Подборка вариантов ЕГЭ 2022 по информатике для 11 класса с ответами.
vk.com/info_ege_academiaa | ||
вариант 1 | ответы | доп. файлы |
вариант 2 | ответы | доп. файлы |
вариант 3 | ответы | доп. файлы |
вариант 4 | ответы | доп. файлы |
вариант 5 | ответы | доп. файлы |
вариант 6 | ответы | доп. файлы |
вариант 7 | ответы | доп. файлы |
вариант 8 | ответы | доп. файлы |
вариант 9 | ответы | доп. файлы |
вариант 10 | ответы | доп. файлы |
вариант 11 | ответы | доп. файлы |
вариант 12 от 11.03.22 | ответы | доп. файлы |
vk.com/inform_web | ||
вариант 1 | разбор | файлы |
вариант 2 | разбор | |
vk.com/ege100ballov | ||
Вариант 1 | доп. файлы |
Инструкция по выполнению работы
Экзаменационная работа состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера.
На выполнение экзаменационной работы по информатике отводится 3 часа 55 минут (235 минут).
Экзаменационная работа выполняется с помощью специализированного программного обеспечения, предназначенного для проведения экзамена в компьютерной форме.
При выполнении заданий Вам будут доступны на протяжении всего экзамена текстовый редактор, редактор электронных таблиц, системы программирования.
Расположение указанного программного обеспечения на компьютере и каталог для создания электронных файлов при выполнении заданий Вам укажет организатор в аудитории.
На протяжении сдачи экзамена доступ к сети Интернет запрещён.
При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
Связанные страницы:
Задание 11 ЕГЭ по информатике
Задание №5 ЕГЭ по информатике — практика
Открытый вариант ЕГЭ по информатике 2021 от ФИПИ
Задание №2 ЕГЭ по информатике — практика
Разбор задания № 17 ЕГЭ по информатике — проверка делимости чисел
Варианты ЕГЭ по информатике
Об экзамене
С современным миром технологий и реалий программирования, разработки ЕГЭ по информатике имеет мало общего. Какие-то базовые моменты есть, но даже если разбираешься немного в задачах, то это еще не значит, что в конечном итоге станешь хорошим разработчиком. Зато областей, где нужны IT-специалисты, великое множество. Вы нисколько не прогадаете, если хотите иметь стабильный заработок выше среднего. В IT вы это получите. При условии, разумеется, наличия соответствующих способностей. А развиваться и расти здесь можно сколько угодно, ведь рынок настолько огромен, что даже представить себе не можете! Причем он не ограничивается только нашим государством. Работайте на какую угодно компанию из любой точки мира! Это все очень вдохновляет, поэтому пусть подготовка к ЕГЭ по информатике будет первым незначительным шагом, после которого последуют годы саморазвития и совершенствования в данной области.
Структура
Часть 1 содержит 23 задания с кратким ответом. В этой части собраны задания с кратким ответом, подразумевающие самостоятельное формулирование последовательности символов. Задания проверяют материал всех тематических блоков. 12 заданий относятся к базовому уровню, 10 заданий к повышенному уровню сложности, 1 задание – к высокому уровню сложности.
Часть 2 содержит 4 задания, первое из которых повышенного уровня сложности, остальные 3 задания высокого уровня сложности. Задания этой части подразумевают запись развернутого ответа в произвольной форме.
На выполнение экзаменационной работы отводится 3 часа 55 минут (235 минут). На выполнение заданий части 1 рекомендуется отводить 1,5 часа (90 минут). Остальное время рекомендуется отводить на выполнение заданий части 2.
Пояснения к оцениванию заданий
Выполнение каждого задания части 1 оценивается в 1 балл. Задание части 1 считается выполненным, если экзаменуемый дал ответ, соответствующий коду верного ответа. Выполнение заданий части 2 оценивается от 0 до 4 баллов. Ответы на задания части 2 проверяются и оцениваются экспертами. Максимальное количество баллов, которое можно получить за выполнение заданий части 2, – 12.
Тема | Результат | Задания | |||
---|---|---|---|---|---|
1. | Системы счисления | Не изучена | Отработать | ||
2. | Анализ информационных моделей | Не изучена | Отработать | ||
3. | Построение таблиц истинности логических выражений | Не изучена | Отработать | ||
4. | Базы данных. Файловая система | Не изучена | Отработать | ||
5. | Кодирование и операции над числами в разных системах счисления | Не изучена | Отработать | ||
6. | Анализ диаграмм и электронных таблиц | Не изучена | Отработать | ||
7. | Анализ и построение алгоритмов для исполнителей | Не изучена | Отработать | ||
8. | Анализ программ | Не изучена | Отработать | ||
9. | Кодирование и декодирование информации. Передача информации | Не изучена | Отработать | ||
10. | Перебор слов и системы счисления | Не изучена | Отработать | ||
11. | Рекурсивные алгоритмы | Не изучена | Отработать | ||
12. | Организация компьютерных сетей. Адресация | Не изучена | Отработать | ||
13. | Вычисление количества информации | Не изучена | Отработать | ||
14. | Выполнение алгоритмов для исполнителя Робот | Не изучена | Отработать | ||
15. | Поиск путей в графе | Не изучена | Отработать | ||
16. | Кодирование чисел. Системы счисления | Не изучена | Отработать | ||
17. | Запросы для поисковых систем с использованием логических выражений | Не изучена | Отработать | ||
18. | Преобразование логических выражений | Не изучена | Отработать | ||
19. | Обработка массивов и матриц | Не изучена | Отработать | ||
20. | Анализ программы с циклами и условными операторами | Не изучена | Отработать | ||
21. | Анализ программ с циклами и подпрограммами | Не изучена | Отработать | ||
22. | Оператор присваивания и ветвления. Перебор вариантов, построение дерева | Не изучена | Отработать | ||
23. | Логические уравнения | Не изучена | Отработать | ||
Часть 2 | |||||
24. | Поиск и исправление ошибок в программе | Отработать | |||
25. | Алгоритмы обработки массивов | Отработать | |||
26. | Выигрышная стратегия | Отработать | |||
27. | Обработка символьных строк | Отработать |
Любой учитель или репетитор может отслеживать результаты своих учеников по всей группе или классу.
Для этого нажмите ниже на кнопку «Создать класс», а затем отправьте приглашение всем заинтересованным.
Ознакомьтесь с подробной видеоинструкцией по использованию модуля.
Тренировочный вариант и ответы с решением пробник ЕГЭ 2023 по информатике 11 класс ФИПИ состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера. На выполнение экзаменационной работы по информатике и ИКТ отводится 3 часа 55 минут (235 минут).
Скачать тренировочный вариант с ответами
Скачать файлы для варианта
Другие тренировочные варианты
ege_2023_informatika_23_02
Разбор варианта. ЕГЭ по Информатике 2023
1. На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. В таблице в левом столбце указаны номера пунктов, откуда совершается движение, в первой строке – куда. Определите минимально возможную длину пути BDE. Передвигаться можно только по указанным дорогам.
2. Логическая функция F задаётся выражением w ∨ (y → z) ∧ x. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какой столбец в таблице каждой переменной в выражении. В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
3. В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады августа 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок внесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
4. Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известно, что слово СПОРТЛОТО кодируется как 10010100110011110000100. Какой код соответствует букве Л, если известно, что коды подбирались под минимальную длину заданного слова.
5. На вход алгоритма подаётся натуральное число N большее 4. Алгоритм строит по нему новое число R следующим образом. 1. Строится двоичная запись числа N. 2. Далее эта запись обрабатывается по следующему правилу: а) если количество цифр в двоичной записи числа нечётное, то центральный бит двоичного представления инвертируется; б) если количество цифр в двоичной записи числа чётное, то два центральных бита двоичного представления инвертируется; Например, для исходного числа 610 = 1102 результатом является число 1002 = 410, а для исходного числа 910 = 10012 результатом является число 11112 = 1510. Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 100 и меньшее N. В ответе запишите это число в десятичной системе счисления.
6. Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 5 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n – целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n – целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m – целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз.
7. Спутник каждую секунду делает снимок 20 на 7.6 километра. Размер пикселя на местности 0.65х0.65 метра. Цвет пикселя выбирается из палитры в 256 цветов. Оцените объем памяти (в МБ) для хранения одного изображения. Сжатие не производится. Ответ округлите до большего целого числа.
8. Определите количество десятизначных чисел, записанных в восьмеричной системе счисления, в записи которых ровно пять цифры 7 и при этом никакая нечетная цифра не стоит рядом с цифрой 7.
9. Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнено строго одно из условий: – в строке есть повторяющиеся числа; – в строке есть ровно три нечетных числа. В ответе запишите только число.
10. Текст произведения Ника Горькавого «Теория Катастроф» представлен в виде текстового файла. Откройте файл и определите, сколько бифуркационных технологий содержал итоговый список. В ответе запишите только число.
11. Вася решил закодировать персональные данные всех 1347 учеников всей школы. Для каждого ученика был сформирован ID из нескольких полей: номер класса, буква (а,б,в,г,д), пол, день и месяц рождения, номер имени по таблице имен (всего 103), номер фамилии по таблице фамилий (всего 733). Сперва Вася для каждого поля выделил минимальное количество байт. Затем попробовал закодировать все поля непрерывной битовой строкой и для каждого ID выделил минимальное количество байт. Сколько байт сэкономил Вася во втором случае для кодирования всех учеников школы?
12. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр) А) заменить(v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить(111, 27) преобразует строку 05111150 в строку 0512750. Если в строке нет вхождений цепочки v, то выполнение команды заменить(v, w) не меняет эту строку. Б) нашлось(v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется. Цикл выполняется, пока условие истинно.
13. На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Определите количество различных путей ненулевой длины, которые начинаются и заканчиваются в городе Е, не содержат этот город в качестве промежуточного пункта и проходят через промежуточные города не более одного раза.
14. Дано выражение 12×4536 + 1×12345 В записи чисел переменной x обозначена неизвестная цифра из допустимого алфавита для указанных систем счисления. Определите наибольшее значение x, при котором значение данного арифметического выражения кратно 13. Для найденного значения x вычислите частное от деления значения арифметического выражения на 13 и укажите его в ответе в десятичной системе счисления.
15. На числовой прямой даны два отрезка: B = [23;37] и C = [41;73]. Укажите наименьшую длину такого отрезка А, для которого логическое выражение ¬((¬(x ∈ B) → (x ∈ C)) → (x ∈ A)) ложно (т.е. принимает значение 0) при любом значении переменной x.
16. Обозначим частное от деления натурального числа a на натуральное число b как a//b, а остаток как a%b. Например, 17//3 = 5, 17%3 = 2. Алгоритм вычисления значения функции F(n), где n – целое неотрицательное число, задан следующими соотношениями: F(n) = n при n < 10; F(n) = F(n//10) + F(n%10) , если 10 ⩽ n < 1000; F(n) = F(n//1000) — F(n%1000) , если n ⩾ 1000. Определите количество значений n, не превышающих 106 , для которых F(n) = 0?
17. В файле содержится последовательность целых чисел по модулю менее 10000. а) рассматриваются только пары в которых строго одно число оканчивается на 7. б) квадрат разности элементов пары меньше модуля разности квадратов хотя бы одной пары (отвечающей условию а). В ответе запишите два числа: сначала количество найденных пар, затем минимальный квадрат разности. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
18. Квадрат разлинован на N×N клеток (1 < N < 30). Роботу нужно перейти через поле с севера (верхняя строка) на юг (нижняя строка). Он может начать переход с любой клетки первой строки и закончить на любой клетке нижней строки. С каждым шагом Робот переходит в следующую строку и может за одно перемещение попасть в одну из трех клеток следующей строки (на клетку прямо вниз или на одну из клеток слева/справа от неё). Ходы только влево или вправо (без смены строки), назад (в предыдущую строку) и за границы поля запрещены. В каждой клетке поля лежит монета достоинством от 1 до 100. Робот собирает все монеты по пройденному маршруту. Определите максимальную возможную денежную сумму и количество монет с чётным значением, которую может собрать Робот, пройдя с северной границы поля (сверху) до южной границы поля (снизу). В ответе укажите два числа: сначала максимальную сумму, затем количество монет с четным значением по маршруту с максимальной суммой.
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в меньшую кучу один или три камня. Изменять количество камней в большей куче не разрешается. Игра завершается, когда количество камней в кучах становится равным. Победителем считается игрок, сделавший последний ход, то есть первым сравнявшим количество камней в двух кучах. Игроки играют рационально, т.е. без ошибок. В начальный момент в первой куче было 13 камней, а во второй – S камней, 1 ≤ S ≤ 23? Укажите такое минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.
20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия: – Петя не может выиграть за один ход; – Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответ в порядке возрастания
21. Для игры, описанной в задании 19, найдите два значения S, при котором одновременно выполняются три условия: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом; – Петя может выбирать, каким ходом выиграет Ваня;
22. В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0. Определите максимальное количество процессов, которые завершатся за 73 мс, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
23. У исполнителя Кузнечик есть 4 команды: 1. Прибавить 1 2. Прибавить 3 3. Вычесть 1 4. Вычесть 3 Сколько существует программ, для которых при исходном числе 42 результатом будет являться число 42, при этом траектория вычисления содержит только числа от 40 до 49, притом не более 1 раза, т.е. без повторов.
24. Текстовый файл содержит строку из десятичных цифр и букв латинского алфавита. Найдите минимальную длину подстроки включающей все шестнадцатеричные цифры. Строка может включать повторяющиеся цифры и другие символы. В ответе укажите найденную длину..
25. Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы: символ «?» означает ровно одну произвольную цифру; символ «*» означает любую последовательность цифр произвольной длины; в том числе «*» может задавать и пустую последовательность. Например, маске 123*4?5 соответствуют числа 123405 и 12300405. Найдите все натуральные числа, не превышающие 1010, которые соответствуют маске 1?1?1?1*1 и при этом без остатка делятся на 2023, а сумма цифр числа равна 22. В ответе запишите все найденные числа в порядке возрастания. Количество строк в таблице для ответа избыточно.
26. В сетевом приложении реализован кэш размером V МБ для файлов размером от 1 до 999 МБ. Пользователи запрашивают файлы в порядке, заданном в исходном файле. Алгоритм кэширования сперва заполняет весь кэш. Для размещение следующего файла кэш нужно освободить. Для этого из кэша удаляется один подходящий файл, так чтобы свободное место было минимальным и достаточным для размещения нового файла. Если удаление даже самого большого файла не освобождает необходимого места, то удаляется самый большой файл и алгоритм рекурсивно повторяется, пока не будет достаточного места для нового файла.
27. Дана последовательность натуральных чисел. Расстояние между элементами последовательности – это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними равно 1, если два элемента стоят через один – расстояние равно 2 и т. д. Назовём тройкой любые три числа из последовательности, расстояние между которыми не меньше 17. Необходимо определить количество троек, в которых сумма чисел в тройке делится без остатка на 7717.