Решение и ответы заданий №1–11, 12, 13, 14, 15, 16, 17, 18 демонстрационного варианта ЕГЭ 2022 по математике (профильный уровень). Полное решение. ДЕМОВЕРСИЯ от ФИПИ для 11 класса профиль.
Задание 1.
Найдите корень уравнения 3x–5 = 81
ИЛИ
Найдите корень уравнения
ИЛИ
Найдите корень уравнения log8 (5x + 47) = 3
ИЛИ
Решите уравнение . Если корней окажется несколько, то в ответ запишите наименьший из них.
Задание 2.
В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.
ИЛИ
Вероятность того, что мотор холодильника прослужит более 1 года, равна 0,8, а вероятность того, что он прослужит более 2 лет, равна 0,6. Какова вероятность того, что мотор прослужит более 1 года, но не более 2 лет?
Задание 3.
Треугольник ABC вписан в окружность с центром О. Угол ВАС равен 32°. Найдите угол ВОС. Ответ дайте в градусах.
ИЛИ
Площадь треугольника ABC равна 24, DE — средняя линия, параллельная стороне АВ. Найдите площадь треугольника CDE.
ИЛИ
В ромбе ABCD угол DBA равен 13°. Найдите угол BCD. Ответ дайте в градусах.
ИЛИ
Стороны параллелограмма равны 24 и 27. Высота, опущенная на меньшую из этих сторон, равна 18. Найдите высоту, опущенную на большую сторону параллелограмма.
Задание 4.
Найдите sin2α, ecли cosα = 0,6 и π < a < 2π.
ИЛИ
Найдите значение выражения 16·log74√7
ИЛИ
Найдите значение выражения
Задание 5.
В первом цилиндрическом сосуде уровень жидкости достигает 16 см. Эту жидкость перелили во второй цилиндрический сосуд, диаметр основания которого в 2 раза больше диаметра основания первого. На какой высоте будет находиться уровень жидкости во втором сосуде? Ответ дайте в сантиметрах.
ИЛИ
Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
ИЛИ
Через точку, лежащую на высоте прямого кругового конуса и делящую её в отношении 1:2, считая от вершины конуса, проведена плоскость, параллельная его основанию и делящая конус на две части. Каков объём той части конуса, которая примыкает к его основанию, если объём всего конуса равен 54?
Задание 6.
На рисунке изображён график дифференцируемой функции у = f(x). На оси абсцисс отмечены девять точек: x1, x2, … x9.
Найдите все отмеченные точки, в которых производная функции f(x) отрицательна. В ответе укажите количество этих точек.
ИЛИ
На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой х0. Найдите значение производной функции f(x) в точке х0.
Задание 7.
Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковой сигнал частотой 749 МГц. Приёмник регистрирует частоту сигнала, отражённого от дна океана. Скорость погружения батискафа (в м/с) и частоты связаны соотношением
где с = 1500 м/с — скорость звука в воде, f0 – частота испускаемого сигнала (в МГц), f – частота отражённого сигнала (в МГц). Найдите частоту отражённого сигнала (в МГц), если батискаф погружается со скоростью 2 м/с.
Задание 8.
Весной катер идёт против течения реки в 1 раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в 1 раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).
ИЛИ
Смешав 45-процентный и 97-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 45-процентного раствора использовали для получения смеси?
ИЛИ
Автомобиль, движущийся с постоянной скоростью 70 км/ч по прямому шоссе, обгоняет другой автомобиль, движущийся в ту же сторону с постоянной скоростью 40 км/ч. Каким будет расстояние (в километрах) между этими автомобилями через 15 минут после обгона?
Задание 9.
На рисунке изображён график функции вида f(x) = ax2 + bx + c, где числа a, b и c – целые. Найдите значение f(−12).
Задание 10.
Симметричную игральную кость бросили три раза. Известно, что в сумме выпало 6 очков. Какова вероятность события «хотя бы раз выпало три очка»?
ИЛИ
В городе 48% взрослого населения мужчины. Пенсионеры составляют 12,6% взрослого населения, причем доля пенсионеров среди женщин равна 15%. Для проведения исследования социологи случайным образом выбрали взрослого мужчину, проживающего в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».
Задание 11.
Найдите наименьшее значение функции
y = 9x – 9ln(x + 11) + 7
на отрезке [–10,5 ; 0].
ИЛИ
Найдите точку максимума функции y = (x + 2 ∙ e3–x
ИЛИ
Найдите точку минимума функции
Задание 12.
а) Решите уравнение б) Укажите корни этого уравнения, принадлежащие отрезку
Задание 13.
Все рёбра правильной треугольной призмы ABCA1B1C1 имеют длину 6. Точки M и N – середины рёбер AA1 и A1C1 соответственно.
а) Докажите, что прямые BM и MN перпендикулярны.
б) Найдите угол между плоскостями BMN и ABB1.
Задание 14.
а) Решите неравенство
Задание 15.
15 января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
— 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Найдите наибольшее значение r , при котором общая сумма выплат будет меньше 1,2 млн рублей.
Задание 16.
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй – в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.
Задание 17.
Найдите все положительные значения a, при каждом из которых система
имеет единственное решение.
Задание 18.
В школах № 1 и № 2 учащиеся писали тест. В каждой школе тест писали по крайней мере 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.
а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз?
б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?
в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.
Источник варианта: fipi.ru
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 2
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.
1 августа 2021
В закладки
Обсудить
Жалоба
Демоверсии 2023
Утверждённые демоверсии ЕГЭ 2022 по математике от ФИПИ.
Обновлено 10 ноября.
→ Демоверсия профильного уровня: math-demo2022-pro-v2.pdf
→ Демоверсия базового уровня: math-demo2022-b-v2.pdf
→ Спецификация профильного уровня: math-s2022-pro-v2.pdf
→ Спецификация базового уровня: math-s2022-b-v2.pdf
→ Кодификатор: math-k2022-v2.pdf
→ Скачать одним архивом: math-demo2022-v2.zip
Изменения в КИМ ЕГЭ 2022 года профильного уровня в сравнении с КИМ 2021 года
1. Исключены задания 1 и 2, проверяющие умение использовать приобретённые знания и умения в практической и повседневной жизни, задание 3, проверяющее умение выполнять действия с геометрическими фигурами, координатами и векторами.
2. Добавлены задание 9, проверяющее умение выполнять действия с функциями, и задание 10, проверяющее умение моделировать реальные ситуации на языке теории вероятностей и статистики, вычислять в простейших случаях вероятности событий.
3. Внесено изменение в систему оценивания: максимальный балл за выполнение задания повышенного уровня 13, проверяющего умение выполнять действия с геометрическими фигурами, координатами и векторами, стал равен 3; максимальный балл за выполнение задания повышенного уровня 15, проверяющего умение использовать приобретённые знания и умения в практической деятельности и повседневной жизни, стал равен 2.
4. Количество заданий уменьшилось с 19 до 18, максимальный балл за выполнение всей работы стал равным 31.
Изменения в КИМ ЕГЭ 2022 года базового уровня в сравнении с КИМ 2021 года
1. Исключено задание 2, проверяющее умение выполнять вычисления и преобразования (данное требование внесено в позицию задачи 7 в новой нумерации).
2. Добавлены задание 5, проверяющее умение выполнять действия с геометрическими фигурами, и задание 20, проверяющее умение строить и исследовать простейшие математические модели.
3. Количество заданий увеличилось с 20 до 21, максимальный балл за выполнение всей работы стал равным 21.
Демонстрационная версия ЕГЭ—2022 по математике. Профильный уровень.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
1
Найдите корень уравнения:
ИЛИ
Найдите корень уравнения
ИЛИ
Найдите корень уравнения
ИЛИ
Решите уравнение Если уравнение имеет более одного корня, в ответе запишите меньший из корней.
Ответ:
2
В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.
ИЛИ
Вероятность того, что мотор холодильника прослужит более 1 года, равна 0,8, а вероятность того, что он прослужит более 2 лет, равна 0,6. Какова вероятность того, что мотор прослужит более 1 года, но не более 2 лет?
Ответ:
3
Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32°.
ИЛИ
Площадь треугольника ABC равна 24, DE — средняя линия, параллельная стороне AB. Найдите площадь треугольника CDE.
ИЛИ
В ромбе ABCD угол DBA равен 13°. Найдите угол BCD. Ответ дайте в градусах.
ИЛИ
Стороны параллелограмма равны 24 и 27. Высота, опущенная на меньшую из этих сторон, равна 18. Найдите высоту, опущенную на бо́льшую сторону параллелограмма.
Ответ:
4
Найдите если и
ИЛИ
Найдите значение выражения:
ИЛИ
Найдите значение выражения:
Ответ:
5
В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в раза больше первого? Ответ дайте в сантиметрах.
ИЛИ
Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
ИЛИ
Через точку, лежащую на высоте прямого кругового конуса и делящую её в отношении 1 : 2, считая от вершины конуса, проведена плоскость, параллельная его основанию и делящая конус на две части. Каков объём той части конуса, которая примыкает к его основанию, если объём всего конуса равен 54?
Ответ:
6
На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: x1, x2, …, x9. Среди этих точек найдите все точки, в которых производная функции y = f(x) отрицательна. В ответе укажите количество найденных точек.
ИЛИ
На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0 . Найдите значение производной функции f(x) в точке x0.
Ответ:
7
8
Весной катер идёт против течения реки в раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).
ИЛИ
Смешав 45-процентный и 97-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 45-процентного раствора использовали для получения смеси?
ИЛИ
Автомобиль, движущийся с постоянной скоростью 70 км/ч по прямому шоссе, обгоняет другой автомобиль, движущийся в ту же сторону с постоянной скоростью 40 км/ч. Каким будет расстояние (в километрах) между этими
автомобилями через 15 минут после обгона?
Ответ:
9
10
Симметричную игральную кость бросили 3 раза. Известно, что в сумме выпало 6 очков. Какова вероятность события «хотя бы раз выпало 3 очка»?
ИЛИ
В городе 48 % взрослого населения — мужчины. Пенсионеры составляют 12,6 % взрослого населения, причём доля пенсионеров среди женщин равна 15 %. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».
Ответ:
11
Найдите наименьшее значение функции на отрезке
ИЛИ
Найдите точку максимума функции
ИЛИ
Найдите точку минимума функции
Ответ:
12
а) Решите уравнение:
б) Определите, какие из его корней принадлежат отрезку
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
13
Все рёбра правильной треугольной призмы ABCA1B1C1 имеют длину 6. Точки M и N— середины рёбер AA1 и A1C1 соответственно.
а) Докажите, что прямые BM и MN перпендикулярны.
б) Найдите угол между плоскостями BMN и ABB1.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
14
Решите неравенство
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
15
15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
— 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r — целое число;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата | 15.01 | 15.02 | 15.03 | 15.04 | 15.05 | 15.06 | 15.07 |
Долг (в млн рублей) |
1 | 0,6 | 0,4 | 0,3 | 0,2 | 0,1 | 0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
16
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
17
Найдите все положительные значения a , при каждом из которых система
имеет единственное решение.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
18
В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали по крайней мере два учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл был целым числом. После этого, один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.
а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз?
б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?
в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.
Демо вариант профильного ЕГЭ по математике 2022 года. Критерии оценивания, ответы.
Перейти к содержимому
ЕГЭ 2023. В демонстрационных вариантах представлены конкретные примеры заданий, не исчерпывающие всего многообразия возможных формулировок заданий на каждой позиции варианта экзаменационной работы по данному предмету.
— Демоверсия база: Скачать
— Демоверсия профиль: Скачать
— Спецификация база: Скачать
— Спецификация профиль: Скачать
— Кодификатор: Скачать
Изменения в КИМ ЕГЭ 2023 года профильного уровня в сравнении с КИМ 2022 года
Изменения в содержании КИМ отсутствуют.
В структуру части 1 КИМ внесены изменения, позволяющие участнику экзамена более эффективно организовать работу над заданиями за счет перегруппировки заданий по тематическим блокам. Работа начинается с заданий по геометрии, затем следует блок заданий по элементам комбинаторики, статистике и теории вероятностей, а затем идут задания по алгебре (включая уравнения и неравенства, функции и началам анализа).
Изменения в КИМ ЕГЭ 2023 года базового уровня в сравнении с КИМ 2022 года
Изменения в содержании КИМ отсутствуют.
В структуру КИМ внесены изменения, позволяющие участнику экзамена более эффективно организовать работу над заданиями за счет перегруппировки заданий по тематическим блокам. В начале работы собраны практикоориентированные задания, позволяющие продемонстрировать умение применять полученные знания из различных разделов математики при решении практических задач, затем следуют блоки заданий по геометрии и по алгебре.
На выполнение работы базового уровня отводится 3 часа, профильного уровня — 3 часа 55 минут.
Обобщённые планы вариантов КИМ ЕГЭ 2023 года по математике
Номер задания | Проверяемые требования (умения) | Уровень сложности задания | Максимальный балл за выполнение задания | Примерное время выполнения задания выпускником, изучавшим математику на базовом уровне (в мин.) | Примерное время выполнения задания выпускником, изучавшим математику на профильном уровне (в мин.) |
1 | Уметь выполнять действия с геометрическими фигурами, координатами и векторами | Б | 1 | 5 | 3 |
2 | Уметь выполнять действия с геометрическими фигурами, координатами и векторами | Б | 1 | 10 | 3 |
3 | Уметь строить и исследовать простейшие математические модели | Б | 1 | 5 | 2 |
4 | Уметь использовать приобретённые знания и умения в практической деятельности и повседневной жизни | П | 1 | 15 | 8 |
5 | Уметь решать уравнения и неравенства | Б | 1 | 5 | 2 |
6 | Уметь выполнять вычисления и преобразования | Б | 1 | 5 | 3 |
7 | Уметь выполнять действия с функциями | Б | 1 | 10 | 4 |
8 | Уметь использовать приобретённые знания и умения в практической деятельности и повседневной жизни | П | 1 | 15 | 6 |
9 | Уметь строить и исследовать простейшие математические модели | П | 1 | 15 | 7 |
10 | Уметь выполнять действия с функциями | П | 1 | 15 | 8 |
11 | Уметь выполнять действия с функциями | П | 1 | 15 | 9 |
12 | Уметь решать уравнения и неравенства | П | 2 | 20 | 10 |
13 | Уметь выполнять действия с геометрическими фигурами, координатами и векторами | П | 3 | 40 | 20 |
14 | Уметь решать уравнения и неравенства | П | 2 | 30 | 15 |
15 | Уметь использовать приобретённые знания и умения в практической деятельности и повседневной жизни | П | 2 | 30 | 25 |
16 | Уметь выполнять действия с геометрическими фигурами, координатами и векторами | П | 3 | — | 35 |
17 | Уметь решать уравнения и неравенства | В | 4 | — | 35 |
18 | Уметь строить и исследовать простейшие математические модели | В | 4 | — | 40 |
Всего заданий — 18; из них по типу заданий: с кратким ответом — 11; с развёрнутым ответом — 7; по уровню сложности: Б — 6; П — 10; В — 2.Максимальный первичный балл за работу — 31.Общее время выполнения работы — 3 часа 55 минут. |
Базовый уровень:
Номер задания | Проверяемые требования (умения) | Уровень сложности задания | Максимальный балл за выполнение задания | Примерное время выполнения задания выпускником, изучавшим математику на базовом уровне (в мин.) |
1 | У меть выполнять вычисления и преобразования | Б | 1 | 7 |
2 | У меть использовать приобретённые знания и умения в практической деятельности и повседневной жизни | Б | 1 | 5 |
3 | У меть использовать приобретённые знания и умения в практической деятельности и повседневной жизни | Б | 1 | 5 |
4 | Уметь использовать приобретённые знания и умения в практической деятельности и повседневной жизни | Б | 1 | 4 |
5 | Уметь строить и исследовать простейшие математические модели | Б | 1 | 10 |
6 | Уметь строить и исследовать простейшие математические модели | Б | 1 | 11 |
7 | У меть выполнять действия с функциями | Б | 1 | 7 |
8 | Уметь строить и исследовать простейшие математические модели | Б | 1 | 8 |
9 | У меть выполнять действия с геометрическими фигурами | Б | 1 | 6 |
10 | У меть выполнять действия с геометрическими фигурами | Б | 1 | 10 |
11 | У меть выполнять действия с геометрическими фигурами | Б | 1 | 11 |
12 | У меть выполнять действия с геометрическими фигурами | Б | 1 | 8 |
13 | У меть выполнять действия с геометрическими фигурами | Б | 1 | 8 |
14 | У меть выполнять вычисления и преобразования | Б | 1 | 5 |
15 | У меть использовать приобретённые знания и умения в практической деятельности и повседневной жизни | Б | 1 | 8 |
16 | У меть выполнять вычисления и преобразования | Б | 1 | 7 |
17 | У меть решать уравнения и неравенства | Б | 1 | 7 |
18 | У меть решать уравнения и неравенства | Б | 1 | 8 |
19 | У меть выполнять вычисления и преобразования | Б | 1 | 15 |
20 | Уметь строить и исследовать простейшие математические модели | Б | 1 | 15 |
21 | Уметь строить и исследовать простейшие математические модели | Б | 1 | 15 |
Всего заданий — 21; из них по типу заданий: с кратким ответом — 21; по уровню сложности: Б — 21.Максимальный первичный балл за работу — 21.Общее время выполнения работы — 3 часа. |
Вам будет интересно:
Официальная демоверсия и изменения ЕГЭ 2023 по русскому языку от ФИПИ (задания и ответы)
* Олимпиады и конкурсы
* Готовые контрольные работы
* Работы СтатГрад
* Официальные ВПР
Поделиться:
Критерии
Оценивание
№ задания | 1-11 | 12, 14, 15 | 13, 16 | 17, 18 | Всего |
---|---|---|---|---|---|
Баллы | 1 | 2 | 3 | 4 | 31 |
Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).
Ответы к заданиям 1–11 записываются в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов № 1, выданный на экзамене!
При выполнении работы Вы можете воспользоваться справочными материалами, выдаваемыми вместе с работой.
Разрешается использовать только линейку, но можно сделать циркуль своими руками. Запрещается использовать инструменты с нанесёнными на них справочными материалами. Калькуляторы на экзамене не используются.
На экзамене при себе надо иметь документ удостоверяющий личность (паспорт), пропуск и капиллярную или гелевую ручку с черными чернилами! Разрешают брать с собой воду (в прозрачной бутылке) и еду (фрукты, шоколадку, булочки, бутерброды), но могут попросить оставить в коридоре.
№ задания | 1-11 | 12, 14, 15 | 13, 16 | 17, 18 | Всего |
---|---|---|---|---|---|
Баллы | 1 | 2 | 3 | 4 | 31 |
Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).
Ответы к заданиям 1–11 записываются в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов № 1, выданный на экзамене!
При выполнении работы Вы можете воспользоваться справочными материалами, выдаваемыми вместе с работой.
Разрешается использовать только линейку, но можно сделать циркуль своими руками. Запрещается использовать инструменты с нанесёнными на них справочными материалами. Калькуляторы на экзамене не используются.
На экзамене при себе надо иметь документ удостоверяющий личность (паспорт), пропуск и капиллярную или гелевую ручку с черными чернилами! Разрешают брать с собой воду (в прозрачной бутылке) и еду (фрукты, шоколадку, булочки, бутерброды), но могут попросить оставить в коридоре.
Шкалирование
Первичный | Тестовый | Оценка |
---|---|---|
5-6 | 27-34 | 3 |
7-8 | 40-46 | 4 |
9-10 | 52-58 | |
11-12-13 | 64-66-68 | 5 |
14-15-16 | 70-72-74 | |
17-18-19 | 76-78-80 | |
20-21-22 | 82-84-86 | |
23-24-25 | 88-90-92 | |
26-27-28 | 94-96-98 | |
29-30-31 | 100 |
Первичный балл / Тестовый балл |
5/27 | 6/34 | 7/40 | 8/46 | 9/52 | 10/58 | 11/64 | 12/66 | 13/68 | 14/70 |
---|---|---|---|---|---|---|---|---|---|---|
15/72 | 16/74 | 17/76 | 18/78 | 19/80 | 20/82 | X / 2X+42 | 29+ / 100 |
- 24.08.2022
Финальная демоверсия ЕГЭ для 2023 года по математике профильного уровня + спецификация + кодификатор для этого варианта. Автор-составитель: ФИПИ.
Обновлено: 12.11.2022
Документы по актуальной демоверсии ЕГЭ 2023 по математике — профиль
- Кодификатор по математике 2023 профиль
- Спецификация по математике 2023 профиль
Изменения ЕГЭ 2023 по математике
Изменений НЕТ
- Демоверсии ЕГЭ 2023 по всем предметам
- Тренировочные варианты ЕГЭ по математике профильногого уровня
Оставляйте свои комментарии ниже. Задавайте вопросы!
Смотреть в PDF:
Или прямо сейчас: cкачать в pdf файле.
Видеоразбор демоверсии ЕГЭ 2023 — профиль
Задания из демоверсии ЕГЭ 2023 по математике — профиль
Задание 3
Вероятность того, что мотор холодильника прослужит более 1 года, равна 0,8, а вероятность того, что он прослужит более 2 лет, равна 0,6. Какова вероятность того, что мотор прослужит более 1 года, но не более 2 лет?
Задание 9
Смешав 45%-ный и 97%-ный растворы кислоты и добавив 10 кг чистой воды, получили 62%-ный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг
50%-ного раствора той же кислоты, то получили бы 72%-ный раствор кислоты.
Сколько килограммов 45%-ного раствора использовали для получения смеси?
Задание 16
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй – в точке B. Прямая BK пересекает
первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
- Докажите, что прямые AD и BC параллельны.
- Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.