Демоверсии вступительных экзаменов в лицей ниу вшэ 10 класс

Поступление в лицей НИУ ВШЭ
в 10 класс. Математика.

— проходные баллы прошлых лет
— официальные демоверсии по математике.
— видео-разборы демоверсий
— советы по подготовке и сдаче вступительных.

До экзамена осталось:

*Пройди тестирование на основе реального варианта и определи свой уровень подготовки.

Подготовка к поступлению В Лицей ВШЭ

  • Подготовка с репетитором к поступлению В Лицей ВШЭ
  • Подготовка к поступлению в Лицей ВШЭ
  • Проходные баллы прошлых лет
  • Разборы вариантов сборника ХВЛ
  • Математика 9 класс
  • Контакты


Важно! Мы не являемся сотрудниками Лицея ВШЭ (подробнее в разделе «о нас»). Никаких реальных вариантов мы не продаем и не распространяем! Подборка заданий и все задания в сборниках составлена нами, реальные задания составлены со слов учеников и публикуются в ознакомительных целях ПОСЛЕ экзамена!

Проходные баллы прошлых лет

Максимальный балл по каждому направлению — 50

Разборы вариантов сборника ХВЛ

Сам сборник вы можете приобрести в Буквышке

Разбор демоварианта 2023 г (Часть 1)

Тренировочные варианты 2023

*Варианты взяты из официального сборника для подготовки к вступительным в лицей ВШЭ. Сборник можно скачать по

ссылке.

Разбор демоварианта 2022 г (Часть 1)

Тренировочные варианты 2022

*Задания составлены аналогично демовариантам

Разбор демоварианта 2021г (Часть 1)

Разбор демоварианта 2021г (Часть 2)

Реальные вариант 2021

*Задания составлены со слов учеников

Тренировочные варианты 2021

*Задания составлены аналогично демовариантам

Разбор демоварианта 2020г (Часть 1)

Разбор демоварианта 2020г (Часть 2)

Реальный вариант 2020

*Задания составлены со слов учеников

Тренировочные варианты 2020

*Задания составлены аналогично демовариантам

Разбор демоварианта 2019г(Базовый уровень)

Разбор демоварианта 2019г (Профильный уровень)

Тренировочные варианты

*Задания составлены аналогично демовариантам

Разбор демоварианта 2018г (Базовый уровень) Матэк

Разбор демоварианта 2018г (Базовый уровень) Соцэк

Разбор демоварианта 2018г (Профильный уровень)

Разбор демоварианта 2017г (Базовый уровень)

Разбор демоварианта 2017г (Профильный уровень)

Лицей НИУ ВШЭ

1

Место в рейтинге школ Москвы

Общая информация по набору

Адрес Большой Харитоньевский переулок, д. 4
м. Сретенский бульвар
Сайт https://school.hse.ru//
Рейтинг 2 место (2016 год),
1 место (2017 год),
1 место (2019 год)
среди школ Москвы

40 место среди школ России— конкурентоспособность выпускников (2019 год)

Обучение С 9 по 11 классы
Прием 9, 10 классы (11 возможен добор)
Вступительные экзамены Математика,русский язык, иностранный язык

Последние новости по набору

Подготовка к поступлению в лицей НИУ ВШЭ с Лицей-гуру

Основное направление – подготовка к поступлению в лицей НИУ «Высшая школа экономики» (ВШЭ).
В рамка курса прорабатываются темы в соответствие со структурой экзамена в ВШЭ:

  • Уравнения, вычисления — 0,5 балла
  • Задача на проценты — 0,5 балла
  • Иррациональные числа и выражения — 0,5 балла
  • Графики функций — 0,5 балла
  • Логическая задача — 1 балл
  • Преобразования — 1 балл
  • Геометрическая задача — 1 балл
  • Текстовая задача — 1 балл
  • Параметры — 2 балла
  • Нестандартная задача 2 балла

При обучении используются внутренние методички ВШЭ и методички для подготовки к поступлению в ВШЭ, программа углубляется и обогащается за счет материалов из методичек других ведущих математических лицеев, а так же включен разбор большого количества вариантов прошлых лет.

Мы делаем основной упор на понимание тем, а не на натаскивание на определенный тип задач. Ежегодно задачи меняются и предугадать, что будет в этот раз – невозможно. Поэтому мы даем углубленную программу текущего класса с запасом по сложности.

Перед сдачей экзамена в лицей ВШЭ мы очень рекомендуем посещать пробные контрольные раз в месяц или чаще, это один из важнейших аспектов поступления, т.к. тренирует концентрацию, стрессоустойчивость ученика, выявляет проблемные темы и развивает способность рассчитывать время вступительного экзамена.

Т.к в лицей ВШЭ конкурс очень высок, в среднем около 5 – 8 человек на место, желательно выбрать несколько вариантов для поступления – например, школа «Покровский квартал», школа 109, Лицей 1535, Лицей Плеханова, Предуниверситарий МИФИ (1511) и др. Программа поможет подготовиться к поступлению и в эти учебные заведения, а посещение экзаменов так же будет полезно для тренировки.

Очень часто ученики 8-9 классов при написании экзамена в ВШЭ и другие лицеи теряют значительную часть баллов из-за невнимательности и вычислительных ошибок. На наших курсах мы стараемся решить данную проблему за счет домашних заданий с автоматической проверкой на нашей специальной платформе. Когда ученик отправляет домашнюю работу на проверку, ему сразу приходит результат, и он может самостоятельно найти ошибку в задании. Таким образом, развивается навык самопроверки, важный при подготовке к экзамену в Лицей ВШЭ. Каждое домашнее задание по структуре напоминает вступительный вариант экзамена, т.к. включает в себя сразу много тем – на повтор уже пройденных ранее, закрепление текущей темы + логические и текстовые задачи.

История Лицея

Лицей при НИУ ВШЭ открылся совсем недавно, в сентябре 2013 года. Изначально набирали только учеников в 10 класс, затем открылся набор и в 9 класс, а в 2017 году проводился дополнительный набор и в 11 класс. Не смотря на столь юный «возраст» лицей занимает 1 или 2 место в рейтинге школ Москвы последние 4 года.

Учебный процесс

Учебный процесс совсем не похож на стандартный в общеобразовательных школах.

В 9 классе всего две специализации: универсальная и математическая. В универсальной все предметы изучаются на примерно одном уровне углубленности. В математических классах уделяется особое внимание всем естественно-научным предметам: математике, физике, химии, информатике, биологии. Часть предметов ученики могут выбрать для изучения по своему желанию.

В 10 «классах» уже 10 специализаций:

  • «Экономика и математика»,
  • «Экономика и социальные науки»,
  • «Гуманитарные науки»,
  • «Дизайн»,
  • «Востоковедение»,
  • «Информатика, инженерия и математика»,
  • «Юриспруденция»,
  • «Психология»,
  •  «Математика»,
  • «Естественные науки»

«Классах» в кавычках, потому что как таковых классов нет, есть группы по 6-20 человек, которые на каждом предмете разные. Каждый ученик составляет себе индивидуальный план, какие предметы и углубленно или на базовом уровне он хочет изучать. Конечно, есть и обязательные предметы для изучения: математика, русский язык и хотя бы один иностранный язык.

Есть большое количество разнообразных кружков и факультативов: начиная от современных молодежных культур до изучения китайских иероглифов. Но обучение на этих факультативах идет очень серьезное — с учетом посещаемости, сдачей зачетов и экзаменов.

Прием в Лицей НИУ ВШЭ

Прием осуществляется в 9 и 10 классы.

При подаче заявления для поступления его необходимо сопроводить эссе на 400 слов, в котором должен быть ответ на вопрос: «Почему я хочу учиться в лицее НИУ ВШЭ».

Сами вступительные испытания представляют собой комплексный тест из двух этапов. На первом этапе проверяются школьные знания по русскому языку, математике и иностранному языку. На втором этапе проводятся испытания по профильным предметам выбранного направления ( при подаче заявления на поступление можно указать два желаемых профиля).

Еще варианты вступительных экзаменов в лицей НИУ ВШЭ

Лицей-гуру

Курсы по подготовке к экзаменам

Данная статья посвящена разбору комплексного теста по математике для абитуриентов лицея НИУ ВШЭ, поступавших в 10 класс в 2018 году. Разбор теста в лицей ВШЭ выполнен профессиональным репетитором, который на протяжении нескольких лет занимается подготовкой школьников к поступлению в это учебное заведение. Представленные задания не являются точной копией тех, что были на вступительном экзамене, но они составлены по мотивам теста, который предлагался для решения абитуриентам лицея ВШЭ в 2018 году. Данный материал может оказаться полезным для тех, кто готовится к вступительным экзаменам в лицей ВШЭ в этом году.

Сайт для подготовки к комплексному тесту по математике в лицей НИУ ВШЭ cleverfox.info

Также предлагаем вам воспользоваться сайтом онлайн-школы CleverFox.info, где выложены варианты комплексных тестов, составленные по мотивам экзаменов прошлых лет, а также ответы и подробные решения к каждому заданию. Идеальный вариант для самостоятельной подготовки к комплексному тесту в лицей ВШЭ.

Первая часть теста в лицей ВШЭ (направления Ю, Д, В, Г, МИ, Экмат)

В этом разделе представлен разбор типовых заданий первой части комплексного теста по математике в лицей ВШЭ за 2018 год (направления «Юриспруденция», «Дизайн», «Востоковедение», «Гуманитарные науки», «Математика, информатика и инженерия», «Экономика и математика»).

Вычисляем по частям:

1)  dfrac{2}{7}+3cdot(-0.5)^2 = dfrac{2}{7}+3cdot 0.25 = dfrac{2}{7}+dfrac{3}{4} = dfrac{2cdot 4+3cdot 7}{28} =

= dfrac{29}{28}

2)  dfrac{29}{7} : dfrac{29}{28} = dfrac{29}{7}cdot dfrac{28}{29} = 4.

Правильный ответ: 4.

Задание 2. На некотором длинном стержне отмечены поперечные линии фиолетового, чёрного и зелёного цветов. Линии друг с другом не совпадают. Если распилить стержень по фиолетовым линиям, то стержень разделится на 5 кусков, если по чёрным – на 3 куска, а если по зелёным – на 7 кусков. На сколько кусков разделится стержень, если распилить его по всем линиями (всех трёх цветов)?

  • 14
  • 12
  • 11
  • 13

Количество кусков, которые получаются при распиливании стержня, всегда на 1 больше, чем число распилов. То есть на стержне 4 фиолетовых линии, 2 чёрных и 6 зелёных. Значит, если распилить стержень по линиям всех трёх цветов, то получится 4 + 2 + 6 + 1 = 13 кусков.

Правильный ответ: 13.

Если вы пишите тест в лицей ВШЭ, то скорее всего вам обязательно попадётся подобное задание. Давайте разберём его решение.

Поскольку стоимость мяча до распродажи составляла 850 рублей, что соответствует 100%, то 1% соответствует 850 : 100 = 8.5 рубля. Алёша сэкономил на покупке футбольного мяча 850 — 510 = 340 рублей. Значит, в процентах это составляет 340 : 8.5 = 40%.

Правильный ответ: 40.

Задание 4. Найдите сумму целых положительных решений неравенства:

    [ (x+4)^2-(x-10)^2leqslant 140 ]

  • 28
  • 36
  • 21
  • 35

Раскроем обе скобки в левой части неравенства, используя формулы «квадрат суммы» и «квадрат разности»:

    [ x^2+8x+16-x^2+20x-100leqslant 140 ]

После приведения подобных слагаемых получаем следующее неравенство:

    [ 28x-84leqslant 140 ]

Теперь прибавим к обеим частям неравенства 84 и поделим обе части на 28. Знак неравенства при этом не изменится, так как мы делим на положительное число. В результате приходим к следующему неравенству: xleqslant 8.

Сумма целых положительных решений неравенства равна 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36.

Правильный ответ: 36.

Задание 5. Фитнес-инструктор Борис посоветовал Олегу начать серию пробежек на беговой дорожке с забега длительностью 15 минут, а затем увеличивать время пробежки на 7 минут ежедневно. Олег неукоснительно следовал рекомендациям фитнес-инструктора Бориса. За сколько дней суммарное время его пробежек составило 2 часа 25 минут?

  • 4
  • 5
  • 9
  • 7

Здесь мы имеем дело с арифметической прогрессией, у которой первый член равен a_1 = 15, а разность равна d = 7. Требуется количество n первых членов этой прогрессии, если известна их сумма S_n = 145, так как 2 часа 25 минут = 145 минут. Можно использовать для этого готовую формулу:

    [ S_n = frac{2a_1+d(n-1)}{2}cdot n ]

Подставляем все величины в эту формулу:

    [ S_n = frac{2cdot 15+7cdot (n-1)}{2}cdot n = 145 ]

    [ (30+7(n-1))n = 290  ]

    [  7n^2+23n-290=0]

Коэффициенты последнего квадратного уравнения равны a = 7, b = 23 и c = -290. Тогда дискриминант равен:

    [ D = b^2-4ac = 8649 = 93^2 ]

Значит, один из корней равен:

    [ n = dfrac{-b+sqrt{D}}{2a} = 5 ]

Второй корень не подходит, так как он отрицателен.

Правильный ответ: 5.

Задание 6. Путешественник решил посетить остров, на котором живут только рыцари, которые всегда говорят только правду, и лжецы, которые говорят только неправду. Для передвижения по острову он нанял проводника, местного жителя, но не знал кто он (рыцарь или лжец). Тогда он попросил проводника догнать идущего впереди туземца и спросить у него, кем тот является. Когда проводник вернулся, путешественник спросил у него, кем же был тот туземец. Проводник ответил: «Туземец сказал про себя, что он лжец.» Кем был проводник?

  • Лжец
  • Рыцарь
  • Если человек, которого спрашивал проводник, лжец, то проводник — рыцарь
  • Может быть как рыцарем, там и лжецом

Любой человек на острове не мог бы сказать про себя, что он лжец. Действительно, если этот житель лжец, то он сказал бы правду, а если рыцарь — солгал бы. То есть проводник сказал неправду, что человек, которого он спрашивал, сказал о себе, что он лжец. Значит, проводник — лжец.

Правильный ответ: лжец.

Задание 7. В прямоугольном треугольнике катет и гипотенуза равны 6 и 10, соответственно. Чему равна его площадь?

  • 30
  • 60
  • 24
  • 48

Поскольку гипотенуза этого треугольника равна 10, а один из катетов равен 6, то по теореме Пифагора можно найти длину другого катета: sqrt{10^2-6^2} = 8. Для наглядности изобразим данный треугольник на рисунке:

Египетский треугольник из задачи по геометрии из вступительного экзамена в 10 класс лицея НИУ ВЩЭ

Площадь такого треугольника равна половине произведения длин его катетов. То есть S = dfrac{1}{2}cdot ACcdot AB = dfrac{1}{2}cdot 8cdot 6 = 24.

Правильный ответ: 24.

Задание 8. Учитель риторики Иммануил Альбертович обязательно надевает шарф, когда ведёт занятие. Выберите утверждения, которые следуют из приведённых данных:
a) Если Иммануил Альбертович не надел шарф, значит, он не ведёт занятие
b) Если Иммануил Альбертович надел шарф, значит, он ведёт занятие
c) Если Иммануил Альбертович проводит на занятии контрольную работу по риторике, значит, он надел шарф
d) Если Иммануил Альбертович не ведёт занятие, значит, он не надел шарф

  • a, c и d
  • a и c
  • b и d
  • a и d

a) Верно, так как Иммануил Альбертович обязательно надевает шарф, когда ведёт занятие.

b) Неверно, так как Иммануил Альбертович мог надеть шарф не из-за того, что он ведёт занятие, а по какой-то иной причине.

c) Верно, так как контрольная работа проводится на занятии, а Иммануил Альбертович обязательно надевает шарф, когда ведёт занятие.

d) Неверно, так как Иммануил Альбертович мог надеть шарф по какой-то иной причине, нежели проведение занятия.

Правильный ответ: a и c.

Задание 9. Из одного города в другой выехали два мотоциклиста. Расстояние между городами равно 420 километров. Оба мотоциклиста движется равномерно. Известно, что скорость первого мотоциклиста на 10 км/ч большей скорости второго, поэтому первый доезжает на места назначения на 1 час раньше второго. Какова скорость второго мотоциклиста?

  • 60 км/ч
  • 70 км/ч
  • 65 км/ч
  • 72 км/ч

Пусть скорость второго мотоциклиста равна x км/ч. Тогда скорость первого мотоциклиста равна x+10 км/ч. Значит, время движения второго мотоциклиста равно dfrac{420}{x} ч, а время движения первого мотоциклиста равно dfrac{420}{x+10} ч. Поскольку известно, что первый мотоциклист прибывает к финишу на 1 час раньше второго, то имеет место уравнение:

    [ dfrac{420}{x}-dfrac{420}{x+10}=1 ]

    [ dfrac{420(x+10)-420x}{x(x+10)}=1 ]

    [ dfrac{4200}{x(x+10)}=1 ]

Для xne 0 и xne -10, что соответствует смыслу задачи, последнее уравнение эквивалентно следующему: 4200=x(x+10) или x^2+10x-4200 = 0. Корни последнего уравнения находятся по теореме Виета: x_1 = -70 и x_2 = 60. По смыслу задачи подходит только положительный. Итак, скорость второго мотоциклиста равна 60 км/ч.

Правильный ответ: 60 км/ч.

Задание 10. Решите уравнение:

    [ dfrac{7}{x+1}-dfrac{x+4}{2-2x}=dfrac{3x^2-38}{x^2-1} ]

Если уравнение имеет более одного корня, в ответ запишите сумму корней уравнения.

  • 8,2
  • 3,8
  • -8,2
  • 7,2

Перепишем уравнение в виде:

    [ frac{7}{x+1}+frac{x+4}{2(x-1)}-frac{3x^2-38}{(x-1)(x+1)}=0 ]

    [ frac{14(x-1)+(x+4)(x+1)-2(3x^2-38)}{2(x-1)(x+1)}=0 ]

    [ frac{5x^2-19x-66}{2(x-1)(x+1)}=0 ]

Для xnepm 1 последнее уравнение эквивалентно уравнению 5x^2-19x-66=0. Дискриминант данного квадратного уравнения положителен. Значит, оно имеет два различных корня. При этом прямой подстановкой легко убедиться, что ни число -1, ни число 1 не являются корнями этого уравнения. Разделим обе части полученного уравнения на 5, после чего уравнение примет вид: x^2-3.8x-13.5=0. По теореме Виета сумма корней этого уравнения равна коэффициенту при переменной x, взятому с противоположным знаком. То есть x_1 + x_2 = 3.8.

Правильный ответ: 3,8.

Первая часть теста в лицей ВШЭ (направления П, Соцэк)

Задание 1. Вычислите:

    [ dfrac{left(dfrac{5}{2}-1,875right):0,125}{(-0,2)^4} ]

  • 3125
  • -310,5
  • 25
  • 0,008

Вычисляем по частям:

1) dfrac{5}{2}-1.875 = dfrac{5}{2}-1dfrac{7}{8} = dfrac{5}{2}-dfrac{15}{8} = dfrac{20-15}{8} = dfrac{5}{8}

2) dfrac{5}{8} : 0.125 = dfrac{5}{8} : dfrac{1}{8} = dfrac{5}{8}cdot 8 = 5

3) dfrac{5}{(-0.2)^4} = 5 : left(-dfrac{1}{5}right)^4 = 5 : dfrac{1}{625} = 5cdot 625 = 3125

Правильный ответ: 3125.

Задание 2. В салоне сотовой связи продают телефон. Известно, что его цена повысилась с 16000 руб. до 17920 руб. На сколько процентов подорожал телефон?

  • 10%
  • 11.8%
  • 12%
  • 13%

100% стоимости телефона до повышения цены составляли 16000 руб. То есть 1% составляли 16000 : 100 = 160 руб. После подорожания цена телефона составила 17920 руб., что составляет 17920 : 160 = 112%. Значит, телефон стал дороже после повышения цены на 112-100 = 12%.

Правильный ответ: 12%.

Задание 3. Найдите наименьшее целое решение неравенства:

    [ (x-1)(x+1)>(x-5)^2 ]

  • 0
  • 2
  • 3
  • 4

Упростим неравенство:

    [ x^2-1>x^2-10x+25 ]

    [ x^2-x^2+10x>25+1 ]

    [ x>2.6 ]

Наименьшим целым решением последнего неравенства является число 3.

Правильный ответ: 3.

Задание 4. За три ночи до экзамена должник Алёша собрался решить все 189 задач из сборника, увеличивая каждую ночь количество решенных задач на одно и то же число. В третью ночь Алёша смог решить вдвое больше задач, чем в первую. Сколько задач удалось решить Алёше в третью ночь?

  • 50
  • 58
  • 63
  • 84

Поскольку количество задач, которые решал Алёша, увеличивалось каждую ночь на одно и то же число, то во вторую ночь он решил столько, сколько он решал в среднем за все три ночи, то есть 189 : 3 = 63 задачи. Значит, в первую и третью ночь Алёш решил вместе 189-63 = 126 задач. Пусть в первую ночь он решил x задач. Известно, что в третью ночь он решил в 2 раза больше задач, чем в первую. То есть в третью ночь он решил 2x задач. Тогда имеет место уравнение x+2x=126, откуда получаем x = 42. Значит, в первую ночь Борис решил 42 задачи, а в третью в 2 раза больше, то есть 84 задачи.

Правильный ответ: 84.

Задание 5. Сколько целых чисел не входят в область определения записанной ниже функции?

    [ y=dfrac{sqrt{3x^2-2x-1}}{x-1} ]

  • 1
  • 2
  • 0
  • 3

Выражение, стоящее под знаком корня, должно быть большим или равным нулю, а выражение, стоящее в знаменателе, не должно быть равным нулю. Значит, область определения данной функции задаётся следующей системой:

    [ begin{cases} 3x^2-2x-1geqslant 0 \ x-1ne 0 end{cases} ]

1) Решаем первое неравенство системы. Найдём сперва корни уравнения 3x^2-2x-1 = 0. Они находятся с помощью дискриминанта или по теореме Виета: x_1 = -dfrac{1}{3} и x_2 = 1. Наносим найденные значения на числовую прямую (соответствующие точки будут закрашены, так как неравенство нестрогое) и определяем знаки на полученных промежутках:

Рисунок к решению квадратичного неравенства из первой части комплексного теста по математике в 10 класс лицея НИУ ВШЭ

Итак, решение первого неравенства системы имеет вид:

xin left(-mathcal{1};-dfrac{1}{3}right]cup[1;+mathcal{1}).

2) Из второго неравенства системы получаем, что xne 1. То есть число 1 нужно исключить из полученного выше решения.

Тогда область определения функции имеет вид:

xin left(-mathcal{1};-dfrac{1}{3}right]cup(1;+mathcal{1}).

В неё не входят только два целых числа: 0 и 1.

Правильный ответ: 2.

Задание 6. Известно, что сумма всех сторон некоторого прямоугольного треугольника равна 24 см, а гипотенуза этого треугольника больше одного из катетов на 2 см. Какова длина гипотенузы в сантиметрах?

  • 10
  • 14
  • 9
  • 12

Пусть один из катетов этого прямоугольного треугольника равен x см, тогда его гипотенуза равна x+2. Поскольку периметр этого треугольника равен 24, то второй его катет равен 24-x-(x+2) = 22-2x. Для наглядности изобразим данный прямоугольный треугольник на рисунке:

Прямоугольный треугольник с периметром 24 из геометрической задачи части 1 комплексного теста по математике в лицей НИУ ВШЭ

По теореме Пифагора получаем, что BC^2=AC^2+AB^2. То есть имеет место уравнение:

    [ x^2+(22-2x)^2=(x+2)^2 ]

    [  x^2+484-88x+4x^2=x^2+4x+4 ]

    [ x^2-23x+120=0 ]

Корни последнего уравнения находим через дискриминант или по теореме Виета. Они равны: x_1 = 8 и x_2 = 15. Но второй вариант не подходит, так как в этом случае гипотенуза должна быть равна 15 + 2 =17. То есть сумма длин этого катета и гипотенузы равна 17+15 = 32, что больше периметра треугольника. То есть один из катетов равен 8 см, а гипотенуза равна 8 + 2 = 10 см.

Правильный ответ: 10.

Задание 7. В некоторой геометрической прогрессии прогрессии 3-й член равен -2, а 7-й её член равен -32. Чему равен 5-й член этой прогрессии?

  • -8
  • 8 и -8
  • 8
  • 4 и -4

Формула n-го члена геометрической прогрессии имеет вид: b_n = b_1q^{n-1}, где b_1 — первый член прогрессии, q — знаменатель геометрической прогрессии. Значит, имеет место система уравнений:

    [ begin{cases} -2=b_1q^{3-1} \ -32=b_1q^{7-1} end{cases}Leftrightarrow begin{cases} -2=b_1q^2 \ -32=b_1q^6 end{cases} ]

Разделим почленно второе уравнение на первое. В результате получаем:

    [ dfrac{-32}{-2}=dfrac{b_1q^6}{b_1q^2} ]

    [ 16=q^4 ]

    [ q =pm 2 ]

Возможны оба варианта, как с положительным знаменателем, так и с отрицательным.

Теперь находим первый член прогрессии. Для этого подставим найденное значение q в первое уравнение исходной системы:

    [ -2=b_1cdotleft(pm 2right)^2 = 4b_1 ]

    [ b_1 = - 0.5 ]

Находим теперь пятый член прогрессии с помощью формулы n-го члена:

    [ b_5 = b_1q^{5-1} = -0.5 cdot left(pm 2right)^4 = - 8 ]

Правильный ответ: -8.

Задание 8. В совхоз имени Ленина на прополку свекольного поля привезли четыре бригады старшеклассников. Работая вместе, первая, вторая и третья бригады могли бы прополоть всё поле за 8 часов. С другой стороны, работая вместе, вторая, третья и четвертая, могли бы прополоть это поле за 6 часов 40 минут. А все четыре бригады, работая вместе, смогли бы прополоть это поле за 5 часов. Сколько времени потребуется на прополку всего поля первой и четвёртой бригаде, если они будут работать вместе?

  • 7
  • 8
  • 8,5
  • 9

Переведём 6 часов 40 минут в часы. Поскольку 40 минут = dfrac{40}{60} = dfrac{2}{3} часа, то 6 часов 40 минут = 6dfrac{2}{3} = dfrac{20}{3} часа.

Назовём производительностью бригады то, какую часть поля она пропалывает в одиночку за 1 час. Пусть производительность первой, второй, третей и четвёртой бригад равны, соответственно, x, y, z и k. Тогда, согласно условию, имеет место система уравнений:

    [ begin{cases} x+y+z=dfrac{1}{8} \ y+z+k=dfrac{3}{20} \ x+y+z+k=dfrac{1}{5} end{cases} ]

Сравнивая первое и третье уравнение системы, находим сразу, что k = dfrac{1}{5}-dfrac{1}{8} = dfrac{3}{40}. Тогда первое и второе уравнение в системе можно переписать в следующем виде:

    [ begin{cases} x+y+z=dfrac{1}{8} \ y+z+dfrac{3}{40}=dfrac{3}{20} end{cases}Leftrightarrow begin{cases} x+y+z=dfrac{1}{8} \ y+z=dfrac{3}{40} end{cases}]

Вычтем теперь почленно из первого уравнения полученной системы второе:

    [ x+y+z-(y+z) = dfrac{1}{8}-dfrac{3}{40} ]

    [ x=dfrac{1}{20} ]

Значит, производительность группы, состоящей из первой и четвёртой бригады, равна x+k = dfrac{1}{20}+dfrac{3}{40} = dfrac{1}{8}. Значит, работая вместе, первая и четвёртая бригады справятся с прополкой поля за 1 : dfrac{1}{8} = 8 часов.

Правильный ответ: 8.

Задание 9. Найдите абсциссу точки пересечения графиков функций

    [ f(x) = dfrac{8}{x^2-4} ]

и

    [ g(x)=dfrac{x}{x+2}+dfrac{x+2}{x-2} ]

Если точек пересечения несколько, в ответе укажите их сумму.

  • -2
  • -1
  • 1
  • 3

Для нахождения абсциссы точки пересечения графиков указанных функций нужно решить уравнение: f(x) = g(x):

    [ dfrac{8}{x^2-4} = dfrac{x}{x+2} + dfrac{x+2}{x-2} ]

Переносим все дроби в одну сторону равенства и приводим их к общему знаменателю:

    [ dfrac{8}{(x-2)(x+2)} - dfrac{x}{x+2} - dfrac{x+2}{x-2} = 0 ]

    [ frac{8-x(x-2)-(x+2)^2}{(x-2)(x+2)} = 0 ]

    [ dfrac{-2x^2-2x+4}{(x-2)(x+2)} ]

В знаменателе не должно быть нуля, поэтому xnepm 2. При остальных значениях x последнее уравнение эквивалентно уравнению -2x^2-2x+4 = 0 или, после деления на -2 обеих частей, x^2+x-2 = 0. Данное квадратное уравнение решается с помощью дискриминанта или по тереме Виета: x_1 = 1 и x_2 = -2. Второй корень не входит в область определения обеих функций. Итак, у графиков исходных функций будет только одна точка пересечения, абсцисса которой равна 1.

Правильный ответ: 1.

Задание 10. Вычислите сумму всех различных значений параметра p, при каждом из которых уравнение (p-3)x^2+13x+p+2=0 имеет ровно один корень.

  • 1
  • 2
  • 3
  • 4

Заметим сразу, что при p = 3 уравнение становится линейным: 13x+5=0. Полученное уравнение имеет единственный корень: x = -dfrac{5}{13}. Значит, этот случай нам подходит.

При pne 3 уравнение является квадратным, поэтому оно будет иметь единственный корень, если его дискриминант равен нулю:

    [ D = 13^2-4(p-3)(p+2)=-4p^2+4p+193=0 ]

    [ p^2-p-dfrac{193}{4}= 0 ]

Последнее квадратное уравнение имеет два различных корня p_1 и p_2,так как его дискриминант положителен:

    [ (-1)^2-4cdot 1cdot left(-dfrac{193}{4}right) = 194 > 0 ]

Причём, во-первых, прямой подстановкой можно убедиться, что ни один из этих корней не равен 3, а во-вторых, по теореме Виета сумма этих корней равна p_1+p_2 = 1.

Итак, сумма всех значений, при которых исходное уравнение имеет единственное решение равна 3+1 = 4.

Правильный ответ: 4.

Вторая часть теста в лицей ВШЭ

В данном разделе представлен разбор типовых заданий второй части вступительного комплексного теста по математике в лицей ВШЭ за 2018 год. Задания не являются точной копией тех, которые были на самом вступительном экзамене, но они составлены таким образом, чтобы полностью соответствовать заданиям второй части реального комплексного теста, который сдавали абитуриенты лицея в 2018 году. Так что если вы зададитесь целью решить из самостоятельно, то вы как бы окажитесь на самом вступительном экзамене в лицей ВШЭ. Проверьте свои знания!

Задание 1. Найдите все значения x, для каждого из которых имеет смысл выражение:

    [ frac{2x+5}{sqrt{2x^2+9x+7}+sqrt{-x^2-6x-5}} ]

Выражения, стоящие под каждым корнем в знаменателе, должны быть больше или равны нулю, но не должны обращаться в нуль одновременно (то есть при одном и том же значении x), так как в знаменателе не должно находиться нуля. Поэтому искомое множество значений задаётся следующей системой неравенств:

    [ begin{cases} 2x^2+9x+7geqslant 0 \ -x^2-6x-5geqslant 0 \ sqrt{2x^2+9x+7}+sqrt{-x^2-6x-5}ne 0 end{cases} ]

Умножим обе части второго неравенства системы на -1. В результате знак неравенства изменится на обратный, так как умножаем на отрицательное число:

    [ begin{cases} 2x^2+9x+7geqslant 0 \ x^2+6x+5leqslant 0 \ sqrt{2x^2+9x+7}+sqrt{-x^2-6x-5}ne 0 end{cases} ]

Решим сперва каждое неравенство по отдельности:

1) Корни уравнения 2x^2+9x+7 = 0 равны x_1 = -1 и x_2 = -3.5. Наносим полученные корни на числовую прямую. Соответствующие точки будут закрашены, так как неравенство нестрогое. Далее определяем знаки на каждом промежутке:
Рисунок к заданию 1 из комплексного теста по математике в лицей НИУ ВШЭ за 2018 год
Ответ к первому неравенству: xin(-infty;-3.5]cup [-1;+infty).

2) Корни уравнения x^2+6x+5 = 0 равны x_1 = -1 и x_2 = -5. Наносим полученные корни на числовую прямую. Соответствующие точки будут закрашены, так как неравенство нестрогое. Далее определяем знаки на каждом промежутке:
Парабола, ветви которой направлены вверх, пересекает числовую прямую в двух точках
Ответ ко второму неравенству: xin[-5;-1].

Для наглядности изобразим полученные решения одно под другим:
Пересечение промежутков, полученных при решении задания 1 из части 2 комплексного теста по математике в 10 класс лицея ВШЭ (2018 год)

Видно, что пересечением всех трёх множеств является множество [-5;-3.5]cup{-1}. Однако, оба выражения 2x^2+9x+7 и  -x^2-6x-5 обращаются в нуль при x=-1, и знаменатель исходной дроби становится равным нулю, то есть выражение теряет смысл. Поэтому данное число нужно исключить из окончательного ответа.

Ответ: xin [-5;-3.5]

Задание 2. Алёша положил в банк 8000 рублей. Проценты по вкладу начислялись в конце каждого года и прибавлялись к текущей сумме вклада. В конце второго года после выплаты процентов сумма на вкладе составила 9680 рублей. Каков был годовой процент по вкладу, если Алёша не проводили никаких дополнительных операций по вкладу в течение всего срока его действия?

И вновь задание, связанное с процентами. Это обычная практика для теста в лицей ВШЭ. Рассмотрим решение этого задания.

Пусть годовой процент по вкладу составлял x процентов. Тогда в конце первого года после выплаты процентов сумма на вкладе составила в рублях:

    [ 8000 timesdfrac{100+x}{100} = 8000 cdot(1+0.01x) = 8000 + 80x ]

Аналогично, в конце второго года вклада после выплаты процентов сумма на вкладе составила в рублях:

    [ (8000 + 80x)timesdfrac{100+x}{100} = (8000 + 80x)cdot(1+0.01x) = ]

    [ = 0.8x^2+160x+8000 = 0.8(x^2+200x+10000) = ]

    [ = 0.8(x+100)^2 ]

Поскольку в конце второго года вклада Алёша снял со счёта 9680 руб., то имеет место уравнение:

    [ 0.8(x+100)^2 = 9680 Leftrightarrow (x+100)^2=12100 = 110^2 ]

Поскольку по смыслу задачи x+100 > 0, то из последнего равенства получаем, что x+100 = 110 и x = 10. Итак, процент по вкладу составлял 10% годовых.

Ответ: 10%

Задание 3. найдите значение параметра a такое, что система уравнений

    [ begin{cases} x-(a-1)y=2 \ (a+2)x+2y=4-a^2 end{cases} ]

не имеет решений. Для данного значения параметра изобразите на координатной плоскости прямые, задаваемые каждым из уравнений системы, и определите графически расстояние между этими прямыми. В ответе укажите значение параметра и найденное расстояние.

Выразим в обоих уравнениях переменную y через переменную x. Для этого обе части первого уравнения системы придётся делить на a-1, поэтому нужно убедиться, что ane 1. Действительно, при a=1 система принимает вид:

    [ begin{cases} x=2 \ 3x+2y=3 end{cases} ]

система имеет единственное решение (2;-1.5). Этот случай нам не интересен.

Для ane 1 мы можем поделить обе части первого уравнения системы на a-1, а обе части второго — на 2. В результате после преобразований система примет более удобный вид:

    [ begin{cases} y = dfrac{1}{a-1}x-dfrac{2}{a-1} \ y = -dfrac{a+2}{2}x+dfrac{4-a^2}{2} end{cases} ]

Теперь видно, что система не будет иметь решений при таких значениях параметра a, когда коэффициенты перед переменной y в обоих уравнениях окажутся равными, а свободные члены, стоящие справа от знака равенства, напротив, окажутся неравными:

    [begin{cases} dfrac{1}{a-1} = -dfrac{a+2}{2} \ -dfrac{2}{a-1}ne dfrac{4-a^2}{2} end{cases}]

Упростим систему для ane 1:

    [ begin{cases} (a+2)(a-1)=-2\ (a-1)(4-a^2)ne-8 end{cases} ]

Решаем первое уравнение системы:

    [ (a+2)(a-1)=-2 ]

    [ a^2+a = 0 ]

    [ a(a+1)=0 ]

Последнее уравнение имеет два корня: a_1 = 0 и a_2 = -1. Однако, второму условию в системе удовлетворяет только второй корень. Действительно, при подстановке первого корня получаем, что -dfrac{2}{0-1} = dfrac{4-0^2}{2} или 2 = 2, а при подстановке второго корня получаем, что -dfrac{2}{-1-1} ne dfrac{4-(-1)^2}{2} или 1 ne 1.5.

Итак, при a=-1 система не будет иметь решений. При этом значении параметра система принимает вид:

    [ begin{cases} x+2y=2 \ x+2y=3 end{cases} ]

Изобразим на координатной плоскости прямые, задаваемые каждым из уравнений полученной системы:

Две параллельные прямые на координатной плоскости из комплексного теста по математике за 2018 год

Найдём теперь расстояние между этими прямыми. Для этого проведём перпендикуляр от одной прямой к другой и найдём его длину d, используя подобие отмеченных на рисунке треугольников:

Подобные треугольники в прямоугольной системе координат

Гипотенуза большого прямоугольного треугольника равна sqrt{3^2+1.5^2} = 1.5sqrt{5}. Тогда из подобия этих треугольников получаем следующее соотношение:

    [ dfrac{d}{1.5}=dfrac{1}{1.5sqrt{5}} Leftrightarrow d = dfrac{sqrt{5}}{5} ]

Ответ: a = -1, dfrac{sqrt{5}}{5}

Задание 4. В треугольнике ABC проведена биссектриса угла A, пересекающая сторону BC в точке K и окружность, описанную около треугольника ABC, в точке M.

  1. Докажите, что треугольник BMC равнобедренный.
  2. Найдите радиус окружности, описанной около треугольника KMC, если AC = 4, BC = 5, AB = 6.

1. Начнём с доказательства. Изобразим ситуацию на рисунке:
Треугольник, вписанный в окружность, из геометрической задачи второй части комплексного теста по математике в лицей ВШЭ

Дуги CM и BM равны, так как на них опираются равные вписанные углы. Значит, равны и хорды, стягивающие эти дуги. То есть CM = MB, а значит, треугольник CMB является равнобедренным. Что и требовалось доказать.

2. Найдём теперь радиус окружности, описанной около треугольника KMC:

Чертёж к задаче из теста в лицей ВШЭ

1) Пусть CK = x, тогда BK = 5-x. Используем свойство биссектрисы AK треугольника ABC и получаем следующее равенство: dfrac{x}{4}=dfrac{5-x}{6}. Из этого равенства получаем, что 6x=20-4x или x = 2.

2) Заметим также, что ∠CMA = ∠CBA = beta, так оба являются вписанными и опираются на одну дугу AC. Ищем cosbeta. Для этого запишем теорему косинусов для треугольника ABC:

    [ AC^2=AB^2+AC^2-2cdot ABcdot ACcosbeta ]

    [ 16=36+25-60cosbeta ]

    [beta=dfrac{3}{4}]

3) Поскольку cosbeta > 0, то угол beta — острый. Используя основное тригонометрическое тождество, находим теперь sinbeta:

    [ sinbeta = sqrt{1-cos^2beta} = sqrt{1-left(dfrac{3}{4}right)^2} = dfrac{sqrt{7}}{4} ]

4) Теперь в треугольнике CMK нам известна сторона CK = 2 и синус противолежащего угла sinangle CMK = sinbeta = dfrac{sqrt{7}}{4}. Значит, мы можем воспользоваться теоремой синусов для нахождения радиуса R описанной около него окружности:

    [ dfrac{CK}{sinbeta} = 2R ]

    [ dfrac{8}{sqrt{7}} = 2R ]

    [ R = dfrac{4}{sqrt{7}} ]

Ответ: dfrac{4}{sqrt{7}}

Задание 5. Найдите все значения параметра a такие, что уравнение

    [ |x^2+x-2|+3a=0 ]

имеет ровно четыре различных решения.

Перепишем уравнение в более удобном виде |x^2+x-2|=-3a. Рассмотрим две функции: y = |x^2+x-2| и y=-3a.

Построим график первой функции. Для этого нужно построить график функции y = x^2+x-2, а затем все точки с отрицательными ординатами, принадлежащие этому графику, отразить относительно оси OX. График получается следующим:

График функции из задания 5 части 2 комплексного теста по математике в лицей НИУ ВШЭ

График второй функции представляет собой прямую, параллельную оси OX и перемещающуюся вверх или вниз в зависимости от значения параметра a. При этом существует положение этой прямой, при котором она имеет ровно три общие точки с графиком. Уравнение соответствующей прямой имеет вид: y=2.25. При перемещении этой прямой «вниз» вплоть до y = 0 она будет иметь ровно четыре точки пересечения с построенным графиком:

Комплексный тест по математике в 10 класс лицея НИУ ВШЭ (задание 5 часть 2)

Значит, искомое множество значений параметра a задаётся двойным неравенством: 0<-3a<2dfrac{1}{4}, то есть ainleft(-dfrac{3}{4};0right).

Ответ: ainleft(-dfrac{3}{4};0right)

Подготовка к тесту в лицей ВШЭ

Если вам требуется подготовка к тесту в лицей ВШЭ по математике, вы можете обратиться за помощью к репетитору в Москве, который занимается такого рода подготовкой на профессиональном уровне и имеет огромный опыт. Контакты репетитора вы найдёте на этой странице. Также вы можете воспользоваться сайтом онлайн-школы CleverFox.info, на котором выложены варианты комплексных тестов, составленные по мотивам экзаменов прошлых лет, а также ответы и подробные решения к каждому заданию теста. Успехов Вам в подготовке к поступлению в лицей НИУ ВШЭ!

Материал подготовил профессиональный репетитор по математике и физике в Москве, Сергей Валерьевич

Примеры вариантов комплексного теста по математике для поступления в 9 и 10 классы лицея НИУ ВШЭ (все направления) с подробным разбором каждого задания от профессионального репетитора.

По структуре примеры тестов полностью соответствуют тестам, доступ к которым открывается по платной подписке. Перед приобретением подписки рекомендуем ознакомиться с данным курсом, чтобы убедиться, что это именно то, что вам нужно. 

Доступ к примерам абсолютно бесплатный. Пройдите короткую регистрацию на сайте и получите неограниченный доступ к примерам тестов.

18 типовых вариантов комплексного теста по математике (первая и вторая части) для поступления в 10 класс лицея НИУ ВШЭ (направления «Информатика, инженерия и математика», «Экономика и математика») с подробным разбором каждого задания от профессионального репетитора. 

Стоимость доступа к онлайн-тестам

Временной промежуток Стоимость
30 дней 1290 руб.

Для доступа к онлайн-тестам вам нужно зарегистрироваться на сайте и оплатить подписку с помощью сервиса защищённых платежей PayAnyWay. Доступ откроется сразу после подтверждения оплаты.

18 типовых вариантов первой части комплексного теста при поступлении в 10 класс лицея НИУ ВШЭ (задания по математике, все направления) с подробным разбором каждого задания от профессионального репетитора.

Стоимость доступа к онлайн-тестам

Временной промежуток Стоимость
30 дней 1290 руб.

Для доступа к онлайн-тестам вам нужно зарегистрироваться на сайте и оплатить подписку с помощью сервиса защищённых платежей PayAnyWay. Доступ откроется сразу после подтверждения оплаты.

18 типовых вариантов комплексного теста по математике при поступлении в 9 класс лицея НИУ ВШЭ (специализация «Универсальная») с подробным разбором каждого задания от профессионального репетитора.

Стоимость доступа к онлайн-тестам

Временной промежуток Стоимость
30 дней 1290 руб.

Для доступа к онлайн-тестам вам нужно зарегистрироваться на сайте и оплатить подписку с помощью сервиса защищённых платежей PayAnyWay. Доступ откроется сразу после подтверждения оплаты.

Вторая часть комплексного теста
Задания по МАТЕМАТИКЕ 2019 ДЕМО для направлений «Информатика, инженерия и математика»,
«Экономика и математика»

.

          Задание 1. Решить уравнение:
уравнение

          Решение:

         Для начала рассмотрим область допустимых значений (ОДЗ)
переменной X.

уравнение
Решение этой системы показано на рисунке:

уравнение

         То есть

ОДЗ X

         Теперь перейдём к решению уравнения.
Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю:

Решение уравнения

          Решим первое уравнение:

Решение уравнения

         Решим второе уравнение:

Решение уравнения
Решением второго уравнения будет x4 = 1, так как x = —1 не удовлетворяет ОДЗ.

         Таким образом, решением уравнения являются два совпадающих корня
x2 = x4 = 1.
Остальные получившиеся корни уравнений не удовлетворяют ОДЗ.

         Ответ. 1.

          Задание 2. Две бригады проложили
туннель протяженностью 700 метров, работая навстречу друг другу. Первая бригада прокладывала
ежедневно 3 метра, а вторая прокладывала по 2 метра в каждый из первых 50 дней, а потом работала
с той же производительностью, что и первая.
Пусть у (м) — координата местоположения бригады,
t — время, выраженное в днях. Считая туннель прямолинейным и приняв за начало координат
местоположение первой бригады в первый день до начала работы, выполните следующие задания:
1) Запишите уравнения движения у = f(t) каждой бригады.
2) Нарисуйте графики движения бригад в одной системе координат.
3) Определите, через сколько дней после начала работы туннель был проложен и сколько
метров проложила каждая бригада.

          Решение:
         Так как первая бригада прокладывала ежедневно 3 метра,
то уравнение её движения y = 3t (красный график). Так как вторая бригада в первые
50 дней прокладывала по 2 метра, а потом — 3 метра в день, то уравнение её движения:

Запись функции

графики движения бригад
Красный цвет — график движения первой бригады, синий цвет — график движения второй бригады. Таким образом,
вторая бригада начала своё движение в точке, отстающей от точки начала движения первой бригады на 700 метров. Если
вторая бригада проходила в день 2 метра, то коэффициент k в уравнении прямой y = kt + b равняется —2, если она проходила
в день 3 метра, то, соответственно —3. Уравнение прямой на втором участке движения второй бригады можно найти
по точке A (50; 600) и коэффициенту k = —3.

         Для того, чтобы определить через сколько дней
после начала работы туннель был проложен, необходимо найти абсциссу точки пересечения графиков.

время встречи

         Для того, чтобы определить сколько метров проложила первая бригада,
надо найти ординату точки пересечения графиков, для чего 125 дней умножить на 3. Получится 375 м.
Вторая бригада проложила таким образом 700 — 375 = 325 м.

          Задание 3. Найдите все значения
переменной х, при которых функция

Запись функции
принимает неотрицательные значения.

          Решение: Рассмотрим данную функцию. Область определения функции:

Неравенство
Нули функции. X = 0; X = 3.
Нанесём на числовую ось область определения квадратного корня:

ОДЗ квадратного корня
Теперь проставим на эту же ось нули знаменателя. При этом эти точки будут выколотыми, так как они не удовлетворяют
области определения неравенства.

нули знаменателя
Так как —2 не удовлетворяет области допустимых значений числителя, то знаки дроби около этой точки можно не рассматривать.
Теперь проставим знаки дроби в каждом из трёх интервалов внутри «красного» участка. Синим цветом обозначено решение неравенства.
В решение попадает таким образом интервал от 0,5 до 2, а также точки 0 и 3, так как неравенство нестрогое и в этих точках
значение дроби равняется нулю.

ответ

          Задание 4. В равнобедренной
трапеции ABCD с большим основанием AD угол при вершине D равен 60°. Известно, что AD=30, CD=15.
а) Докажите, что диагональ трапеции перпендикулярна боковой стороне.

б) Найдите радиус описанной около трапеции окружности и площадь трапеции.

          Решение:

трапеция

          Пусть BH = CM — высота трапеции. Рассмотрим
прямоугольный треугольник CMD. ∠СDM=60° (по условию), значит, ∠MCD=30°. Отсюда следует, что MD = 1/2 CD = 7,5. Следовательно,
MD = AH = 7,5. Откуда HM = BC = 15. Значит, треугольник BCD — равнобедренный. ∠BCD = 120°.
∠CBD = 30°. Так как ∠ABC = ∠BCD, то ∠ABD = ∠ABC — ∠CBD = 120°—30°=90°.
Таким образом, диагональ трапеции перпендикулярна боковой стороне.

         Радиус окружности, описанной около трапеции равен
радиусу окружности, описанной около треугольника ABD. Так как треугльник ABD — прямоугольный, то его гипотенуза AD является диаметром окружности.
Значит, радиус описанной окружности равен 1/2 AD = 15.
         Площадь трапеции:

ответ

          Задание 5. Найдите все значения параметра а, при которых система неравенств

параметры
имеет единственное решение.

          Решение:
Рассмотрим три случая:
          I. Если a < 0, то решений нет, поскольку модуль не может быть отрицательным числом.
          II. Если a = 0, то из первого неравенства x = 3. Проверим, не противоречит ли это значение второму неравенству системы:

a=0

          III. Если a > 0, то можно переписать
каждое неравенство системы в виде двойного неравенства:

a=0

          Каждое из этих двух двойных неравенств обозначает промежуток на числовой оси. При этом
одно решение у системы может быть только в случаях, если эти промежутки будут иметь только одну общую точку.
Схематично это можно показать на рисунках:

1-й случай

1-й случай

          Рассмотрим первый вариант:

2a — 5 = 3 + a, откуда a = 8.
Второй вариант: 2a + 5 = 3 — a. Откуда a = — 2/3. Однако значение a должно быть больше нуля,
(третье неравенство системы a > 0). Значит, этот вариант не подходит. При a = 8 система
имеет одно решение x = 11. Таким образом,
Ответ: a1 = 0, a2 = 8. Вторая часть комплексного теста
Задания по МАТЕМАТИКЕ 2019 ДЕМО для направленя «Математика»



          Задание 1. Решите неравенство:

a=0

          Решение: Перепишем неравенство в следующем виде:

a=0
Числитель дроби преобразуем по формуле куб разности, а затем применим формулу сумма кубов:

a=0
Выражение в правой скобке числителя — неполный квадрат, который, как известно и как легко можно доказать, всегда больше нуля. Значит,
неравенство можно записать теперь в следующем виде:

неравенство

метод интервалов

неравенство

          Задание 2. Найдите наибольшее натуральное число n,
при котором число 107! делится нацело на 3n.

          Решение: Как известно,

107 факториал
Значит, наибольшее натуральное число n равно количеству множителей «3» в этом произведении. Выпишем из произведения 107!
только те множители, которые содержат «3»:

кратные 3
Обратим внимание на тот факт, что все эти множители включают в себя как минимум одну «тройку», и
чтобы найти их количество, можно воспользоваться формулой n-го члена арифметической прогрессии,
однако некоторые из них, например, 9, 18, 27, 36, 45… содержат уже не менее двух «троек», а
некоторые из них, например, 27, 54, 81 — не менее трёх «троек», а число 81 — четыре «тройки».
Поэтому чтобы не ошибиться в подсчёте, посчитаем сначала количество множителей, содержащих как минимум
одну «тройку», затем добавим количество «вторых троек» из тех множителей, где, как минимум две «тройки»,
после те, где есть «третья тройка», и наконец четвёртую «тройку» в числе 81:

кратные 3
Теперь подсчитаем количество членов арифметической прогрессии 9, 18, 27, 36, … , 99:

кратные 9
Количество множителей, кратных 27-ми равно трём, а множитель, кратный 81 — всего один.
То есть всего троек в записи 107! равно 35 + 11 + 3 + 1 = 50. Таким образом n = 50.

          Ответ. 50.

          Задание 3. Конькобежцы Иванов, Петров и Сидоров одновременно стартуют из одного и того же
места круговой дорожки. Иванов начинает движение в направлении, противоположном
направлению движения Петрова и Сидорова, и спустя некоторое время встречает Петрова, а
еще через десять секунд Сидорова. Через три минуты и двадцать секунд после старта Петров
обогнал Сидорова на один круг. Скорости конькобежцев постоянны. Через сколько секунд
после старта Иванов встретился с Сидоровым?

          Решение: Примем за X (с) время, которое прошло с момента старта до мсмента
встречи Иванова с Петровым. Тогда время, прошедшее с момента старта до момента встречи Иванова с Сидоровым — (X+10) (с). Длину всего круга
примем за единицу.
Пусть vи (м/с) — скорость Иванова, vп (м/с) — скорость Петрова, vс (м/с) — скорость Сидорова.
Запишем теперь условие задачи в виде системы уравнений (3 минуты и 20 секунд = 200 секунд):

система уравнений
Перепишем систему уравнений в следующем виде:

система уравнений
Вычтем из верхнего уравнения среднее и получим систему, которая легко приводится к уравнению с одним неизвестным:

система уравнений
уравнение

          Ответ. 50 секунд.

          Задание 4. Изобразите множество
точек координатной плоскости, координаты которых удовлетворяют системе неравенств:



          Решение: Перепишем условие в следущем виде:



множество точек

         Решение первого неравенства — множество точек, попадающих в круг, ограниченный
условием первого неравенства. Решение второго неравенства — множество точек над и под параболой, осью симметрии которой является ось OX.
Таким образом, решение системы — это точки, попавшие под две штриховки. При этом, поскольку второе неравенство строгое, то график необходимо изобразить пунктирной линией.

          Задание 5. Окружность проходит
через вершины C и D большей боковой стороны прямоугольной трапеции ABCD и касается боковой
стороны AB в точке K. Найдите расстояние от точки K до прямой CD, если длины оснований
AD и BC трапеции равны 9 и 7 соответственно.

решение задачи

          Решение: Обозначим расстояние от точки K до прямой CD как KM.
Отрезок KM перпендикулярен CD. Продолжим стороны трапеции AB и CD до их пересечения в точке N.

решение задачи

решение задачи

          Задание 6. Найдите все значения параметра
a такие, что уравнение

a=0
имеет четыре различных корня.

          Решение: Нетрудно заметить, что при
раскрытии модулей в любом случае получится биквадратное уравнение. Для удобства сделаем замену переменной: x2 = t > 0. Если t = 0, то данное
уравнение не будет иметь четыре корня, поэтому сразу же исключим этот вариант.

         Для того, чтобы биквадратное уравнение имело четыре различных корня, необходимо, чтобы уравнение с переменной t,
получающееся после раскрытия модулей имело бы два положительных корня. Покажем графически те условия, при которых это выполняется.
Так как, коэффициент при x4 = t2 положителен, то ветви параболы направлены вверх.

варианты параболы

          Из рисунка видно, что для того, чтобы увадратное уравнение имело бы
два положительных корня надо, чтобы дискриминант был больше нуля, ордината точки пересечения параболы с осью OY была бы положительна,
а также абсцисса вершины параболы была бы положительна (красная парабола) (если вершина абсциссы отрицательна, то уравнение
будет иметь два отрицательных корня (синяя парабола). То есть

условия
Учтём эти соображения при раскрытии модулей. В нашем случае коэффициент при t2 равен единице. Значит, это условие зависит только от свободного члена — от c.

         
Перепишем исходное уравнение в виде с заменённой переменной.

уравнение
Рассмотрим четыре случая:

система

система

система

система

система

ответ

Александр Анатольевич, репетитор по математике в лицей НИУ ВШЭ.
8-968-423-9589. Имею успешный опыт подготовки учеников в этот лицей.

Репетитор по математике 8-968-423-9589

Имею большой опыт работы репетитором. За два десятилетия выработаны собственные методики занятий. Окончил технический ВУЗ – Московский автомобильно-дорожный институт в 1987 г.
Еще в институте оказывал помощь однокурсникам по высшей математике. Репетиторством занимаюсь с 1998 г. За это время мною подготовлено к различным экзаменам более 200 учеников.
Специализируюсь на подготовке в лицеи и математические школы, готовлю к сдаче ОГЭ и ЕГЭ. Занимаюсь также сопровождением школьной программы — подготовкой к контрольным
и самостоятельным работам. Прививаю навыки быстрого устного счета, рассматриваю с учениками логические и нестандартные задачи, направленные на воспитание интереса к предмету,
на развитие логического мышления.

Ответы на часто задаваемые вопросы

Общая схема занятия:
1. Входящий контроль
2. Элементы темы 
3. Задачи группы А
4. Задачи группы В
5. Задачи группы С
6. Планиметрия
7. Домашняя работа

Календарно-тематический план.

1. Вычисления и числовые закономерности
1. Понятие рационального числа.
2. Обращение бесконечных периодических десятичных дробей в обыкновенные с помощью уравнения.
3. Правило обращения бесконечных периодических дробей в обыкновенные. Понятие рационального числа. Обращение бесконечных периодических десятичных дробей в обыкновенные с помощью уравнения. Правило обращения бесконечных периодических дробей в обыкновенные.
Треугольник Паскаля и его применение (степени двойки, степени числа 11, формулы сокращенного умножения). Последовательность Фибоначчи. Понятие факториала.

2. Проценты
1. Основные типы задач на проценты: процентное отношение двух чисел; процент от числа; число по его проценту.
2. Основные формулы в задачах на проценты: на сколько процентов одно число больше другого; на сколько процентов одно число меньше другого.
3. Понятие «сложных процентов» и формула.

3. Целые выражения. Разложение на множители.
1. Формулы сокращенного умножения (разность квадратов; квадрат суммы и квадрат разности; сумма и разность кубов; куб суммы и куб разности).
2. Способы разложения на множители.
3. Разложение на множители квадратного трехчлена.
4. Квадрат суммы нескольких слагаемых; разность п-х степеней.

4. Дробные выражения.
Самостоятельная работа

5. Арифметический корень и его свойства
1. Определение арифметического квадратного корня и следствия из определения.
2. Свойства арифметического квадратного корня (без доказательства).

5*. Преобразования выражений, содержащих квадратные корни
Свойства арифметического квадратного корня (корень из квадрата; произведение корней).

6. Обобщение материала. Подготовка к контрольной работе

7. Контрольная работа

8. ?

9. Уравнения с модулями
1. Определение модуля выражения с переменной. 2. Равносильные переходы при решении стандартных модульных уравнений.

Геометрия: Элементы прямоугольного треугольника 

10. Уравнения, сводящиеся к квадратным уравнениям.
1. Биквадратное уравнение.
2. Однородное алгебраическое уравнение 2-го порядка.
3. Основные методы решения уравнений: замена переменной и разложение на множители.
4. План решения дробно-рационального уравнения.

Геометрия: Пропорциональные отрезки в прямоугольном треугольнике 

11. Теоремы Виета
1. Теорема Виета.
2. Теорема, обратная теореме Виета.
3. Основные задачи, связанные с теоремой Виета: нахождение значений симметрических комбинаций; составление квадратного уравнения, корни которого связаны с корнями данного уравнения; анализ знаков корней квадратного уравнения.

Геометрия: Биссектриса треугольника 

12. Целые рациональные уравнения.
Самостоятельная работа 

Геометрия: Биссектриса треугольника 

13. Системы уравнений
1. Основные методы решения систем уравнений.
2. Симметрические системы.
3. Системы, содержащие однородные уравнения.
4. Количество решений системы из двух линейных уравнений с двумя переменными.

Геометрия: Медиана треугольника 

14. Обобщение материала. Подготовка к контрольной работе.

15. Контрольная работа

16. Решение текстовых задач
1. Типы задач на движение
2. Позиционная запись числа
3. Делимость

Геометрия: Высота треугольника 

17. Функция
Область определения и множество значений.
Четные и нечетные функции. Монотонные функции.
Нули функции.
Обратная функция.

Геометрия: Элементы прямоугольного треугольника 

18. Линейная функция
Геометрический смысл коэффициентов.
Условия параллельности и перпендикулярности графиков линейной функции.

Геометрия: теорема косинусов 

19. Квадратичная функция
Геометрический смысл коэффициентов.
Основные способы построения эскизов парабол: по точкам, выделение полного квадрата, по нулям функции.
Наименьше и наибольшее значение функции. 6 основных расположений парабол.
Элементарные экономические задачи.

Геометрия: теорема косинусов 

20. Графики квадратного корня, степенной и дробно-рациональной функций
Построение графиков вида y = v(x + b), y = v(-x + b). Графики степенных функций с четными и нечетными показателями.
Дробно-рациональная функция.
Алгоритм построения графика.

Геометрия: теорема синусов. 

21. Обобщение материала. Подготовка к контрольной работе

22. Контрольная работа

23. Графики функций и уравнений, содержащих модули.
Графики функций вида f(|x|), |f(x)|, |f(|x|)|.
Использование определения модуля при построении графиков.
Кусочно-заданная функция. 

Геометрия: окружность и касательные 

24. Решение задач с параметрами с использованием графиков функций и графиков уравнений

Геометрия: две касающиеся окружности 

25. Линейные и квадратные неравенства

Геометрия: Пропорциональные отрезки и окружность 

26. Числовые последовательности; арифметическая и геометрическая прогрессии

Геометрия: Подобие 

27. Избранные задачи теории вероятности и статистики

Геометрия: Параллелограмм 

28. Задачи на движение и задачи на работу

Геометрия: Трапеция. Трапеции и окружности. 

29. Задачи экономического содержания

Геометрия: Площади 

Следующие pdf файлы содержат часть этих материалов.
Файл 1. 
Методичка 1
Страницы 5 – 46
Занятия 1 — 6, контрольная работа 1, 2 (стр. 45)

Методичка 2
Страницы 4 – 35
Занятия 9 – 14, 16

Методичка 3
Страницы 4 — 46
Занятия 17 – 21, 23, 24, контрольная работа 3 (стр. 43), список литературы (стр. 46) 

Файл 2.
Методичка 1 полностью, 2019 год. Есть некоторые отличия от методички из предыдущего файла
Занятия: 1-6, 8

Файл 3.
Методичка 2 без первой страницы
Занятия 9 – 14, 16

C103.
x4 — 2√2 * x3 — x + 2 — √2 = 0

Сначала подбираем корни среди выражений, на которые можно поделить свободный член 2 — √2.

x = √2 — 1 является корнем данного уравнения, поэтому многочлен
p(x) = x4 — 2√2 * x3 — x + 2 — √2
можно нацело поделить на многочлен
q(x) = (x — √2 + 1).

То есть,
x4 — 2√2 * x3 — x + 2 — √2 = (x — √2 + 1) * (x3 + a * x2 + b * x + c).

Раскроем скобки и найдем a, b, c методом неопределенных коэффициентов:
x4 — 2√2 * x3 — x + 2 — √2 = (x — √2 + 1) * (x3 + a * x2 + b * x + c) =
x4 +
(a + 1 — √2) * x3 +
(b + a — a√2) * x2 +
(c + b — b√2) * x +
c * (1 — √2)

a + 1 — √2 = -2√2
b + a — a√2 = 0
c + b — b√2 = -1
c * (1 — √2) = 2 — √2

a = -1 — √2
b = -1
c = -√2

Пособие «Хочу в лицей» периодически продается в магазине БукВышка на Мясницкой:
https://bookshop.hse.ru/

6d1206f9a972552d9cb781a242c735bf.jpeg-shrink620x620.jpg
3ec6676541cfb9a89423dc5d75b94df9.jpeg
4f3409c765433319013a6f5e641fb435.jpeg-shrink620x620.jpg
b2861242a0193f3aca3dbf67d45f7cd4.jpeg-shrink620x620.jpg

Полезная информация

Задачи из вступительных тестов
Содержание 👉

Like this post? Please share to your friends:
  • Демовариант егэ по русскому языку 2023
  • Демовариант егэ по обществознанию 2023
  • Демовариант егэ общество
  • Демовариант егэ история 2023
  • Демовариант егэ информатика 2023