Десятое задание егэ математика профиль

В 2022 году в вариантах ЕГЭ Профильного уровня появилась задание №10 по теме «Графики функций». Можно считать его подготовительным для освоения задач с параметрами.

Как формулируется задание 10 ЕГЭ по математике? По графику функции, который дается в условии, вам нужно определить неизвестные параметры в ее формуле. Возможно — найти значение функции в некоторой точке или координаты точки пересечения графиков функций.

Чтобы выполнить это задание, надо знать, как выглядят и какими свойствами обладают графики элементарных функций. Надо уметь читать графики, то есть получать из них необходимую информацию. Например, определять формулу функции по ее графику.

Вот необходимая теория для решения задания №10 ЕГЭ.

Что такое функция

Чтение графика функции

Четные и нечетные функции

Периодическая функция

Обратная функция

5 типов элементарных функций и их графики

Преобразование графиков функций

Построение графиков функций

Да, теоретического материала здесь много. Но он необходим — и для решения задания 10 ЕГЭ, и для понимания темы «Задачи с параметрами», а также для дальнейшего изучения математики на первом курсе вуза.

Рекомендации:

Запоминай, как выглядят графики основных элементарных функций. Замечай особенности графиков, чтобы не перепутать параболу с синусоидой : -)

Проверь себя: какие действия нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали, растянуть, перевернуть?

Разбирая решения задач, обращай внимание на то, как мы ищем точки пересечения графиков или неизвестные переменные в формуле функции. Такие элементы оформления встречаются также в задачах с параметрами.

Задание 10 в формате ЕГЭ-2021

Линейная функция

Необходимая теория

1. На рисунке изображён график функции fleft(xright)=kx+b. Найдите значение x, при котором fleft(xright)=-13,5.

Решение:

Найдем, чему равны k и b. График функции проходит через точки (3; 4) и (-1; -3). Подставив по очереди координаты этих точек в уравнение прямой y = kx + b, получим систему:

left{ begin{array}{c}3k+b=4 \-k+b=-3 end{array}right..

Вычтем из первого уравнения второе:

left{ begin{array}{c}4k=7 \-k+b=-3 end{array};right. left{ begin{array}{c}k=frac{7}{4} \b=-frac{5}{4} end{array}right. .

Уравнение прямой имеет вид:

displaystyle y=frac{7}{4}x-frac{5}{4}.

Найдем, при каком x значение функции равно -13,5.

displaystyle frac{7}{4}x-frac{5}{4}=-13,5;

7x-5=-54;

7x=-49;

x=-7.

Ответ: -7.

2. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

Решение:

Запишем формулы функций.

Одна из них проходит через точку (0; 1) и ее угловой коэффициент равен -1. Это линейная функция y=-x+1.

Другая проходит через точки (-1; -1) и (-2; 4). Подставим по очереди координаты этих точек в формулу линейной функции y=kx+b.

left{ begin{array}{c}-k+b=-1 \-2k+b=4 end{array}right. .

Вычтем из первого уравнения второе.

k=-5; тогда b=-6.

Прямая задается формулой: y=-5x-6.

Найдем абсциссу точки пересечения прямых. Эта точка лежит на обеих прямых, поэтому:

left{ begin{array}{c}y=-x+1 \y=-5x-6 end{array} ;right. begin{array}{c}-x+1=-5x-6 ; \x=-frac{7}{4}=-1,75. end{array}

Ответ: -1,75.

3. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

Решение:

Прямая, расположенная на рисунке ниже, задается формулой y=x+1, так как ее угловой коэффициент равен 1 и она проходит через точку (-3; -2).

Для прямой, расположенной выше, угловой коэффициент равен displaystyle frac{3}{2}=1,5.

Эта прямая проходит через точку (-2; 4), поэтому: 1,5cdot left(-2right)+b=4; b=7, эта прямая задается формулой y=1,5x+7.

Для точки пересечения прямых:

x+1=1,5x+7;

0,5x=-6;

x=-12.

Ответ: -12.

Квадратичная функция. Необходимая теория

4. На рисунке изображен график функции y=ax^2+bx+c. Найдите b.

Решение:

На рисунке — квадратичная парабола y={left(x-aright)}^2, полученная из графика функции y=x^2 сдвигом на 1 вправо, то есть a=1.

Получим: fleft(xright)={left(x-1right)}^2=x^2-2x+1;

b=-2.

Ответ: -2.

5. На рисунке изображен график функции y={left(x-cright)}^2. Найдите с.

Решение:

На рисунке изображена парабола, ветви которой направлены вверх, значит, коэффициент при x^2 положительный. График сдвинут относительно графика функции y=x^2 на 1 единицу вправо вдоль оси Ох. Формула функции имеет вид y={left(x-1right)}^2.

Значит, с = 1.

Ответ: 1

6. На рисунке изображён график функции fleft(xright)=2x^2+bx+c. Найдите fleft(-5right).

Решение:

График функции y=2x^2+bx+c проходит через точки с координатами (1; 1) и (-2; -2). Подставляя координаты этих точек в формулу функции, получим:

left{ begin{array}{c}2+b+c=1 \2cdot 4-2b+c=-2 end{array}right. .

left{ begin{array}{c}b+c=-1 \-2b+c=-10 end{array};right. отсюда b=3, c=-4.

Формула функции имеет вид:

fleft(xright)=2x^2+3x-4;

fleft(-5right)=2cdot 25-3cdot 5-4=31.

Ответ: 31.

7. На рисунке изображены графики функций fleft(xright)=5x+9 и gleft(xright)=ax^2+bx+c, которые пересекаются в точках А и В. Найдите абсциссу точки В.

Решение:

Найдем a, b и c в формуле функции gleft(xright)=ax^2+bx+c. График этой функции пересекает ось ординат в точке (0; -3), поэтому c=-3.

График функции g(x) проходит через точки (-1; -3) и (2; 3). Подставим по очереди координаты этих точек в формулу функции:

left{ begin{array}{c}a-b-3=-3 \4a+2b-3=3 end{array};right. отсюда a=b=1;

gleft(xright)=x^2+x-3;

Найдем абсциссу точки B. Для точек A и B: fleft(xright)=g(x)

5x+9=x^2+x-3;

x^2-4x-12=0.

x=-2 (это абсцисса точки A) или x=6 (это абсцисса точки B).

Ответ: 6.

Степенные функции. Необходимая теория

8. На рисунке изображены графики функций displaystyle fleft(xright)=frac{k}{x} и gleft(xright)=ax+b, которые пересекаются в точках А и В. Найдите абсциссу точки В.

Решение:

График функции displaystyle y=frac{k}{x} проходит через точку (2; 1); значит, displaystyle frac{k}{2}=1;

displaystyle k=2, ; fleft(xright)=frac{2}{x}.

График функции gleft(xright)=ax+b проходит через точки (2; 1) и (1; -4), a=5 — угловой коэффициент прямой; (находим как тангенс угла наклона прямой и положительному направлению оси X); тогда 5cdot 2+b=1; b=-9.

Для точек A и B имеем: fleft(xright)=gleft(xright);

displaystyle frac{2}{x}=5x-9;

5x^2-9x-2=0.

Отсюда x=2 (абсцисса точки A) или x=-0,2 (абсцисса точки B).

Ответ: -0,2.

9. На рисунке изображён график функции fleft(xright)=ksqrt{x}. Найдите f (6,76).

Решение:

Функция задана формулой:

y=ksqrt{x}. Ее график проходит через точку (4; 5); значит, kcdot sqrt{4}=5; k=2,5;

fleft(xright)=2,5sqrt{x}. Тогда fleft(6,76right)=2,5cdot sqrt{6,76}=2,5cdot 2,6=6,5.

Ответ: 6,5.

10. На рисунке изображен график функции fleft(xright)=sqrt{ax}. Найдите fleft(-25right).

Решение:

График функции на рисунке симметричен графику функции y=sqrt{x} относительно оси Y. Он проходит через точку (-1; 1). Значит, формула изображенной на рисунке функции: y=sqrt{-x}, а = — 1. Тогда fleft(-25right)=sqrt{25} = 5.

Ответ: 5.

Показательная функция. Необходимая теория

11. На рисунке изображён график функции fleft(xright)=a^{x+b}. Найдите fleft(-7right).

Решение:

График функции проходит через точки (-3; 1) и (1; 4). Подставив по очереди координаты этих точек в формулу функции fleft(xright)=a^{x+b}, получим:

left{ begin{array}{c}a^{-3+b}=1 \a^{1+b}=4 end{array}.right.

Поделим второе уравнение на первое:

a^{1+b+3-b}=4; ; a^4=4;; a=sqrt{2}.

Подставим во второе уравнение:

displaystyle {sqrt{2}}^{1+b}=4;; 2^{frac{1+b}{2}}=2^2;; 1+b=4;; b=3.

displaystyle fleft(xright)={left(sqrt{2}right)}^{x+3};; fleft(-7right)={left(sqrt{2}right)}^{-7+3}={left(sqrt{2}right)}^{-4}=frac{1}{4}=0,25.

Ответ: 0,25.

12. На рисунке изображен график функции y=acdot 4^x. Найдите a.

Решение:

График функции y=acdot 4^x проходит через точку left(0;2right). Это значит, что yleft(0right)=2;

acdot 4^0=2; a=2, формула функции имеет вид: y=2cdot 4^x.

Ответ: 2.

Логарифмическая функция. Необходимая теория

13. На рисунке изображён график функции fleft(xright)={{log}_a left(x+bright)}. Найдите fleft(11right).

Решение:

График функции y={{log}_a left(x+bright) } проходит через точки (-3; 1) и (-1; 2). Подставим по очереди эти точки в формулу функции.

left{ begin{array}{c}{{log}_a left(-3+bright)=1  } \{{log}_a left(-1+bright) }=2 end{array}.right.

Отсюда: left{ begin{array}{c}b-3=a \b-1=a^2 end{array}.right.

Вычтем из второго уравнения первое:

a^2-a=2; a^2-a-2=0;

a=2 или a=-1 — не подходит, так как a textgreater 0 (как основание логарифма).

Тогда b=a+3=5; fleft(xright)={{log}_2 left(x+5right) };

fleft(11right)={{log}_2 16=4.}

Ответ: 4.

14. На рисунке изображен график функции fleft(xright)=a{{log}_5 x }-c.

Найдите f(0,2).

Решение:

График логарифмической функции на рисунке проходит через точки left(1;-2right) и left(5;3right). Подставив по очереди координаты этих точек в формулу функции, получим систему уравнений:

left{ begin{array}{c}a{{log}_5 1 }-c=-2 \a{{log}_5 5 }-c=3 end{array};right.

left{ begin{array}{c}-c=-2 \a-c=3 end{array};right.

left{ begin{array}{c}c=2 \a=5 end{array}.right.

Формула функции: fleft(xright)=5{{log}_5 x }-2.

Найдем displaystyle fleft(0,2right)=fleft(frac{1}{5}right) :

displaystyle 5cdot {{log}_5 frac{1}{5} }-2=-5-2=-7.

Ответ: -7.

Тригонометрические функции. Необходимая теория

15. На рисунке изображён график функции fleft(xright)=a{sin x }+b. Найдите b.

Решение:

График функции y=a{sin x+b } сдвинут на 1,5 вверх; fleft(0right)=1,5. Значит, b=1,5. Амплитуда a=2 (наибольшее отклонение от среднего значения).

Это график функции fleft(xright)=2{sin x }+1,5. Он получен из графика функции y={sin x } растяжением в 2 раза по вертикали и сдвигом вверх на 1,5.

Ответ: b=1,5.

16. На рисунке изображён график функции

fleft(xright)=a tgx+b.

Найдите a.

Решение:

На рисунке — график функции fleft(xright)=a tgx+b. Так как fleft(0right)=-1,5,  b=-1,5.

График функции проходит через точку A displaystyle (frac{pi}{4}; ; frac{1}{2}). Подставим b = - 1,5 и координаты точки А в формулу функции.

displaystyle a  tg frac{pi}{4}-1,5=frac{1}{2}.

Так как displaystyle tg frac{pi}{4}=1, получим: a = 2.

Ответ: 2.

17. На рисунке изображен график периодической функции у = f(x). Найдите значение выражения f (21)- f (-9).

Решение:

Функция, график которой изображен на рисунке, не только периодическая, но и нечетная, и если yleft(1right)=2,5, то yleft(-1right)=-2,5.

Пользуясь периодичностью функции fleft(xright) , период которой T = 4, получим:

fleft(21right)=fleft(1+4cdot 5right)=fleft(1right)=2,5;

fleft(-9right)=fleft(-1-4cdot 2right)=fleft(-1right)=-2,5;

fleft(21right)-fleft(-9right)=2,5-left(-2,5right)=5.

Ответ: 5.

Друзья, мы надеемся, что на уроках математики в школе вы решаете такие задачи. Для углубленного изучения темы «Функции и графики» (задание 10 ЕГЭ по математике), а также задач с параметрами и других тем ЕГЭ — рекомендуем Онлайн-курс для подготовки к ЕГЭ на 100 баллов.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 10 ЕГЭ по математике. Графики функций» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023



СДАМ ГИА:

РЕШУ ЕГЭ

Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

≡ Математика

Базовый уровень

Профильный уровень

Информатика

Русский язык

Английский язык

Немецкий язык

Французский язык

Испанский язык

Физика

Химия

Биология

География

Обществознание

Литература

История

Сайты, меню, вход, новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Об экзамене

Каталог заданий

Варианты

Ученику

Учителю

Школа

Эксперту

Справочник

Карточки

Теория

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

Играть в ЕГЭ-игрушку

Новости

10 марта

Как подготовиться к ЕГЭ и ОГЭ за 45 дней

6 марта

Изменения ВПР 2023

3 марта

Разместили утвержденное расписание ЕГЭ

27 января

Вариант экзамена блокадного Ленинграда

23 января

ДДОС-атака на Решу ЕГЭ. Шантаж.

6 января

Открываем новый сервис: «папки в избранном»

22 декабря

От­кры­ли но­вый пор­тал Ре­шу Олимп. Для под­го­тов­ки к пе­реч­не­вым олим­пи­а­дам!

4 ноября

Материалы для подготовки к итоговому сочинению 2022–2023

31 октября

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

21 марта

Новый сервис: рисование

31 января

Внедрили тёмную тему!

НАШИ БОТЫ

Все новости

ЧУЖОЕ НЕ БРАТЬ!

Экзамер из Таганрога

10 апреля

Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

Наша группа

Каталог заданий
Задания 10. Графики функций. Тригонометрические функции


Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 10 № 509123

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =a косинус x плюс b. Найдите a.

Аналоги к заданию № 509123: 509131 509124 509125 509126 509127 509128 509129 509130 509132 509133 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.5 Тригонометрические функции, их графики

Решение

·

·

Сообщить об ошибке · Помощь


2

Тип 10 № 509131

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =a косинус x плюс b. Найдите b.

Аналоги к заданию № 509123: 509131 509124 509125 509126 509127 509128 509129 509130 509132 509133 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.5 Тригонометрические функции, их графики

Решение

·

·

Сообщить об ошибке · Помощь


3

Тип 10 № 509137

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =a тангенс x плюс b. Найдите a.

Аналоги к заданию № 509137: 509147 509138 509139 509140 509141 509142 509143 509144 509145 509146 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.5 Тригонометрические функции, их графики

Решение

·

·

Сообщить об ошибке · Помощь


4

Тип 10 № 509147

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =a тангенс x плюс b. Найдите b.

Аналоги к заданию № 509137: 509147 509138 509139 509140 509141 509142 509143 509144 509145 509146 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.5 Тригонометрические функции, их графики

Решение

·

·

Сообщить об ошибке · Помощь


5

Тип 10 № 509287

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =a синус x плюс b. Найдите a.

Аналоги к заданию № 509287: 509297 509288 509289 509290 509291 509292 509293 509295 509296 509298 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.5 Тригонометрические функции, их графики

Решение

·

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

В ЕГЭ 2022 года добавили новую задачу на графики функций. Для решения этой задачи нужно сначала определить формулу функции, а затем вычислить ответ на вопрос задачи. И если вычисление ответа по известной формуле обычно не составляет труда, то вот определение самой формулы часто ставит школьников в тупик. Поэтому мы разберем три разных подхода к этому вопросу.

Замечание. Про то как определяется формула у прямой и параболы я написала в этой и этой статьях. Поэтому здесь в примерах я буду использовать другие функции – дробные, иррациональные, показательные и логарифмические, но все три описанных здесь способа работают и для линейных, и для квадратичных функций в том числе.

1 способ – находим формулу по точкам

Этот способ подходит вообще для любой девятой задачи, но занимает достаточно много времени и требует хорошего навыка решения систем уравнений.

Давайте разберем алгоритм на примере конкретной 9-ой задачи ЕГЭ:

задача с гиперболой

Алгоритм:

1. Находим 2 точки с целыми координатами. Обычно они выделены жирно, но если это не так, то не проблема найти их самому.
Пример:

находим две точки с целыми координатами

2. Подставляем эти координаты в «полуфабрикат» функции. Вместо (f(x))– координату игрек, вместо (x) – икс. Получается система.

составляем уравнения

3. Решаем эту систему и получаем готовую формулу.

решаем систему

4. Готово, функция найдена, можно переходить ко второму этапу – вычислению (f(-8)). Если вы вдруг не знаете, что это значит – в конце статьи я рассматриваю этот момент более подробно.

отвечаем на вопрос задачи

Давайте посмотрим метод еще раз на примере с логарифмической функцией.
Пример:

Пример с логарифмической функцией

2 способ – преобразование графиков функций

Этот способ сильно быстрее первого, но требует больше знаний. Для использования преобразований функций нужно знать, как выглядят функции без изменения и как преобразования их меняют. Наиболее удобно использовать этот способ для иррациональной функции ((y=sqrt{x}) ) и функции обратной пропорциональности ((y=frac{1}{x})).

Вот как выглядит применение этого способа:

преобразование графиков функций

Для использования этого способа надо знать, как выглядят изначальные функции:

Виды функций

И понимать, как меняются функции от преобразований:

Преобразование графиков функций

примеры преобразований функций

Преобразование показательной функции Преобразование гипербол

Часто даже по «полуфабрикату» функции понятно, какие преобразования сделали с функцией:

как по формуле определить какие были преобразования с функцией

Пример:

пример с функцией обратной пропорциональности

3 способ – гибридный

Идеально подходит для логарифмических и показательных функций, так как обычно у таких функций неизвестно основание и с помощью преобразований его не найти. С другой стороны, независимо от оснований любая показательная функция должна проходить через точку ((0;1)), а любая логарифмическая — через точку ((1;0)).

показательная и логарифмическая функция

По смещению этих точек легко понять, как именно двигали функцию, но только если ее не растягивали, а лишь перемещали вверх-вниз, влево-вправо (как обычно и бывает в задачах на ЕГЭ).

Основание же лучше находить уже следующим действием, используя подстановку координат точки в «полуфабрикат» функции.

пример с логарифмической функцией

пример с логарифмической функцией

Как отвечать на вопросы в задаче, когда уже определили функцию

— Если просят найти (f)(любое число), то нужно это число подставить в готовую функцию вместо икса.
Пример:

что значит найти f от числа

— Если просят найти «при каком значении x значение функции равно *любому числу*», то надо решить уравнение, в одной части которого будет функция, а в другой — то самое число. Аналогично надо поступить, если просят «найти корень уравнения (f(x)=) *любое число*».
Пример:

найдите, при каком значении x значение функции равно 8

— Если просят найти абсциссу точки пересечения – надо приравнять 2 функции и решить получившееся уравнение. Корень уравнения и будет искомой абсциссой. Аналогично надо делать в задачах, где даны две точки пересечения (A)(*любое число*;*другое число*) и (B(x_0;y_0)) и просят найти (x_0).
Пример:

найдите точку пересечения функций

— Если просят найти ординату точки пересечения – надо приравнять 2 функции, найти иксы и подставить подходящий икс в любую функцию. Точно также решаем если просят найти (y_0) точки пересечения двух функций.
Пример:

найдите ординату точки пересечения

— Иногда просят найти просто какой-либо из коэффициентов функции. Тогда надо просто восстановить функцию и записать в ответ то, о чем спросили:
Пример:

найдите k

Новые задания №10 ЕГЭ 2022 по математике профильного уровня — вероятности сложных событий.

Для успешного результата необходимо уметь моделировать реальные ситуации на языке теории вероятностей и статистики, вычислять в простейших случаях вероятности событий.

Задание №10 ЕГЭ 2022 математика профильный уровень — скачать прототипы

→ Теоремы о вероятностях событий

→ Теория вероятностей повышенной сложности

→ Линия 10 – задания повышенного уровня сложности с кратким ответом по курсу «Теория вероятностей и статистика» от ФИПИ

Источник: math100.ru

Еще несколько заданий из открытого банка заданий ЕГЭ от ФИПИ (по кодификатору элементов содержания пункт 6.3).

4900. В чемпионате по гимнастике участвуют 25 спортсменок: 6 из Венгрии, 7 из Румынии, остальные из Болгарии. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Болгарии.

4881. В соревнованиях по толканию ядра участвуют спортсмены из четырёх стран: 7 из Великобритании, 6 из Франции, 4 из Германии и 3 из Италии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий первым, окажется из Великобритании.

4862. Научная конференция проводится в 3 дня. Всего запланировано 70 докладов: в первый день 28 докладов, остальные распределены поровну между вторым и третьим днями. На конференции планируется доклад профессора М. Порядок докладов определяется жеребьёвкой. Какова вероятность того, что доклад профессора М. окажется запланированным на последний день конференции?

4843. Конкурс исполнителей проводится в 5 дней. Всего заявлено 75 выступлений: по одному от каждой страны, участвующей в конкурсе. Исполнитель из России участвует в конкурсе. В первый день запланировано 27 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность того, что выступление исполнителя из России состоится в третий день конкурса?

4824. На конференцию приехали 2 учёных из Дании, 7 из Польши и 3 из Венгрии. Каждый из них делает на конференции один доклад. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что четвёртым окажется доклад учёного из Венгрии.

При отработке данного задания будет полезна книга:

Элементы теории вероятностей для ЕГЭ по математике - задание 10

Купить ЕГЭ 2022 Математика. Профильный Теория вероятности

Связанные страницы:

Понравилась статья? Поделить с друзьями:
  • Десятина исторический факт егэ
  • Десятилетие это егэ история
  • Десятиклассник после успешной сдачи основного государственного экзамена решил
  • Десерты на демонстрационный экзамен
  • Десерты на демо экзамен