Демонстрационная версия ЕГЭ—2019 по математике. Профильный уровень.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
1
Поезд отправился из Санкт-Петербурга в 23 часа 50 минут и прибыл в Москву в 7 часов 50 минут следующих суток. Сколько часов поезд находился в пути?
Ответ:
2
На рисунке точками показана средняя температура воздуха в Сочи за каждый месяц 1920 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Для наглядности точки соединены линией. Определите по рисунку, сколько месяцев из данного периода средняя температура была больше 18 градусов Цельсия.
Ответ:
3
Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Ответ:
4
В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.
Ответ:
5
Найдите корень уравнения 3x − 5 = 81.
Ответ:
6
Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32°.
Ответ:
7
На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: x1, x2, …, x9. Среди этих точек найдите все точки, в которых производная функции y = f(x) отрицательна. В ответе укажите количество найденных точек.
Ответ:
8
В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в раза больше первого? Ответ дайте в сантиметрах.
Ответ:
9
10
11
Весной катер идёт против течения реки в раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).
Ответ:
12
Найдите точку максимума функции
Ответ:
13
а) Решите уравнение
б) Определите, какие из его корней принадлежат отрезку
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
14
Все рёбра правильной треугольной призмы ABCA1B1C1 имеют длину 6. Точки M и N— середины рёбер AA1 и A1C1 соответственно.
а) Докажите, что прямые BM и MN перпендикулярны.
б) Найдите угол между плоскостями BMN и ABB1.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
15
Решите неравенство
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
16
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
17
15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
— 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r — целое число;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата | 15.01 | 15.02 | 15.03 | 15.04 | 15.05 | 15.06 | 15.07 |
Долг (в млн рублей) |
1 | 0,6 | 0,4 | 0,3 | 0,2 | 0,1 | 0 |
Найдите наибольшее значение r , при котором общая сумма выплат будет меньше 1,2 млн рублей.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
18
Найдите все положительные значения a , при каждом из которых система
имеет единственное решение.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
19
В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали, по крайней мере, 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.
а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз?
б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?
в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.
Демо вариант профильного ЕГЭ по математике 2019 года. Критерии оценивания, ответы.
Демонстрационный вариант контрольных измерительных материалов единого государственного экзамена 2019 года по математике Профильного уровня. ЕГЭ по математике – это один из обязательных экзаменов для выпускников 11-го класса. Есть два варианта сдачи ЕГЭ по математике: базовый и профильный. Этот демо вариант поможет ученикам сдающим ЕГЭ по математике в 2019 году, получить представление о сложности профильного уровня. Демо вариант содержит 12 заданий с кратким вариантом ответов и 7 заданий с развернутым ответом. На последние 7 заданий представлены подробные решения и объяснения. Демо вариант можно скачать бесплатно по ссылке выше.
Комментарии для сайта Cackle
Единый государственный экзамен по математике. Демонстрационный вариант контрольных измерительных материалов единого государственного экзамена 2019 года по математике (профильный уровень) подготовлен Федеральным государственным бюджетным научным учреждением «Федеральный институт педагогических измерений» (ФИПИ)
13. а) Решите уравнение $2sin left(x + dfrac{pi}{3}right) + cos 2x = sqrt{3} cos x + 1$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $left[ -3pi; -dfrac{3pi}{2} right]$.
14. Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ имеют длину 6. Точки $M$ и $N$ — середины рёбер $AA_1$ и $A_1C_1$ соответственно.
а) Докажите, что прямые $BM$ и $MN$ перпендикулярны.
б) Найдите угол между плоскостями $BMN$ и $ABB_1$.
15. Решите неравенство $$log_{11} left( 8x^2 + 7 right) — log_{11} left( x^2 + x + 1 right) geqslant log_{11} left( dfrac{x}{x + 5} + 7right).$$
16. Две окружности касаются внешним образом в точке $K$. Прямая $AB$ касается первой окружности в точке $A$, а второй — $в$ точке $B$. Прямая $BK$ пересекает первую окружность в точке $D$, прямая $AK$ пересекает вторую окружность в точке $C$.
а) Докажите, что прямые $AD$ и $BC$ параллельны.
б) Найдите площадь треугольника $AKB$, если известно, что радиусы окружностей равны 4 и 1.
17. 15-го января планируется взять кредит в банке на 1 млн рублей на 6 месяцев. Условия его возврата таковы:
− 1-го числа каждого месяца долг возрастает на целое число $r$ процентов по сравнению с концом предыдущего месяца;
− со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
− 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей
Дата | 15.01 | 15.02 | 15.03 | 15.04 | 15.05 | 15.06 | 15.07 |
Долг (в млн рублей) | 1 | 0,6 | 0,4 | 0,3 | 0,2 | 0,1 | 0 |
Найдите наибольшее значение $r$, при котором общая сумма выплат будет меньше 1,2 млн рублей.
18. Найдите все положительные значения $a$, при каждом из которых система $$begin{cases} (|x| — 5)^2 + (y − 4)^2 = 9, \ (x + 2)^2 + y^2 = a^2end{cases}$$ имеет единственное решение.
19. В школах #1 и #2 учащиеся писали тест. Из каждой школы тест писали, по крайней мере, 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы #1 в школу #2, а средние баллы за тест были пересчитаны в обеих школах.
а) Мог ли средний балл в школе #1 уменьшиться в 10 раз?
б) Средний балл в школе #1 уменьшился на 10%, средний балл в школе #2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе #2 равняться 7?
в) Средний балл в школе #1 уменьшился на 10%, средний балл в школе #2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе #2.
Елена Репина
2018-08-30
2019-06-10
2019
- Материалы для подготовки к ЕГЭ
-
- Рубрики
- 01 Геометрия
- 02 Стереометрия
- 03 Теория вероятностей ч.1
- 04 Теория вероятностей ч.2
- 05 Простейшие уравнения
- 06 Вычисления
- 07 Производная, ПО
- 08 «Прикладные» задачи
- 09 Текстовые задачи
- 10 Графики функций
- 11 Исследование функции
- 12 (С1) Уравнения
- 13 (С2) Стереометр. задачи
- 14 (С3) Неравенства
- 15 (С4) Практич. задачи
- 16 (С5) Планиметр. задачи
- 17 (С6) Параметры*
- 18 (С7) Числа, их свойства
- A1 Простейшие текст/задачи (нет в ЕГЭ-22)
- A2 Читаем графики (нет в ЕГЭ-22)
- II часть
- Видеоуроки
- ГИА
- ЕГЭ (диагностич. работы)
- Иррациональные выражения, уравнения и неравенства
- Логарифмы
- МГУ
- Метод интервалов
- Метод рационализации
- Модуль
- Параметр
- Переменка
- Планиметрия
- Показательные выражения, уравнения и неравенства
- Разложение на множители
- Рациональные выражения, уравнения и неравенства
- Справочные материалы
- Стереометрия
- Т/P A. Ларина
- Текстовые задачи
- Теория чисел
- Тесты по темам
- Тригонометрические выражения, уравнения и неравенства
- Функции и графики
- Дружественные сайты
Сайт А. Ларина
ЕгэТренер – О. Себедаш
Математика?Легко!
Егэ? Ок! – И. Фельдман
- Свежие статьи
- Тест «Гиперболы»
- Тест. Графики функций. Комбинированные задачи
- 10. Графики функций. Комбинированные задачи
- Тест. Тригонометрические функции
- 10. Тригонометрическая функция
- Тест. Кусочно-линейная функция
- 10. Кусочно-линейная функция
- Архивы Архивы
До начала учебного года на официальном сайте ФИПИ, опубликованы проекты демонстрационных вариантов ЕГЭ 2019 с целью предоставления выпускникам возможности подготовиться к единому государственному экзамену.
Демоверсия ЕГЭ по математике 2019 год профильный уровень
Изменения структуры и содержания КИМ ЕГЭ 2019 года в сравнении с 2018 годом отсутствуют.
Структура КИМ ЕГЭ 2019 по математике профильного уровня
Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:
– часть 1 содержит 8 заданий (задания 1–8) с кратким ответом в виде целого числа или конечной десятичной дроби;
– часть 2 содержит 4 задания (задания 9–12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).
Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.
Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне. По уровню сложности задания распределяются следующим образом: задания 1–8 имеют базовый уровень; задания 9–17 – повышенный уровень; задания 18 и 19 относятся к высокому уровню сложности.
Задания части 1 предназначены для определения математических компетентностей выпускников образовательных организаций, реализующих программы среднего (полного) общего образования на базовом уровне.
Задание с кратким ответом (1–12) считается выполненным, если в бланке ответов № 1 зафиксирован верный ответ в виде целого числа или конечной десятичной дроби.
Задания 13–19 с развернутым ответом, в числе которых 5 заданий повышенного уровня и 2 задания высокого уровня сложности, предназначены для более точной дифференциации абитуриентов вузов.
При выполнении заданий с развернутым ответом части 2 экзаменационной работы в бланке ответов № 2 должны быть записаны полное обоснованное решение и ответ для каждой задачи.
Распределение заданий КИМ по содержанию, видам умений и способам действий
Задания части 1 проверяют следующий учебный материал.
1. Математика, 5–6 классы.
2. Алгебра, 7–9 классы.
3. Алгебра и начала анализа, 10–11 классы.
4. Теория вероятностей и статистика, 7–9 классы.
5. Геометрия, 7–11 классы.
Задания части 2 проверяют следующий учебный материал.
1. Алгебра, 7–9 классы.
2. Алгебра и начала анализа, 10–11 классы.
3. Геометрия, 7–11 классы.
Продолжительность ЕГЭ по математике профильного уровня
На выполнение экзаменационной работы отводится 3 часа 55 минут (235 минут).
Смотрите также:
Демоверсии ЕГЭ по математике
Демоверсия ЕГЭ 2019 по математике от ФИПИ, утверждено
- Пояснения к демонстрационному варианту контрольных измерительных материалов для ЕГЭ 2019 года по МАТЕМАТИКЕ
- Инструкция по выполнению работы, профильный уровень
- Инструкция по выполнению работы, базовый уровень
- Спецификация профильного уровня
- Спецификация базового уровня
- Просмотр демоверсии базового уровня
- Просмотр демоверсии профильного уровня
- Скачать демоверсию ЕГЭ 2019 по математике
Изменения в ЕГЭ 2019 года по математике:
Нет изменений структуры и содержания.
Пояснения к демонстрационному варианту контрольных измерительных материалов для ЕГЭ 2019 года по МАТЕМАТИКЕ
При ознакомлении с демонстрационным вариантом контрольных измерительных материалов ЕГЭ 2019 г. следует иметь в виду, что задания, включённые в него, не отражают всех вопросов содержания, которые будут проверяться с помощью вариантов КИМ в 2019 г. Полный перечень вопросов, которые могут контролироваться на едином государственном экзамене 2019 г., приведён в кодификаторе элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена 2019 г. по математике.
Назначение демонстрационного варианта заключается в том, чтобы дать возможность любому участнику ЕГЭ и широкой общественности составить представление о структуре будущих КИМ, количестве заданий, об их форме и уровне сложности. Приведённые критерии оценки выполнения заданий с развёрнутым ответом, включённые в этот вариант, дают представление о требованиях к полноте и правильности записи развёрнутого ответа.
Эти сведения позволят выпускникам выработать стратегию подготовки к ЕГЭ.
Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий.
Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.
На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).
Ответы к заданиям 1—12 записываются по приведённому ниже образцу в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1.
При выполнении заданий 13-19 требуется записать полное решение и ответ в бланке ответов № 2.
Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой, или капиллярной, или перьевой ручек.
При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
Желаем успеха!
Демонстрационный вариант предназначен для того, чтобы дать представление о структуре будущих контрольных измерительных материалов, количестве заданий, об их форме и уровне сложности.
В демонстрационном варианте представлено по несколько примеров заданий на каждую позицию экзаменационной работы. В реальных вариантах экзаменационной работы на каждую позицию будет предложено только одно задание.
Задания демонстрационного варианта не отражают всех вопросов содержания, которые могут быть включены в контрольные измерительные материалы в 2019 г.
Экзаменационная работа включает в себя 20 заданий.
На выполнение работы отводится 3 часа (180 минут).
Ответы к заданиям записываются в виде числа или последовательности цифр. Запишите ответы к заданиям в поле ответа в тексте работы, а затем перенесите в бланк ответов № 1 справа от номера соответствующего задания. Если ответом является последовательность цифр, то запишите эту последовательность в бланк ответов № 1 без пробелов, запятых и других дополнительных символов.
Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой, капиллярной или перьевой ручек.
При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
Желаем успеха!
Спецификация
контрольных измерительных материалов
для проведения в 2019 году единого государственного экзамена
по МАТЕМАТИКЕ (профильный уровень)
1. Назначение контрольных измерительных материалов
Контрольные измерительные материалы (КИМ) позволяют установить уровень освоения выпускниками Федерального компонента государственного образовательного стандарта среднего (полного) общего образования.
Результаты единого государственного экзамена по математике признаются общеобразовательными организациями, в которых реализуются образовательные программы среднего (полного) общего образования, как результаты государственной (итоговой) аттестации, а образовательными учреждениями среднего профессионального образования и образовательными учреждениями высшего профессионального образования как результаты вступительных испытаний по математике.
2. Документы, определяющие содержание контрольных измерительных материалов
Содержание экзаменационной работы определяется на основе Федерального компонента государственного стандарта основного общего и среднего (полного) общего образования (приказ Минобразования России от 05.03.2004 № 1089
«Об утверждении федерального компонента государственных стандартов начального общего, основного общего и среднего (полного) общего образования»).
3. Подходы к отбору содержания, разработке структуры контрольных измерительных материалов
Представленная модель экзаменационной работы по математике (кодификаторы элементов содержания и требований для составления КИМ, демонстрационный вариант, система оценивания экзаменационной работы) сохраняет преемственность с экзаменационной моделью прошлых лет в тематике, примерном содержании и уровне сложности заданий. Однако по сравнению с моделью 2015 г. имеются изменения. В целях оптимизации структуры варианта в условиях перехода к двухуровневому экзамену из первой части исключены два задания.
Выполнение заданий части 1 экзаменационной работы (задания 1-8) свидетельствует о наличии общематематических умений, необходимых человеку в современном обществе. Задания этой части проверяют базовые вычислительные и логические умения и навыки, умение анализировать информацию, представленную на графиках и в таблицах, использовать простейшие вероятностные и статистические модели, ориентироваться в простейших геометрических конструкциях. В часть 1 работы включены задания по всем основным разделам курса математики: геометрия (планиметрия и стереометрия), алгебра, начала математического анализа, теория вероятностей и статистика.
В целях эффективного отбора выпускников для продолжения образования в высших учебных заведениях с различными требованиями к уровню математической подготовки абитуриентов, задания части 2 работы проверяют знания на том уровне требований, который традиционно предъявляется вузами с профильным экзаменом по математике. Последние три задания части 2 предназначены для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов.
Сохранена успешно зарекомендовавшая себя в 2010-2015 гг. система оценивания заданий с развернутым ответом. Эта система, продолжившая традиции выпускных и вступительных экзаменов по математике, основывается на следующих принципах.
1. Возможны различные способы и записи развернутого решения. Главное требование — решение должно быть математически грамотным, из него должен быть понятен ход рассуждений автора работы. В остальном (метод, форма записи) решение может быть произвольным. Полнота и обоснованность рассуждений оцениваются независимо от выбранного метода решения. При этом оценивается продвижение выпускника в решении задачи, а не недочеты по сравнению с «эталонным» решением.
2. При решении задачи можно использовать без доказательств и ссылок математические факты, содержащиеся в учебниках и учебных пособиях, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ среднего общего образования.
Настоящая модель экзаменационной работы разработана в следующих предположениях.
1. Варианты ЕГЭ формируются на основе и с использованием открытого банка заданий по математике.
2. Допускается проведение экзамена как по данной модели, так и по варианту КИМ базового уровня.
Тексты заданий предлагаемой модели экзаменационной работы в целом соответствуют формулировкам, принятым в учебниках и учебных пособиях, включенным в Федеральный перечень учебников, рекомендуемых Министерством образования и науки РФ к использованию при реализации имеющих государственную аккредитацию образовательных программ основного общего и среднего общего образования.
………………………
Спецификация
контрольных измерительных материалов
для проведения в 2019 году единого государственного экзамена
по МАТЕМАТИКЕ (базовый уровень)
1. Назначение контрольных измерительных материалов
Единый государственный экзамен (далее — ЕГЭ) представляет собой форму объективной оценки качества подготовки лиц, освоивших образовательные программы среднего общего образования, с использованием заданий стандартизированной формы (контрольных измерительных материалов).
ЕГЭ проводится в соответствии с Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации».
Контрольные измерительные материалы (далее — КИМ) позволяют установить уровень освоения выпускниками Федерального компонента государственного стандарта среднего (полного) общего образования по математике, базовый уровень.
Результаты единого государственного экзамена по математике (базовый уровень) признаются образовательными организациями среднего общего образования и образовательными организациями среднего профессионального образования как результаты государственной итоговой аттестации.
2. Документы, определяющие содержание контрольных измерительных материалов
Содержание экзаменационной работы определяется Федеральным компонентом государственных стандартов основного общего и среднего (полного) общего образования, базовый уровень (приказ Минобразования России от 05.03.2004 № 1089 «Об утверждении федерального компонента государственных стандартов начального общего, основного общего и среднего (полного) общего образования»).
3. Подходы к отбору содержания, разработке структуры контрольных измерительных материалов
Распоряжением Правительства РФ от 24.12.2013 № 2506-р, принятым в соответствии с Указом Президента РФ от 07.05.2012 «О мерах по реализации государственной политики в области образования и науки», утверждена Концепция развития математического образования в Российской Федерации, определяющая базовые принципы, цели, задачи и основные направления. Согласно Концепции, математическое образование должно, с одной стороны, «предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе», с другой — «обеспечивать необходимое стране число выпускников, математическая подготовка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание математики, математические исследования, работу в сфере информационных технологий и др.». Кроме того, «в основном общем и среднем общем образовании необходимо предусмотреть подготовку обучающихся в соответствии с их запросами к уровню подготовки в сфере математического образования».
………………………
Просмотр базовой демоверсии ЕГЭ-2019 по математике, pdf
Просмотр демоверсии ЕГЭ-2019 по математике профильного уровня, pdf
Видео решение демоверсии ЕГЭ 2019 по математике (базовый уровень) и аналогичных заданий:
1 23456789101112131415 16 17 18 19 20
Видео решение демоверсии ЕГЭ 2015 по математике (профильный уровень) и аналогичных заданий:
В1 В2В3В4В5В6В7В8В9В10В11В12В13В14В15 С1 С2 С3
- 24.08.2018
Официальная демоверсия по профильной математике ЕГЭ 2019 от 24 ноября 2018 года с кодификатором и спецификацией от ФИПИ.
Изменения по профильной математике в 2019 году:
ИЗМЕНЕНИЙ НЕТ
- Подробный разбор и решение всех задач демоверсии 2019 (Видеоформат и текстовый)
- Тренировочные варианты 2019 по профилю
Смотреть в PDF:
Или прямо сейчас: cкачать в pdf файле.
Сохранить ссылку:
Комментарии (0)
Добавить комментарий
Добавить комментарий
Комментарии без регистрации. Несодержательные сообщения удаляются.
Имя (обязательное)
E-Mail
Подписаться на уведомления о новых комментариях
Отправить