Дерево фано егэ информатика

Всего: 97    1–20 | 21–40 | 41–60 | 61–80 | 81–97

Добавить в вариант

По каналу связи передаются сообщения, содержащие только буквы А, Б, В, Г, Д, Е. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано; для букв A, Б, В используются такие кодовые слова: А  — 1, Б – 010, В – 001.

Какова наименьшая возможная суммарная длина всех кодовых слов? Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова. Коды, удовлетворяющие условию Фано, допускают однозначное декодирование.


Для кодирования некоторой последовательности, состоящей из букв И, К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Н использовали кодовое слово 0, для буквы К – кодовое слово 10. Какова наименьшая возможная суммарная длина всех пяти кодовых слов?

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.


Для кодирования растрового рисунка, напечатанного с использованием шести красок, применили неравномерный двоичный код. Для кодирования цветов используются кодовые слова.

Цвет Кодовое слово
Белый 0
Зелёный 11111
Красный 1110
Цвет Кодовое слово
Синий
Фиолетовый 11110
Чёрный 10

Укажите кратчайшее кодовое слово для кодирования синего цвета, при котором код будет удовлетворять условию Фано. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

Источник: ЕГЭ по информатике 2017. Досрочная волна


По каналу связи передаются сообщения, содержащие только пять букв: П, И, Л, О, Т. Для передачи используется двоичный код, удовлетворяющий условию Фано. Для буквы И используется кодовое слово 1; для буквы О используется кодовое слово 01.

Какова минимальная общая длина кодовых слов для всех пяти букв? Примечание: условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


По каналу связи передаются шифрованные сообщения, содержащие только десять букв: А, Б, Е, И, К, Л, Р, С, Т, У. Для передачи используется неравномерный двоичный код. Для девяти букв используются кодовые слова. Для буквы А − 00, Е  — 010, И  — 011, К  — 1111, Л  — 1101, Р  — 1010, С  — 1110, Т  — 1011, У  — 100.

Укажите кратчайшее кодовое слово для буквы Б, при котором код будет удовлетворять условию Фано. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

Источник: Демонстрационная версия ЕГЭ—2018 по информатике.


По каналу связи передаются сообщения, содержащие только четыре буквы: Р, Е, К, А; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв А, Р, Е используются такие кодовые слова: А: 111, Р: 0, Е: 100.

Укажите кратчайшее кодовое слово для буквы К. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


По каналу связи передаются сообщения, содержащие только четыре буквы: М, О, Р, Е; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв О, Р, Е используются такие кодовые слова: О: 111, Р: 0, Е: 100.

Укажите кратчайшее кодовое слово для буквы М. Если таких кодов несколько, укажите код с наибольшим числовым значением.

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


По каналу связи передаются сообщения, содержащие только восемь букв: А, Б, Г, Е, И, М, Р, Т. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны:

Буква Кодовое слово
А 11
Б 0010
Г 1011
Е 0011
Буква Кодовое слово
И
М 01
Р 000
Т 1010

Укажите кратчайшее кодовое слово для буквы И. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Источник: СтатГрад: Тренировочная работа 28.11.2017 ИН10203


По каналу связи передаются сообщения, содержащие только восемь букв: А, Б , Г , Е , И , М, Р , Т . Для передачи и спользуется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны:

Буква Кодовое слово
А 0101
Б 1000
Г
Е 011
Буква Кодовое слово
И 00
М 0100
Р 11
Т 1001

Укажите кратчайшее кодовое слово для буквы Г. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


Для передачи данных используется двоичный код. Сообщение содержит только буквы А, Б, В или Г, для букв А, Б и В используются следующие кодовые слова: A  — 0, Б  — 101, В  — 111.

Найдите кодовое слово минимальной длины для Г при котором сохраняется прямое условие Фано. Если таких кодовых слов несколько, укажите кодовое слово с минимальным двоичным значением.

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

Источник: ЕГЭ — 2018. Досрочная волна. Вариант 1., ЕГЭ — 2018. Досрочная волна. Вариант 2.


По каналу связи передаются сообщения, содержащие только четыре буквы: А, Б, В, Г; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В используются такие кодовые слова: А  — 0; Б  — 110; В  — 101.

Укажите кратчайшее кодовое слово для буквы Г, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наибольшим числовым значением.

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

Источник: ЕГЭ — 2018. Досрочная волна. Вариант 2., ЕГЭ — 2018. Досрочная волна. Вариант 1.


По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А  — 010, Б  — 00, Г  — 101. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ГРАММ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


По каналу связи передаются сообщения, содержащие только семь букв: А, Б, И, К, Л, О, С. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А  — 001, И  — 01, С  — 10. Какое наименьшее количество двоичных знаков потребуется для кодирования слова КОЛОБОК?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, Н, Р, Т. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: Г  — 110, И  — 01, Т  — 10. Какое наименьшее количество двоичных знаков потребуется для кодирования слова БАРАБАН?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


По каналу связи передаются сообщения, содержащие только семь букв: А, Б, И, К, Л, С, Ц. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: Б  — 00, К  — 010, Л  — 111. Какое наименьшее количество двоичных знаков потребуется для кодирования слова АБСЦИССА?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


По каналу связи передаются сообщения, содержащие только семь букв: А, Б, В, Д, Е, И, Н. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А  — 110, Б  — 01, И  — 000. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ВВЕДЕНИЕ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


По каналу связи передаются сообщения, содержащие только семь букв: А, Б, В, Г, Й, К, Л. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: Б  — 00, Г  — 010, К  — 101. Какое наименьшее количество двоичных знаков потребуется для кодирования слова БАЛАЛАЙКА?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


По каналу связи передаются сообщения, содержащие только семь букв: А, Б, В, Д, О, Р, Т. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: Б  — 01, Д  — 001, Р  — 100. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ВОДОВОРОТ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


Для кодирования некоторой последовательности, состоящей из букв К, Л, М, Н, П, Р решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв К, Л, М, Н использовали соответственно кодовые слова 00, 01, 100, 110. Укажите кратчайшее возможное кодовое слово для буквы П, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Источник: ЕГЭ — 2019. Досрочная волна. Вариант 1.


Для кодирования некоторой последовательности, состоящей только из букв А, Б, В, Г, Д, Е решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв А, Б использовали соответственно кодовые слова 00, 01. Какова наименьшая возможная сумма длин кодовых букв В, Г, Д, Е, при котором код будет допускать однозначное декодирование.

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

Источник: ЕГЭ по информатике 03.07.2020. Основная волна

Всего: 97    1–20 | 21–40 | 41–60 | 61–80 | 81–97

Привет! Сегодня узнаем, как решать 4 задание из ЕГЭ по информатике нового формата 2021.

Четвёртое задание из ЕГЭ по информатике раскрывает тему кодирование информации. Одним из центральных приёмов при решении задач подобного типа является построение дерева Фано. Рассмотрим на примерах этот метод.

Задача (стандартная)

По каналу связи передаются сообщения, содержащие только шесть букв: А, B, C, D, E, F. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано. Для букв A, B, C используются такие кодовые слова: А — 11, B — 101, C — 0. Укажите кодовое слово наименьшей возможной длины, которое можно использовать для буквы F. Если таких слов несколько, укажите то из них, которое соответствует наименьшему возможному двоичному числу.

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова. Коды, удовлетворяющие условию Фано, допускают однозначное декодирование

Решение:

Т.к. код букв должен удовлетворять условию Фано (т.е. однозначно декодироваться), то
расположим буквы, которые уже имеют код (A, B, C), на Дереве Фано.

Дерево Фано для двоичного кодирования начинается с двух направлений, которые означают 0(ноль) и 1(единицу) (цифры двоичного кодирования).

От каждого направления можно также рисовать только два направления: 0(ноль) и 1(единицу) и т.д. Для удобства будем рисовать 1(единицу) только вправо, а 0(ноль) только влево.

Получается структура похожая на дерево!

В конце каждой ветки можно располагать букву, которую мы хотим закодировать, но если мы расположили букву, от этой ветки больше нельзя делать новых ответвлений.

Такой подход позволяет однозначно декодировать сообщение, состоящее из этих букв.

ЕГЭ по информатике - задание 4 (Дерево Фано)

Буква C заблокировала левую ветку, поэтому будем работать с правой частью нашего дерева.

Если мы расположим какую-нибудь букву на оставшуюся ветку (100), то эта ветка заблокируется, и нам некуда будет писать остальные 2 буквы. Поэтому продолжаем ветку (100) дальше.

ЕГЭ по информатике - задание 4 (Дерево Фано решение)

Теперь свободно уже две ветки, а нам нужно закодировать ещё три буквы. Поэтому должны ещё раз продолжить дерево от какой-нибудь ветки.

Но уже видно, что букве F будет правильно присвоить код 1000, т.к. нам в условии сказано, что код буквы F должен соответствовать наименьшему возможному двоичному числу. Как расположить буквы D и E в данной задаче не принципиально.

ЕГЭ по информатике - задание 4 (Дерево Фано окончательное решение)

Ответ: 1000.

Ещё один важный тип задания 4 из ЕГЭ по информатике нового формата 2021.

Задача (стандартная)

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, И, К, Л, С, Ц. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: Б — 00, К — 010, Л — 111. Какое наименьшее количество двоичных знаков потребуется для кодирования слова АБСЦИССА?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Решение:

Коды букв должны удовлетворять условию Фано. Некоторые буквы уже имеют заданные коды (Б, К, Л). Нам нужно, чтобы слово АБСЦИССА имело как можно меньше двоичных знаков. Заметим, что буква C встречается три раза, а буква A два раза, значит, этим буквам стараемся присвоить как можно меньшую длину!

Отметим на дереве Фано уже известные буквы (Б, К, Л).

ЕГЭ по информатике - задание 4 (стандартная задача Дерево Фано)

У нас осталось 4 (четыре) буквы, а свободных веток 3(три), поэтому мы должны продолжить дерево. но какую ветку продолжить ?

1 вариант

Если продолжить линию 1-0, то получится такая картина :

ЕГЭ по информатике - задание 4 (тренировочная задача Дерево Фано)

Теперь получились 4(четыре) свободные ветки равной длины (3(трём) двоичным символам). Т.к. ветки равной длины, то не важно на какую ветку какую букву расположим.

Посчитаем общую длину слова АБСЦИССА.

ЕГЭ по информатике - задание 4 (тренировочная задача подсчёт длины)

3 + 2 + 3 + 3 + 3 + 3 + 3 + 3 = 23.

2 вариант

Продлим линию 1-1-0 (можно и 0-1-1, не принципиально, т.к. эти ветки имеют одинаковую длину.), то получится:

ЕГЭ по информатике - задание 4 (тренировочная задача дерево фано 2)

С мы присваиваем 1-0, т.к. это буква повторяется в сообщении самое большое количество раз, значит, ей присваиваем самый маленький код, чтобы всё сообщение имело наименьшую длину.

Из этих же соображений букве А присваиваем код из трёх двоичных символов 0-1-1.

Подсчитаем общее количество символов в сообщении.

ЕГЭ по информатике - задание 4 (тренировочная задача подсчёт длины 2)

3 + 2 + 2 + 4 + 4 + 2 + 2 + 3 = 22

Длина получилась меньше, чем в первом варианте. Других вариантов нет, поэтому ответ будет 22.

Ответ: 22.

Задача (не сложная)

Для передачи по каналу связи сообщения, состоящего только из символов А, Б, В и Г, используется неравномерный (по длине) код: А-10, Б-11, В-110, Г-0. Через канал связи передаётся сообщение: ВАГБААГВ. Закодируйте сообщение данным кодом. Полученное двоичное число переведите в восьмеричный вид.

Решение:

В этой задаче ничего не сказано про условие Фано. Здесь уже все буквы закодированы, осталось написать сам код.

Задача сводится к переводу из двоичной системы в восьмеричную систему. На эту тему был урок на моём сайте.

ЕГЭ по информатике - задание 4 (кодирование сообщения)

Ответ: 151646.

На этом всё! Увидимся на следующих занятиях по подготовке к ЕГЭ по информатике.

Этого не знаю. Это просто примерные задачи, которые наиболее часто попадаются в книжках и на сайтах по подготовке к ЕГЭ по информатике.

Здравствуйте, а вот такое задание ПО КАНАЛУ СВЯЗИ ПЕРЕДАЮТСЯ СООБЩЕНИЯ, СОДЕРЖАЩИЕ ТОЛЬКО 4 БУКВЫ : А, Б, В, Г; ДЛЯ ПЕРЕДАЧИ ИСП. ДВОИЧНЫЙ КОД, ДОПУСКАЮЩИЙ ОДНОЗНАЧНОЕ ДЕКОДИРОВАНИЕ. ДЛЯ БУКВ А, Б, В ИСПОЛЬЗУЮТСЯ ТАКИЕ КОДОВЫЕ СЛОВА: А:00011, Б:1001, В: 01100.
УКАЖИТЕ КРАТЧАЙШЕЕ КОДОВОЕ СЛОВО ДЛЯ БУКВЫ Г, ПРИ КОТОРОМ КОД БУДЕТ ДОПУСКАТЬ ОДНОЗНАЧНОЕ ДЕКОДИРОВАНИЕ. ЕСЛИ ТАКИХ КОДОВ НЕСКОЛЬКО, УКАЖИТЕ КОД С НАИМЕНЬШИМ ЧИСЛОВЫМ ЗНАЧЕНИЕМ. В ответе указано число 10. Не могу понять почему. У меня 11.

Здравствуйте, а вот такое задание ПО КАНАЛУ СВЯЗИ ПЕРЕДАЮТСЯ СООБЩЕНИЯ, СОДЕРЖАЩИЕ ТОЛЬКО 4 БУКВЫ : А, Б, В, Г; ДЛЯ ПЕРЕДАЧИ ИСП. ДВОИЧНЫЙ КОД, ДОПУСКАЮЩИЙ ОДНОЗНАЧНОЕ ДЕКОДИРОВАНИЕ. ДЛЯ БУКВ А, Б, В ИСПОЛЬЗУЮТСЯ ТАКИЕ КОДОВЫЕ СЛОВА: А:00011, Б:1001, В: 01100.
УКАЖИТЕ КРАТЧАЙШЕЕ КОДОВОЕ СЛОВО ДЛЯ БУКВЫ Г, ПРИ КОТОРОМ КОД БУДЕТ ДОПУСКАТЬ ОДНОЗНАЧНОЕ ДЕКОДИРОВАНИЕ. ЕСЛИ ТАКИХ КОДОВ НЕСКОЛЬКО, УКАЖИТЕ КОД С НАИМЕНЬШИМ ЧИСЛОВЫМ ЗНАЧЕНИЕМ. В ответе указано число 10. Не могу понять почему. У меня 11.

Ольга Владимировна Сорокина, как я понимаю, суть задания в том, что здесь действует либо прямое, либо обратное условие Фано. (Примечание. Условие Фано означает, что соблюдается одно из двух условий.
Либо никакое кодовое слово не является началом другого кодового слова,
либо никакое кодовое слово не является окончанием другого кодового слова.
Это обеспечивает возможность однозначной расшифровки закодированных
сообщений.)
Поэтому 10 является ответом, так как ни один код для букв не оканчивается на 10 (срабатывает обратное условие Фано)

Урок посвящен тому, как решать 4 задание ЕГЭ по информатике

Содержание:

  • Кодирование информации
    • Кодирование и расшифровка сообщений
  • Решение 4 заданий ЕГЭ

Кодирование информации

4-е задание: «Кодирование и декодирование информации»

Уровень сложности

— базовый,

Требуется использование специализированного программного обеспечения

— нет,

Максимальный балл

— 1,

Примерное время выполнения

— 2 минуты.

  
Проверяемые элементы содержания: Умение кодировать и декодировать информацию

До ЕГЭ 2021 года — это было задание № 5 ЕГЭ

Типичные ошибки и рекомендации по их предотвращению:

«Из-за невнимательного чтения условия задания экзаменуемые иногда не замечают, что требуется найти кодовое слово минимальной длины с максимальным (минимальным) числовым значением.

Кроме того, если в задании указано, что несколько букв остались без кодовых слов (как, например, в задании демоварианта), то кодовое слово для указанной буквы должно быть подобрано таким образом, чтобы осталась возможность найти кодовые слова, удовлетворяющие условию Фано, и для других букв. Так, например, если мы букву А закодируем нулём, а букву Б единицей, то букву В мы уже никак не сможем закодировать с соблюдением условия Фано, поэтому длину кодового слова для А или Б следует увеличить»

ФГБНУ «Федеральный институт педагогических измерений»

  • Кодирование — это представление информации в форме, удобной для её хранения, передачи и обработки. Правило преобразования информации к такому представлению называется кодом.
  • Кодирование бывает равномерным и неравномерным:
  • при равномерном кодировании всем символам соответствуют коды одинаковой длины;
  • при неравномерном кодировании разным символам соответствуют коды разной длины, это затрудняет декодирование.

Пример: Зашифруем буквы А, Б, В, Г при помощи двоичного кодирования равномерным кодом и посчитаем количество возможных сообщений:
двоичное кодирование

Таким образом, мы получили равномерный код, т.к. длина каждого кодового слова одинакова для всех кодов (2).

Кодирование и расшифровка сообщений

Декодирование (расшифровка) — это восстановление сообщения из последовательности кодов.

Для решения задач с декодированием, необходимо знать условие Фано:

Условие Фано: ни одно кодовое слово не должно являться началом другого кодового слова (что обеспечивает однозначное декодирование сообщений с начала)

Префиксный код — это код, в котором ни одно кодовое слово не совпадает с началом другого кодового слова. Сообщения при использовании такого кода декодируются однозначно.

  • если сообщение декодируется с конца, то его можно однозначно декодировать, если выполняется обратное условие Фано:
  • Обратное условие Фано: никакое кодовое слово не является окончанием другого кодового слова

    Постфиксный код — это код, в котором ни одно кодовое слово не совпадает с концом другого кодового слова. Сообщения при использовании такого кода декодируются однозначно и только с конца.

    постфиксный код

  • условие Фано – это достаточное, но не необходимое условие однозначного декодирования.

Однозначное декодирование обеспечивается:

Однозначное декодирование

Однозначное декодирование

Декодирование

Декодирование

Егифка ©:

решение 4 задания ЕГЭ

Задание демонстрационного варианта 2022 года ФИПИ
Плейлист видеоразборов задания на YouTube:


ЕГЭ 4.1: Для кодирования букв О, В, Д, П, А решили использовать двоичное представление чисел 0, 1, 2, 3 и 4 соответственно (с сохранением одного незначащего нуля в случае одноразрядного представления).

Закодируйте последовательность букв ВОДОПАД таким способом и результат запишите восьмеричным кодом.

✍ Решение:

  • Переведем числа в двоичные коды и поставим их в соответствие нашим буквам:
  • О -> 0 -> 00
    В -> 1 -> 01
    Д -> 2 -> 10
    П -> 3 -> 11
    А -> 4 -> 100
    
  • Теперь закодируем последовательность букв из слова ВОДОПАД:
  • 010010001110010
    
  • Разобьем результат на группы из трех символов справа налево, чтобы перевести их в восьмеричную систему счисления:
  • 010 010 001 110 010
     ↓   ↓   ↓   ↓   ↓
     2   2   1   6   2
    

Результат: 22162

Теоретическое решение ЕГЭ данного задания по информатике, видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь


Рассмотрим еще разбор 4 задания ЕГЭ:

ЕГЭ 4.2: Для 5 букв латинского алфавита заданы их двоичные коды (для некоторых букв — из двух бит, для некоторых — из трех). Эти коды представлены в таблице:

a b c d e
000 110 01 001 10

Какой набор букв закодирован двоичной строкой 1100000100110?

✍ Решение:

  • Во-первых, проверяем условие Фано: никакое кодовое слово не является началом другого кодового слова. Условие верно.
  •  
    ✎ 1 вариант решения:

  • Код разбиваем слева направо согласно данным, представленным в таблице. Затем переведём его в буквы:
  • 110 000 01 001 10
     ↓   ↓   ↓  ↓  ↓
     b   a  c   d  e 
    

Результат: b a c d e.

✎ 2 вариант решения:

    Этот вариант решения 4 задания ЕГЭ более сложен, но тоже верен.

  • Сделаем дерево, согласно кодам в таблице:
  • 1

  • Сопоставим закодированное сообщение с кодами в дереве:
  • 110 000 01 001 10

Результат: b a c d e.

Кроме того, вы можете посмотреть видеорешение этого задания ЕГЭ по информатике (теоретическое решение):

📹 YouTube здесь
📹 Видеорешение на RuTube здесь


Решим следующее 4 задание:

ЕГЭ 4.3:
Для передачи чисел по каналу с помехами используется код проверки четности. Каждая его цифра записывается в двоичном представлении, с добавлением ведущих нулей до длины 4, и к получившейся последовательности дописывается сумма её элементов по модулю 2 (например, если передаём 23, то получим последовательность 0010100110).

Определите, какое число пе­ре­да­ва­лось по ка­на­лу в виде 01100010100100100110.

✍ Решение:

  • Рассмотрим пример из условия задачи:
  • Было 2310
    Стало 00101001102
    
  • Где сами цифры исходного числа (выделим их красным цветом):
  •  0010100110  (0010 - 2, 0011 - 3)
  • Первая добавленная цифра 1 после двоичной двойки — это проверка четности (1 единица в 0010 — значит нечетное), 0 после двоичной тройки — это также проверка нечетности (2 единицы в 0011, значит — четное).
  • Исходя из разбора примера решаем нашу задачу так: поскольку «нужные» нам цифры образуются из групп по 4 числа в каждой плюс одно число на проверку четности, то разобьем закодированное сообщение на группы по 5, и отбросим из каждой группы последний символ:
  • разбиваем по 5:
  • 01100 01010 01001 00110
  • отбрасываем из каждой группы последний символ:
  • 0110 0101 0100 0011
  • Результат переводим в десятичную систему:
  • 0110 0101 0100 0011
     ↓    ↓     ↓    ↓
     6    5     4    3
    

Ответ: 6 5 4 3

Вы можете посмотреть видеорешение этого задания ЕГЭ по информатике, теоретическое решение:

📹 YouTube здесь
📹 Видеорешение на RuTube здесь


ЕГЭ 4.4:

Для кодирования некоторой последовательности, состоящей из букв К, Л, М, Н решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Н использовали кодовое слово 0, для буквы К — кодовое слово 10.

Какова наименьшая возможная суммарная длина всех четырёх кодовых слов?

Подобные задания для тренировки

✍ Решение:

1 вариант решения

основан на логических умозаключениях:

  • Найдём самые короткие возможные кодовые слова для всех букв.
  • Кодовые слова 01 и 00 использовать нельзя, так как тогда нарушается условие Фано (начинаются с 0, а 0 — это Н).
  • Начнем с двухразрядных кодовых слов. Возьмем для буквы Л кодовое слово 11. Тогда для четвёртой буквы нельзя подобрать кодовое слово, не нарушая условие Фано (если потом взять 110 или 111, то они начинаются с 11).
  • Значит, надо использовать трёхзначные кодовые слова. Закодируем буквы Л и М кодовыми словами 110 и 111. Условие Фано соблюдается.
  • Суммарная длина всех четырёх кодовых слов равна:
  • (Н)1 + (К)2 + (Л)3 + (М)3 = 9

2 вариант решения:

  • Будем использовать дерево. Влево откладываем 0, вправо — 1:
  • разбор задания 4 егэ по информатике

  • Теперь выпишем соответствие каждой буквы ее кодового слова согласно дереву:
  • (Н) -> 0   -> 1 символ
    (К) -> 10  -> 2 символа
    (Л) -> 110 -> 3 символа
    (М) -> 111 -> 3 символа
    
  • Суммарная длина всех четырёх кодовых слов равна:
  • (Н)1 + (К)2 + (Л)3 + (М)3 = 9

Ответ: 9


4.5:

По каналу связи передаются сообщения, содержащие только 4 буквы: А, Б, В, Г; для передачи используется двоичный код, допускающий однозначное декодирование. Для букв А, Б, В используются такие кодовые слова:

А: 101010, 
Б: 011011, 
В: 01000

Укажите кратчайшее кодовое слово для буквы Г, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Подобные задания для тренировки

✍ Решение:

  • Наименьшие коды могли бы выглядеть, как 0 и 1 (одноразрядные). Но это не удовлетворяло бы условию Фано (А начинается с единицы — 101010, Б начинается с нуля — 011011).
  • Следующим наименьшим кодом было бы двухбуквенное слово 00. Так как оно не является префиксом ни одного из представленных кодовых слов, то Г = 00.

Результат: 00


4.6:

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать двоичную последовательность, появляющуюся на приемной стороне канала связи. Использовали код:

А - 01 
Б - 00
В - 11
Г - 100

Укажите, каким кодовым словом должна быть закодирована буква Д. Длина этого кодового слова должна быть наименьшей из всех возможных. Код должен удовлетворять свойству однозначного декодирования. Если таких кодов несколько, укажите код с наименьшим числовым значением.

✍ Решение:

  • Так как необходимо найти кодовое слово наименьшей длины, воспользуемся деревом. Влево будем откладывать нули, а вправо — единицы:
  • ЕГЭ по информатике 2017 задание ФИПИ вариант 16 решение

  • Поскольку у нас все ветви завершены листьями, т.е. буквами, кроме одной ветви, то остается единственный вариант, куда можно поставить букву Д:
  • ЕГЭ по информатике 2017 задание ФИПИ вариант 16

  • Перепишем сверху вниз получившееся кодовое слово для Д: 101

Результат: 101

Подробней разбор урока можно посмотреть на видео ЕГЭ по информатике 2017:

📹 YouTube здесь
📹 Видеорешение на RuTube здесь


4.7: Демоверсия ЕГЭ 2018 информатика (ФИПИ):

По каналу связи передаются шифрованные сообщения, содержащие только десять букв: А, Б, Е, И, К, Л, Р, С, Т, У. Для передачи используется неравномерный двоичный код. Для девяти букв используются кодовые слова.
задание 4 егэ информатика 2018

Укажите кратчайшее кодовое слово для буквы Б, при котором код будет удовлетворять условию Фано. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Подобные задания для тренировки

✍ Решение:

  • Для решения будем использовать дерево. Ветви, соответствующие нулю, будем откладывать влево, единице — вправо.
  • задание 4 егэ по информатике решение

  • При рассмотрении дерева видим, что все ветви «закрыты» листьями, кроме одной ветви — 1100:
  • разбор 4 задания егэ демоверсия 2018

Результат: 1100

Подробное теоретическое решение данного 4 (раньше №5) задания из демоверсии ЕГЭ 2018 года смотрите на видео:

📹 Видеорешение на RuTube здесь


4.8:

По каналу связи передаются шифрованные сообщения, содержащие только четыре букв: А, Б, В, Г; для передачи используется двоичный код, допускающий однозначное декодирование. Для букв А, Б, В используются кодовые слова:

А: 00011 
Б: 111 
В: 1010

Укажите кратчайшее кодовое слово для буквы Г, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

✍ Решение:

  • Для решения будем использовать дерево. Ветви, соответствующие нулю, будем откладывать влево, единице — вправо.
  • Поскольку в задании явно не указано о том, что код должен удовлетворять условию Фано, то дерево нужно построить как с начала (по условию Фано), так и с конца (обратное условие Фано).
  • Дерево по условию Фано (однозначно декодируется с начала):
    0

  • Получившееся числовое значение кодового слова для буквы Г01.
  • Дерево по обратному условию Фано (однозначно декодируется с конца):
    0

  • Получившееся числовое значение кодового слова для буквы Г00.
  • После сравнения двух кодовых слов (01 и 00), код с наименьшим числовым значением — это 00.

Результат: 00


4.9:

По каналу связи передаются сообщения, содержащие только буквы: А, Е, Д, К, М, Р; для передачи используется двоичный код, удовлетворяющий условию Фано. Известно, что используются следующие коды:

Е – 000
Д – 10
К – 111

Укажите наименьшую возможную длину закодированного сообщения ДЕДМАКАР.
В ответе напишите число – количество бит.

Подобные задания для тренировки

✍ Решение:

  • С помощью дерева отобразим известные коды для букв:
  • Тренировочный вариант №3 решение

  • В результирующем слове — ДЕДМАКАР — вде буквы А. Значит, для получения наименьшей длины необходимо для буквы А выбрать наименьший код в дереве. Учтем это и достроим дерево для остальных трех букв А, М и Р:
  • 00

  • Расположим буквы в порядке их следования в слове и подставим их кодовые слова:
  • Д   Е   Д   М   А   К   А   Р
    10 000 10  001 01  111 01  110
    
  • Посчитаем количество цифр в итоговом коде и получим 20.

Результат: 20

Смотрите виде решения задания:

📹 YouTube здесь
📹 Видеорешение на RuTube здесь


Представление чисел в компьютере

Формат с фиксированной запятой

В памяти компьютера целые числа хранятся в формате с фиксированной запятой: каждому разряду ячейки памяти соответствует один и тот же разряд числа, «запятая» находится вне разрядной сетки.

Для хранения целых неотрицательных чисел отводится 8 битов памяти. Минимальное число соответствует восьми нулям, хранящимся в восьми битах ячейки памяти, и равно 0. Максимальное число соответствует восьми единицам и равно

1 ⋅ 27 + 1 ⋅ 26 + 1 ⋅ 25 + 1 ⋅ 24 + 1 ⋅ 23 + 1 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20 = 25510.

Таким образом, диапазон изменения целых неотрицательных чисел — от 0 до 255.

Для п-разрядного представления диапазон будет составлять от 0 до 2n – 1.

Для хранения целых чисел со знаком отводится 2 байта памяти (16 битов). Старший разряд отводится под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное — 1. Такое представление чисел в компьютере называется прямым кодом.

Для представления отрицательных чисел используется дополнительный код. Он позволяет заменить арифметическую операцию вычитания операцией сложения, что существенно упрощает работу процессора и увеличивает его быстродействие. Дополнительный код отрицательного числа А, хранящегося в п ячейках, равен 2n − |А|.

Алгоритм получения дополнительного кода отрицательного числа:

1. Записать прямой код числа в п двоичных разрядах.

2. Получить обратный код числа. (Обратный код образуется из прямого кода заменой нулей единицами, а единиц — нулями, кроме цифр знакового разряда. Для положительных чисел обратный код совпадает с прямым. Используется как промежуточное звено для получения дополнительного кода.)

3. Прибавить единицу к полученному обратному коду.

Например, получим дополнительный код числа –201410 для шестнадцатиразрядного представления:

Прямой код Двоичный код числа 201410 со знаковым разрядом 1000011111011110
Обратный код Инвертирование (исключая знаковый разряд) 1111100000100001
  Прибавление единицы 1111100000100001 + 0000000000000001
Дополнительный код   1111100000100010

При алгебраическом сложении двоичных чисел с использованием дополнительного кода положительные слагаемые представляют в прямом коде, а отрицательные — в дополнительном коде. Затем суммируют эти коды, включая знаковые разряды, которые при этом рассматриваются как старшие разряды. При переносе из знакового разряда единицу переноса отбрасывают. В результате получают алгебраическую сумму в прямом коде, если эта сумма положительная, и в дополнительном — если сумма отрицательная.

Например:

1) Найдем разность 1310 – 1210 для восьмибитного представления. Представим заданные числа в двоичной системе счисления:

1310 = 11012 и 1210 = 11002.

Запишем прямой, обратный и дополнительный коды для числа –1210 и прямой код для числа 1310 в восьми битах:

  1310 –1210
Прямой код 00001101 10001100
Обратный код 11110011
Дополнительный код 11110100

Вычитание заменим сложением (для удобства контроля за знаковым разрядом условно отделим его знаком «_»):

Так как произошел перенос из знакового разряда, первую единицу отбрасываем, и в результате получаем 00000001.

2) Найдем разность 810 – 1310 для восьмибитного представления.

Запишем прямой, обратный и дополнительный коды для числа –1310 и прямой код для числа 810 в восьми битах:

  810 –1310
Прямой код 00001000 10001101
Обратный код 11110010
Дополнительный код 11110011

Вычитание заменим сложением:

В знаковом разряде стоит единица, а значит, результат получен в дополнительном коде. Перейдем от дополнительного кода к обратному, вычтя единицу:

11111011 – 00000001 = 11111010.

Перейдем от обратного кода к прямому, инвертируя все цифры, за исключением знакового (старшего) разряда: 10000101. Это десятичное число –510.

Так как при п-разрядном представлении отрицательного числа А в дополнительном коде старший разряд выделяется для хранения знака числа, минимальное отрицательное число равно: А = –2n–1, а максимальное: |А| = 2n–1 или А = –2n–1 – 1.

Определим диапазон чисел, которые могут храниться в оперативной памяти в формате длинных целых чисел со знаком (для хранения таких чисел отводится 32 бита памяти). Минимальное отрицательное число равно

А = –231 = –214748364810.

Максимальное положительное число равно

А = 231 – 1 = 214748364710.

Достоинствами формата с фиксированной запятой являются простота и наглядность представления чисел, простота алгоритмов реализации арифметических операций. Недостатком является небольшой диапазон представимых чисел, недостаточный для решения большинства прикладных задач.

Формат с плавающей запятой

Вещественные числа хранятся и обрабатываются в компьютере в формате с плавающей запятой, использующем экспоненциальную форму записи чисел.

Число в экспоненциальном формате представляется в таком виде:

$A=m·q^n$,

где $m$ — мантисса числа (правильная отличная от нуля дробь);

$q$ — основание системы счисления;

$n$ — порядок числа.

Например, десятичное число 2674,381 в экспоненциальной форме запишется так:

2674,381 = 0,2674381 ⋅ 104.

Число в формате с плавающей запятой может занимать в памяти 4 байта (обычная точность) или 8 байтов (двойная точность). При записи числа выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы. Две последние величины определяют диапазон изменения чисел и их точность.

Определим диапазон (порядок) и точность (мантиссу) для формата чисел обычной точности, т. е. четырехбайтных. Из 32 битов 8 выделяется для хранения порядка и его знака и 24 — для хранения мантиссы и ее знака.

Найдем максимальное значение порядка числа. Из 8 разрядов старший разряд используется для хранения знака порядка, остальные 7 — для записи величины порядка. Значит, максимальное значение равно 11111112 = 12710. Так как числа представляются в двоичной системе счисления, то

$q^n = 2^{127}≈ 1.7 · 10^{38}$.

Аналогично, максимальное значение мантиссы равно

$m = 2^{23} — 1 ≈ 2^{23} = 2^{(10 · 2.3)} ≈ 1000^{2.3} = 10^{(3 · 2.3)} ≈ 10^7$.

Таким образом, диапазон чисел обычной точности составляет $±1.7 · 10^{38}$.

Кодирование текстовой информации. Кодировка ASCII. Основные используемые кодировки кириллицы

Соответствие между набором символов и набором числовых значений называется кодировкой символа. При вводе в компьютер текстовой информации происходит ее двоичное кодирование. Код символа хранится в оперативной памяти компьютера. В процессе вывода символа на экран производится обратная операция — декодирование, т. е. преобразование кода символа в его изображение.

Присвоенный каждому символу конкретный числовой код фиксируется в кодовых таблицах. Одному и тому же символу в разных кодовых таблицах могут соответствовать разные числовые коды. Необходимые перекодировки текста обычно выполняют специальные программы-конверторы, встроенные в большинство приложений.

Как правило, для хранения кода символа используется один байт (восемь битов), поэтому коды символов могут принимать значение от 0 до 255. Такие кодировки называют однобайтными. Они позволяют использовать 256 символов ( N = 2I = 28 = 256 ). Таблица однобайтных кодов символов называется ASCII (American Standard Code for Information Interchange — Американский стандартный код для обмена информацией). Первая часть таблицы ASCII-кодов (от 0 до 127) одинакова для всех IBM-PC совместимых компьютеров и содержит:

  • коды управляющих символов;
  • коды цифр, арифметических операций, знаков препинания;
  • некоторые специальные символы;
  • коды больших и маленьких латинских букв.

Вторая часть таблицы (коды от 128 до 255) бывает различной в различных компьютерах. Она содержит коды букв национального алфавита, коды некоторых математических символов, коды символов псевдографики. Для русских букв в настоящее время используется пять различных кодовых таблиц: КОИ-8, СР1251, СР866, Мас, ISO.

В последнее время широкое распространение получил новый международный стандарт Unicode. В нем отводится по два байта (16 битов) для кодирования каждого символа, поэтому с его помощью можно закодировать 65536 различных символов ( N = 216 = 65536 ). Коды символов могут принимать значение от 0 до 65535.

Примеры решения задач

Пример. С помощью кодировки Unicode закодирована следующая фраза:

Я хочу поступить в университет!

Оценить информационный объем этой фразы.

Решение. В данной фразе содержится 31 символ (включая пробелы и знак препинания). Поскольку в кодировке Unicode каждому символу отводится 2 байта памяти, для всей фразы понадобится 31 ⋅ 2 = 62 байта или 31 ⋅ 2 ⋅ 8 = 496 битов.

Ответ: 32 байта или 496 битов.

Автор материалов — Лада Борисовна Есакова.

Кодирование – это перевод информации, представленной символами первичного алфавита, в последовательность кодов.

Декодирование (операция, обратная кодированию) – перевод кодов в набор символов первичного алфавита.

Кодирование может быть равномерное и неравномерное. При равномерном кодировании каждый символ исходного алфавита заменяется кодом одинаковой длины. При неравномерном кодировании разные символы исходного алфавита могут заменяться кодами разной длины.

Код называется однозначно декодируемым, если любое сообщение, составленное из кодовых слов, можно декодировать единственным способом.

Равномерное кодирование всегда однозначно декодируемо.

Для неравномерных кодов существует следующее достаточное (но не необходимое) условие однозначного декодирования:

Сообщение однозначно декодируемо с начала, если выполняется условие Фано: никакое кодовое слово не является началом другого кодового слова.

Сообщение однозначно декодируемо с конца, если выполняется обратное условие Фано: никакое кодовое слово не является окончанием другого кодового слова.

Кодирование в различных системах счисления

Пример 1.

Для кодирования букв О, В, Д, П, А решили использовать двоичное представление

чисел 0, 1, 2, 3 и 4 соответственно (с сохранением одного незначащего нуля в случае одноразрядного представления). Если закодировать последовательность букв ВОДОПАД таким способом и результат записать восьмеричным кодом, то получится

1) 22162

2) 1020342

3) 2131453

4) 34017

Решение:

Представим коды указанных букв в дво­ич­ном коде, добавив незначащий нуль для одноразрядных чисел:

О

В

Д

П

А

0

1

2

3

4

00

01

10

11

100

Закодируем по­сле­до­ва­тель­ность букв: ВО­ДО­ПАД — 010010001110010.

Разобьём это пред­став­ле­ние на трой­ки спра­ва на­ле­во и пе­ре­ведём каждую тройку в восьмеричное число.

010 010 001 110 010 — 22162.

Пра­виль­ный ответ ука­зан под но­ме­ром 1.

Ответ: 1

Пример 2.

Для пе­ре­да­чи по ка­на­лу связи со­об­ще­ния, со­сто­я­ще­го толь­ко из сим­во­лов А, Б, В и Г, ис­поль­зу­ет­ся по­сим­воль­ное ко­ди­ро­ва­ние: А-10, Б-11, В-110, Г-0. Через канал связи пе­ре­даётся со­об­ще­ние: ВАГ­БА­А­ГВ. За­ко­ди­руй­те со­об­ще­ние дан­ным кодом. По­лу­чен­ное дво­ич­ное число пе­ре­ве­ди­те в шест­на­дца­те­рич­ный вид.

            1) D3A6

2) 62032206

3) 6A3D

4) CADBAADC

Решение:

За­ко­ди­ру­ем по­сле­до­ва­тель­ность букв: ВАГ­БА­А­ГВ — 1101001110100110. Разобьем это пред­став­ле­ние на четвёрки спра­ва на­ле­во и пе­ре­ведём каждую четверку в шестнадцатеричное число:

1101 0011 1010 01102 = D3A616

Пра­виль­ный ответ ука­зан под но­ме­ром 1.

Ответ: 1

Расшифровка сообщений

Пример 3.

Для 5 букв ла­тин­ско­го ал­фа­ви­та за­да­ны их дво­ич­ные коды (для не­ко­то­рых букв – из двух бит, для не­ко­то­рых – из трех). Эти коды пред­став­ле­ны в таб­ли­це:

a

b

c

d

e

100

110

011

01

10

Опре­де­ли­те, какой набор букв за­ко­ди­ро­ван дво­ич­ной стро­кой 1000110110110, если из­вест­но, что все буквы в по­сле­до­ва­тель­но­сти – раз­ные:

1) cbade

2) acdeb

3) acbed

4) bacde

Решение:

Мы видим, что усло­вия Фано и об­рат­ное усло­вие Фано не вы­пол­ня­ют­ся, зна­чит код можно рас­ко­ди­ро­вать не­од­но­знач­но.

Значит, будем перебирать варианты, пока не получим подходящее слово :

1) 100 011 01 10 110

Пер­вая буква опре­де­ля­ет­ся од­но­знач­но, её код 100: a.

Пусть вто­рая буква — с, тогда сле­ду­ю­щая буква — d, потом — e и b.

Такой ва­ри­ант удо­вле­тво­ряет усло­вию, зна­чит, окон­ча­тель­но по­лу­чи­ли ответ: acdeb.

Ответ: 2

Пример 4.

Для пе­ре­да­чи дан­ных по ка­на­лу связи ис­поль­зу­ет­ся 5-би­то­вый код. Со­об­ще­ние со­дер­жит толь­ко буквы А, Б и В, ко­то­рые ко­ди­ру­ют­ся сле­ду­ю­щи­ми ко­до­вы­ми сло­ва­ми: А — 11010, Б — 10111, В — 01101.

При пе­ре­да­че воз­мож­ны по­ме­хи. Од­на­ко не­ко­то­рые ошиб­ки можно по­пы­тать­ся ис­пра­вить. Любые два из этих трёх ко­до­вых слов от­ли­ча­ют­ся друг от друга не менее чем в трёх по­зи­ци­ях. По­это­му если при пе­ре­да­че слова про­изо­шла ошиб­ка не более чем в одной по­зи­ции, то можно сде­лать обос­но­ван­ное пред­по­ло­же­ние о том, какая буква пе­ре­да­ва­лась. (Го­во­рят, что «код ис­прав­ля­ет одну ошиб­ку».) На­при­мер, если по­лу­че­но ко­до­вое слово 10110, счи­та­ет­ся, что пе­ре­да­ва­лась буква Б. (От­ли­чие от ко­до­во­го слова для Б толь­ко в одной по­зи­ции, для осталь­ных ко­до­вых слов от­ли­чий боль­ше.) Если при­ня­тое ко­до­вое слово от­ли­ча­ет­ся от ко­до­вых слов для букв А, Б, В более чем в одной по­зи­ции, то счи­та­ет­ся, что про­изо­шла ошиб­ка (она обо­зна­ча­ет­ся ‘х’).

По­лу­че­но со­об­ще­ние 11000 11101 10001 11111. Де­ко­ди­руй­те это со­об­ще­ние — вы­бе­ри­те пра­виль­ный ва­ри­ант.

1) АххБ

2) АВхБ

3) хххх

4) АВББ

Решение:

Де­ко­ди­ру­ем каж­дое слово со­об­ще­ния. Пер­вое слово: 11000 от­ли­ча­ет­ся от буквы А толь­ко одной по­зи­ци­ей. Вто­рое слово: 11101 от­ли­ча­ет­ся от буквы В толь­ко одной по­зи­ци­ей. Тре­тье слово: 10001 от­ли­ча­ет­ся от любой буквы более чем одной по­зи­ци­ей. Четвёртое слово: 11111 от­ли­ча­ет­ся от буквы Б толь­ко одной по­зи­ци­ей.

Таким об­ра­зом, ответ: АВхБ.

Ответ: 2

Однозначное кодирование

Пример 5.

Для пе­ре­да­чи по ка­на­лу связи со­об­ще­ния, со­сто­я­ще­го толь­ко из букв А, Б, В, Г, ре­ши­ли ис­поль­зо­вать не­рав­но­мер­ный по длине код: A=1, Б=01, В=001. Как нужно за­ко­ди­ро­вать букву Г, чтобы длина кода была ми­ни­маль­ной и до­пус­ка­лось од­но­знач­ное раз­би­е­ние ко­ди­ро­ван­но­го со­об­ще­ния на буквы?

1) 0001

2) 000

3) 11

4) 101

Решение:

Для анализа соблюдения условия однозначного декодирования (условия Фано) изобразим коды в виде дерева. Тогда однозначность выполняется, если каждая буква является листом дерева:

Видим, что ближайший от корня дерева свободный лист (т.е. код с минимальной длиной) имеет код 000.

Ответ: 2

Пример 6.

Для ко­ди­ро­ва­ния не­ко­то­рой по­сле­до­ва­тель­но­сти, со­сто­я­щей из букв У, Ч, Е, Н, И и К, ис­поль­зу­ет­ся не­рав­но­мер­ный дво­ич­ный пре­фикс­ный код. Вот этот код: У — 000, Ч — 001, Е — 010, Н — 100, И — 011, К — 11. Можно ли со­кра­тить для одной из букв длину ко­до­во­го слова так, чтобы код по-преж­не­му остал­ся пре­фикс­ным? Коды осталь­ных букв ме­нять­ся не долж­ны.

Вы­бе­ри­те пра­виль­ный ва­ри­ант от­ве­та.

При­ме­ча­ние. Пре­фикс­ный код — это код, в ко­то­ром ни одно ко­до­вое слово не яв­ля­ет­ся на­ча­лом дру­го­го; такие коды поз­во­ля­ют од­но­знач­но де­ко­ди­ро­вать по­лу­чен­ную дво­ич­ную по­сле­до­ва­тель­ность.

1) ко­до­вое слово для буквы Е можно со­кра­тить до 01

2) ко­до­вое слово для буквы К можно со­кра­тить до 1

3) ко­до­вое слово для буквы Н можно со­кра­тить до 10

4) это не­воз­мож­но

Решение:

Для анализа соблюдения условия однозначного декодирования (условия Фано) изобразим коды в виде дерева. Тогда однозначность выполняется, если каждая буква является листом дерева:


 

Легко заметить, что если букву Н перенести в вершину 10, она останется листом. Т.е. ко­до­вое слово для буквы Н можно со­кра­тить до 10.

Пра­виль­ный ответ ука­зан под но­ме­ром 3.

Ответ: 3

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задача №5. Кодирование в различных системах счисления, расшифровка сообщений, выбор кода.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.03.2023

Понравилась статья? Поделить с друзьями:
  • Дерево засохнуло егэ
  • Дерево вероятностей егэ
  • Деревню затопили поэтому ее жители переселились на новое место люди обустраивали егэ
  • Деревеньки к реке сороти льнут со всех сторон сочинение егэ
  • Деревенские русские люди в поэме кому на руси жить хорошо сочинение