тоже обладают волновыми свойствами. Такую мысль высказал в 1923 г. французский ученый Луи де Бройль.

Он предположил, что с движением частиц связано распространение некоторых волн. И ученому удалось найти длину волны этих волн. Связь длины волны с импульсом частицы оказалась точно такой же, как и у фотонов. Если длину волны обозначить через λ, а импульс — через р, то получится, что:

λ=hp

Эта формула носит название формулы де Бройля, которая является одной из основных в разделе квантовой физики.

В будущем волновые свойства частиц, о которых предположил де Бройль, были обнаружены экспериментально. Так, удалось получить дифракцию электронов и других частиц на кристаллах. В этих случаях получалась почти такая же картина, как в случае с рентгеновскими и другими лучами. И формула де Бройля также нашла экспериментальное доказательство. Волновые свойства микрочастиц описываются квантовой механикой.

Квантовая механика — раздел физики, изучающий теорию движения микрочастиц.

Внимание! Законы Ньютона в квантовой физике в большинстве случаем не могут быть применены.

Давление света

В 1873 г. Максвелл, исходя из представлений об электромагнитной природе света, пришел к выводу: свет должен оказывать давление на препятствия. Предсказанное Максвеллом существование светового давления было экспериментально подтверждено Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Оно оказалось чрезвычайно малым, около 4∙10-7 Па.

Световое давление, обусловленное солнечным излучением у поверхности Земли, составляет менее 0,0001 Па. Этим и объясняется тот факт, что в обычных условиях давление света заметным образом себя не проявляет. Но давлением света объясняет следующие факты:

  • хвосты комет направлены от ядра кометы в сторону, противоположную Солнцу;
  • изменение орбит искусственных спутников Земли.

информация к уроку Давление света

Свет — это поток фотонов с импульсом:

p=mc

При поглощении веществом фотон перестает существовать, но импульс его, по закону сохранения импульса, не может исчезнуть бесследно. Он предается телу, значит, на тело действует сила.

Приведенное рассуждение будет абсолютно верным, если считать, что свет только веществом поглощается. Но разве это всегда так, свет еще может отражаться телами, а если тело прозрачно, то может проходить сквозь него. В реальных условиях свет частично отражается телом, частично поглощается, а если это, например, стекло, то свет проходит сквозь него. Как будет обстоять дело, если поверхность зеркальная? Возникает световое давление в данном случае?

Для простоты предположим, что свет падает перпендикулярно к поверхности зеркала. Мы знаем, что при абсолютном ударе какого-либо тела о стенку она получает импульс, модуль которого равен удвоенному модулю импульса тела, то есть 2mv. Отражаясь, фотон летит с той же скоростью, но в противоположном направлении. Значит, при отражении фотона от зеркала его импульс изменяется на 2mc. Такое же изменение импульса, но в противоположном направлении, получит зеркало. Импульс, получаемый телом при отражении фотона, будет в 2 раза больше импульса, получаемого телом при поглощении фотона.

Задание EF17985

За время t=4 с детектор поглощает N=6⋅105 фотонов падающего на него монохроматического света. Поглощаемая мощность P=5⋅10−14 Вт. Какова длина волны падающего света?

Ответ:

а) 0,4 мкм

б) 0,6 мкм

в) 520 нм

г) 780 нм


Алгоритм решения

1.Записать исходные данные.

2.Установить взаимосвязь между энергией фотонов и поглощаемой детектором мощностью.

3.Выполнить решение в общем виде.

4.Подставить известные данные и найти искомую величину.

Решение

Запишем исходные данные:

 Количество фотонов: N = 6∙105 шт.

 Поглощенная мощность: P = 5∙10–14 Вт.

Вся энергия фотонов будет поглощена детектором. Согласно закону сохранения энергии:

Nhν=Pt

Длина волны определяется формулой:

λ=cν

Отсюда частота равна:

ν=cλ

Подставим это выражение в записанный закон сохранения энергии:

Nhcλ=Pt

Отсюда длина волны равна:

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF17986

При изучении давления света проведены два опыта с одним и тем же лазером. В первом опыте свет лазера направляется на пластинку, покрытую сажей, а во втором – на зеркальную пластинку такой же площади. В обоих опытах пластинки находятся на одинаковом расстоянии от лазера и свет падает перпендикулярно поверхности пластинок.

Как изменится сила давления света на пластинку во втором опыте по сравнению с первым? Ответ поясните, указав, какие физические закономерности Вы использовали для объяснения.


Алгоритм решения

1.Описать процессы, происходящие во время обоих опытов.

2.С помощью физических формул установить, как изменяется сила давления света.

Решение

В обоих опытах происходит поглощение световой волны. Этот процесс можно рассматривать как поглощение за время t большого числа световых квантов — N >>1 (фотонов). Фотоны поглощаются пластинкой. Причем каждый фотон передает этой пластинке свой импульс, равный:

pф=hνc

Поэтому импульс пластинки становится равным сумме импульсу всех поглощенных фотонов:

pп=Nhνc

В результате поглощения света пластинкой, покрытой сажей, она приобретает за время t импульс pп в направлении распространения света от лазера. Согласно закону изменения импульса, тела в инерциальной системе отсчета скорость изменения импульса тела равна силе, действующей на него со стороны других тел или полей:

F1=pпt=Nthνc

В результате отражения света от зеркальной пластины отраженный фотон имеет импульс, противоположный импульсу фотона падающей волны:

pф=pфп

Поэтому отраженная волна будет иметь импульс:

pов=Npф=Nhνc

N — количество отраженных фотонов.

В итоге за время t импульс волны под действием зеркальной пластинки изменился. Это изменение будет равно разности импульса отраженной волны и импульса пластинки:

Δp=pовpп=NpфNpф=(N+N)pф

Согласно закону сохранения импульса, импульс системы, состоящей из световой волны и зеркальной пластинки, сохраняется:

Δ(pп+pпл)=0

Отсюда:

Δpпл=Δpп

Но изменение импульса тела в инерциальной системе отсчета происходит только под действием других тел или полей и характеризуется силой:

F2=pплt=N+Nthνc

Если зеркала отражает хорошо, то N ≈ N´. Тогда:

F22F1

Отсюда видно, что сила давления света увеличится вдвое.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18201

Излучением лазера с длиной волны 3,3⋅10−7 м за время 1,25⋅104 с был расплавлен лёд массой 1 кг, взятый при температуре 0 °С, и полученная вода была нагрета на 100 °С. Сколько фотонов излучает лазер за 1 с? Считать, что 50% излучения поглощается веществом.


Алгоритм решения

1.Записать исходные данные.

2.Установить, какое количество тепла было сообщено льду для его расплавления и нагревания до температуры кипения.

3.Установить, какая энергия была выделена лазером при условии, что лишь половина этой энергии была сообщена льду.

4.Из полученного выражения выразить количество фотонов, излученных лазером за время t.

5.Записать формулу для количества фотонов, выделяемых за время 1 с.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем не только те данные, что есть в условии задачи, но и табличные данные, которые нам понадобятся в ходе решения задачи:

 Удельная теплота плавления льда: λльда = 3,4∙105 Дж/кг.

 Удельная теплоемкость воды: c = 4200 Дж/(кг∙оС).

 Начальная температура льда/воды: t1 = 0 оС.

 Конечная температура воды: t2 = 100 оС.

 Коэффициент полезного действия: η = 50%.

 Длина световой волны: λсвета = 3,3∙10–7.

 Время проведения всего опыта: t = 1,25∙104.

Чтобы лед расплавился, а образовавшаяся вода нагрелась до температуры кипения, нужно сообщить ему следующее количество энергии:

Q=Q1+Q2=mλльда+mc(t2t1)

Так как КПД равен 50% (0,5), то это количество теплоты равно половине энергии, выделенной лазером:

Q=ηE

mλльда+mc(t2t1)=ηE

Энергия, выделенная лазером, равна сумме энергий каждого из излученных фотонов, количество которых будет равно N:

E=Nhν

Но частота световой волны равна:

ν=cλсвета

Тогда:

E=Nhcλсвета

Отсюда:

Nhcλсвета

Теперь мы можем записать:

mλльда+mc(t2t1)=ηNhcλсвета

Выразим количество излученных фотонов за все время:

N=λсвета(mλльда+mc(t2t1))ηhc

Если разделить это выражение на время проведения опыта, то мы найдем количество фотонов, излученных за 1 секунду:

N1с=λсвета(mλльда+mc(t2t1))ηhct

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алиса Никитина | Просмотров: 2.3k

Понравилась статья? Поделить с друзьями:
  • Давайте друг другу говорить комплименты сочинение
  • Давайте делать добрые дела сочинение
  • Давай стучи моя машинка неси старуха всякий вздор решу егэ
  • Гуно экзамен порно
  • Гумрф экзамены расписание