Дисперсия задания егэ


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Задания Д9 B15 № 1702

При освещении дифракционной решетки монохроматическим светом на экране, установленном за ней, возникает дифракционная картина, состоящая из темных и светлых вертикальных полос. В первом опыте расстояние между светлыми полосами оказалось больше, чем во втором, а во втором больше, чем в третьем. В каком из ответов правильно указана последовательность цветов монохроматического света, которым освещалась решетка?

1)  1  — красный, 2  — зеленый, 3  — синий

2)  1  — красный, 2  — синий, 3  — зеленый

3)  1  — зеленый, 2  — синий, 3  — красный

4)  1  — синий, 2  — зеленый, 3  — красный


2

Задания Д9 B15 № 1705

В некотором спектральном диапазоне угол преломления лучей на границе воздух  — стекло падает с увеличением частоты излучения. Ход лучей для трех основных цветов при падении белого света из воздуха на границу раздела показан на рисунке.

Цифрам соответствуют цвета

1)  1  — красный, 2  — зёленый, 3  — синий

2)  1  — красный, 2  — синий, 3  — зёленый

3)  1  — зёленый, 2  — синий, 3  — красный

4)  1  — синий, 2  — зёленый, 3  — красный


3

Задания Д9 B15 № 1715

Технология «просветления» объективов оптических систем основана на использовании явления

1)  дифракция

2)  интерференция

3)  дисперсия

4)  поляризация


4

Задания Д9 B15 № 1725

Луч от лазера направляется перпендикулярно плоскости дифракционной решетки (см. рис.) в первом случае с периодом d, а во втором  — с периодом 2d.

Длина волны света такая, что первые дифракционные максимуму отклоняются на малые углы. Расстояние между нулевым и первым дифракционным максимумами на удаленном экране

1)  в обоих случаях одинаково

2)  во втором случае приблизительно в 2 раза меньше

3)  во втором случае приблизительно в 2 раза больше

4)  во втором случае приблизительно в 4 раза больше


5

Задания Д9 B15 № 1730

Лучи от двух лазеров, свет которых соответствует длинам волн lambda и 1,5lambda , поочередно направляются перпендикулярно плоскости дифракционной решетки (см. рис.).

Период дифракционной решетки такой, что первые дифракционные максимумы отклоняются на малые углы. Расстояние между первыми дифракционными максимумами на удаленном экране

1)  в обоих случаях одинаково

2)  во втором случае приблизительно в 1,5 раза больше

3)  во втором случае приблизительно в 1,5 раза меньше

4)  во втором случае приблизительно в 3 раза больше

Пройти тестирование по этим заданиям

Задание 17607

Внимательно прочитайте текст задания и выберите верный ответ из списка

Решение

Задание 18112

Внимательно прочитайте текст задания и выберите верный ответ из списка

Решение

Задание 18147

Внимательно прочитайте текст задания и выберите верный ответ из списка

Решение

Задание 22497

Внимательно прочитайте текст задания и выберите верный ответ из списка

Решение

Задание 22532

Внимательно прочитайте текст задания и выберите верный ответ из списка

Решение

ЕГЭ
Справочник

vkontakte

youtube

© 2023 ЕГЭ.Справочник24. Все права защищены.

Показатель преломления. Дисперсия.

В статье собраны задачи, относящиеся как к явлению дифракции, так и дисперсии, и объединенные понятием «показатель преломления».

Задача 1.

Для излучения некоторой длины волны дифракционный максимум первого порядка наблюдают под углом Показатель преломления. Дисперсия.. Какой угол дифракции соответствует последнему максимуму для той же длины волны?
Угол дифракции —  угол между нормалью дифракционной решетки и направлением на дифракционный максимум.

Воспользуемся формулой для дифракционной решетки:

Показатель преломления. Дисперсия.

С учетом того, что Показатель преломления. Дисперсия., получаем выражение для синуса угла дифракции:

Показатель преломления. Дисперсия.

Для последнего максимума угол будет другим:

Показатель преломления. Дисперсия.

Но нам неизвестен порядок этого максимума — Показатель преломления. Дисперсия..
Устремим угол, соответствующий последнему максимуму, в бесконечность. Тогда синус этого угла будет стремиться к 1. Следовательно,

Показатель преломления. Дисперсия.

Но

Показатель преломления. Дисперсия.

Тогда

Показатель преломления. Дисперсия.

И

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Ответ: Показатель преломления. Дисперсия..

Задача 2.

При падении на дифракционную решетку монохроматического света первый дифракционный максимум наблюдают под углом дифракции Показатель преломления. Дисперсия.‚ а последний — под углом Показатель преломления. Дисперсия.. Чему равен максимальный порядок спектра решетки для длин волн вблизи длины волны падающего света?

Воспользуемся формулой для дифракционной решетки:

Показатель преломления. Дисперсия.

С учетом того, что Показатель преломления. Дисперсия., получаем выражение для синуса угла дифракции:

Показатель преломления. Дисперсия.

Для последнего максимума угол будет другим:

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Ответ: Показатель преломления. Дисперсия..

Оптика8

К задаче 3

Задача 3.

В водоем на некоторую глубину помещен источник белого света. Показатель преломления для красных лучей Показатель преломления. Дисперсия., а для фиолетовых Показатель преломления. Дисперсия.. Вычислить отношение радиусов кругов, в пределах которых возможен выход красных и фиолетовых лучей из воды в воздух.

Выход лучей возможен, если угол, под которым они падают на поверхность жидкости, не превышает предельного:

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Найдем синусы предельных углов из геометрических соображений:

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Возведем в квадрат оба выражения:

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Тогда отношение радиусов:

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Ответ: Показатель преломления. Дисперсия..

Задача 4.

Луч света падает под углом Показатель преломления. Дисперсия. на призму, преломляющий угол которой Показатель преломления. Дисперсия.. Определить угол Показатель преломления. Дисперсия. между крайними лучами спектра при выходе из призмы, если показатель преломления стекла призмы для крайних лучей видимого спектра Показатель преломления. Дисперсия. и Показатель преломления. Дисперсия..

Определим, как преломятся лучи красного и фиолетового цветов на входе в призму:
Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Показатель преломления. Дисперсия.

Какой угол будет между лучами внутри призмы, такой будет и на выходе из нее, поэтому:

Показатель преломления. Дисперсия.

Ответ: Показатель преломления. Дисперсия.

Задачи по физике ( СВЕТОВЫЕ ВОЛНЫ ), на тему
Дисперсия света. Интерференция, дифракция, поляризация света
Из пособия: ГДЗ к задачнику Рымкевич для 10-11 классов по физике, 10-е издание, 2006 г.

Какие частоты колебаний соответствуют крайним красным (λ= 0,76 мкм) и крайним фиолетовым (λ = 0,4 мкм) лучам видимой части спектра
РЕШЕНИЕ

Сколько длин волн монохроматического излучения с частотой 600 ТГц укладывается на отрезке 1 м
РЕШЕНИЕ

Вода освещена красным светом, для которого длина волны в воздухе 0,7 мкм. Какой будет длина волны в воде? Какой цвет видит человек, открывший глаза под водой
РЕШЕНИЕ

Для данного света длина волны в воде 0,46 мкм. Какова длина волны в воздухе
РЕШЕНИЕ

Показатель преломления для красного света в стекле (тяжелый флинт) равен 1,6444, а для фиолетового 1,6852. Найти разницу углов преломления в стекле данного сорта, если угол падения равен 80°
РЕШЕНИЕ

Какими будут казаться красные буквы, если их рассматривать через зеленое стекло
РЕШЕНИЕ

Через призму смотрят на большую белую стену. Будет ли эта стена окрашена в цвета спектра
РЕШЕНИЕ

На черную классную доску наклеили горизонтальную полоску белой бумаги. Как окрасятся верхний и нижний края этой полоски, если на нее смотреть сквозь призму, обращенную преломляющим ребром вверх
РЕШЕНИЕ

Для получения на экране MN (рис. 120) интерференционной картины поместили источник света S над поверхностью плоского зеркала А на малом расстоянии от него. Объяснить причину возникновения системы когерентных световых волн
РЕШЕНИЕ

Две когерентные световые волны приходят в некоторую точку пространства с разностью хода 2,25 мкм. Каков результат интерференции в этой точке, если свет: а) красный (λ = 750 нм); б) зеленый (λ = 500 нм)
РЕШЕНИЕ

Два когерентных источника S1 и S2 освещают экран АВ, плоскость которого параллельна направлению S1S2 (рис. 121) . Доказать, что на экране в точке О, лежащей на перпендикуляре, опущенном на экран из середины отрезка S1s2, соединяющего источники, будет максимум освещенности
РЕШЕНИЕ

Экран АВ освещен когерентными монохроматическими источниками света S1 и S2(рис. 121) . Усиление или ослабление будет на экране в точке С, если: а) от источника S2 свет приходит позже на 2,5 периода; б) от источника S2 приходит с запозданием по фазе на Зπ в) расстояние S2C больше расстояния S1C на 1,5 длины волны
РЕШЕНИЕ

Расстояние S2C (рис. 121) больше расстояния S1C на 900 нм. Что будет в точке С, если источники имеют одинаковую интенсивность и излучают свет с частотой 5 * 10 Гц
РЕШЕНИЕ

Два когерентных источника S1 и S2 (рис. 121) излучают монохроматический свет с длиной волны 600 нм. Определить, на каком расстоянии от точки О на экране будет первый максимум освещенности, если OD = 4 м и S1S2 = 1 мм
РЕШЕНИЕ

Как изменяется интерференционная картина на экране АВ (рис. 121), если: а) не изменяя расстояния между источниками света, удалять их от экрана; б) не изменяя расстояния до экрана, сближать источники света; в) источники света будут испускать свет с меньшей длиной волны
РЕШЕНИЕ

В установке для наблюдения колец Ньютона используется плосковыпуклая линза с радиусом кривизны 8,6 м. При освещении установки монохроматическим светом, падающим нормально на плоскую поверхность линзы, радиус четвертого темного кольца был равен 4,5 мм. Определить длину волны света, если наблюдение велось в отраженном свете
РЕШЕНИЕ

Между двумя шлифованными стеклянными пластинами попал волос, вследствие чего образовался воздушный клин. Почему в отраженном свете можно наблюдать интерференционную картину
РЕШЕНИЕ

Почему при наблюдении на экране интерференционной картины от тонкой мыльной пленки, полученной на вертикально расположенном каркасе, в отраженном монохроматическом свете расстояние между интерференционными полосами в верхней части меньше, чем в нижней
РЕШЕНИЕ

Почему в центральной части спектра, полученного на экране при освещении дифракционной решетки белым светом, всегда наблюдается белая полоса
РЕШЕНИЕ

В школе есть дифракционные решетки, имеющие 50 и 100 штрихов на 1 мм. Какая из них даст на экране более широкий спектр при прочих равных условиях
РЕШЕНИЕ

Как изменяется картина дифракционного спектра при удалении экрана от решетки
РЕШЕНИЕ

Дифракционная решетка содержит 120 штрихов на 1 мм. Найти длину волны монохроматического света, падающего на решетку, если угол между двумя спектрами первого порядка равен 8°
РЕШЕНИЕ

Определить угол отклонения лучей зеленого света (λ = 0,55 мкм) в спектре первого порядка, полученном с помощью дифракционной решетки, период которой равен 0,02 мм
РЕШЕНИЕ

ЛИНИЯ С длиной волны λ1= 426 нм, полученная при помощи дифракционной решетки в спектре второго порядка, видна под углом φ1 = 4,9°. Найти, под каким углом φ2 видна линия с длиной волны λ2 = 713 нм в спектре первого порядка
РЕШЕНИЕ

Для определения периода решетки на нее направили световой пучок через красный светофильтр, пропускающий лучи с длиной волны 0,76 мкм. Каков период решетки, если на экране, отстоящем от решетки на 1 м, расстояние между спектрами первого порядка равно 15,2 см
РЕШЕНИЕ

Какова ширина всего спектра первого порядка (длины волн заключены в пределах от 0,38 до 0,76 мкм), полученного на экране, отстоящем на 3 м от дифракционной решетки с периодом 0,01 мм
РЕШЕНИЕ

Свет, отраженный от поверхности воды, частично поляризован. Как убедиться в этом, имея поляроид
РЕШЕНИЕ

Если смотреть на спокойную поверхность неглубокого водоема через поляроид и постепенно поворачивать его, то при некотором положении поляроида дно водоема будет лучше видно. Объяснить явление
РЕШЕНИЕ

На рисунке 122 представлен график зависимости проекции напряженности электрического поля электромагнитной волны от времени для данной точки пространства (луча). Найти частоту и длину волны
РЕШЕНИЕ

На рисунке 123 представлен график распределения проекции напряженности электрического поля электромагнитной волны по заданному направлению (лучу) в данный момент времени. Найти частоту колебаний
РЕШЕНИЕ

Дисперсия проявляется в следующих явлениях:

А. изменение видимого цвета белой ткани при разглядывании её через цветное стекло.

Б. образование радуги при прохождении света через мелкие капли воды.

Верно(-ы) утверждение(-я):

Ответ:

  1. Только А
  2. Только Б
  3. И А, и Б
  4. Ни А, ни Б

📜Теория для решения:
Дисперсия света


Посмотреть решение

Алгоритм решения

  1. Записать определение явления дисперсии света.
  2. Установить, какие из представленных явлений могут быть объяснены дисперсией света.

Решение

Дисперсия —  зависимость показателя преломления среды от частоты световой волны. Когда мы рассматриваем белую ткань через цветное стекло, до нас доходят только те лучи, цвет которых соответствует цвету стекла. При этом все лучи преломляются одинаково, так как они имеют примерно одинаковую частоту. Но радуга — это следствие дисперсии света. Когда лучи белого света проходят сквозь капельки воды, лучи разного цвета преломляются по-разному. Поэтому на выходе лучи разлагаются в спектр — радугу.

Ответ: 2

Алиса Никитина | Просмотров: 429

Дисперсия света.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ:  дисперсия света.

Пусть солнечный луч переходит из воздуха в прозрачную среду (например, воду или стекло). Если угол падения alpha не равен нулю, то, как вы помните, угол преломления beta определяется из закона преломления:

sin beta =frac{displaystyle sinalpha }{displaystyle n}.

Величина n, называемая показателем преломления, характеризует среду и от угла падения не зависит.

Оказывается, однако, что среда по-разному реагирует на прохождение электромагнитных волн различных частот. Имеет место дисперсия — зависимость показателя преломления среды от частоты света.

Опыт Ньютона.

Классический опыт по наблюдению дисперсии был поставлен Ньютоном. Узкий луч солнечного света направлялся на треугольную стеклянную призму (рис. 1).

Рис. 1. Разложение белого света в спектр

На экране за призмой появлялся спектр — радужная полоса. Один край спектра оказался красным, другой — фиолетовым, а цвета внутри спектра непрерывно переходили друг в друга.

Выделяя луч какого-либо цвета (например, красного или синего) и запуская его в другую призму, мы уже не увидим изменения цвета преломлённого луча. Стало быть, компоненты радуги являются простейшими цветами, не разложимыми далее. Их можно собрать обратно с помощью второй призмы, и тогда снова получится белый свет. Следовательно, белый свет является смесью световых пучков различных цветов, непрерывно заполняющих диапазон видимого света от красного до фиолетового.

Мы видим, таким образом, что стеклянная призма является простейшим спектральным прибором — она позволяет исследовать спектральный состав белого света. С действием более сложного спектрального прибора — дифракционной решётки — мы познакомились в предыдущей теме.

Как показывает опыт Ньютона, слабее всего преломляется красный свет, а сильнее всего — фиолетовый. В видимом диапазоне красный свет имеет наименьшую частоту, а фиолетовый — наибольшую. Коль скоро показатель преломления становится всё больше по мере движения от красного конца спектра к фиолетовому, мы делаем вывод, что показатель преломления стекла увеличивается с возрастанием частоты света.

Но показатель преломления есть отношение скорости света в воздухе к скорости света в среде: n=c/v. Значит,чем больше частота света, тем с меньшей скоростью свет распространяется в стекле. Наибольшую скорость внутри стеклянной призмы имеет красный свет, наименьшую — фиолетовый.

Различие в скоростях света для разных частот проявляется только при наличии среды. В вакууме скорость распространения электромагнитных волн не зависит от частоты и равна c.

Открытая и исследованная Ньютоном, дисперсия света больше двухсот лет ждала своего объяснения — нужны были соответствующие сведения о строении вещества. Классическая теория дисперсии была предложена Лоренцем лишь в конце XIX века. Более точная квантовая теория дисперсии появилась в первой половине прошлого столетия.

Хроматическая аберрация.

]Предположим, что на собирающую линзу параллельно главной оптической оси падает пучок белого света. Преломляясь в линзе, он, казалось бы, должен собраться в её фокусе. Однако вследствие дисперсии возникает хроматическая аберрация — некоторая расфокусировка пучка, вызванная различной преломляемостью разных компонент белого света.

Явление хроматической аберрации показано на рис. 2.

Рис. 2. Хроматическая аберрация

Показатель преломления материала линзы принимает наименьшее значение для красного света, и потому красный свет преломляется слабее всего. Красные лучи собираются на главной оптической оси в наиболее удалённой от линзы точке. Жёлтые лучи собираются ближе к линзе, зелёные — ещё ближе, и, наконец, в ближайшей к линзе точке сойдутся фиолетовые лучи.

Хроматическая аберрация ухудшает качество изображений — снижает чёткость, даёт лишние цветные полосы. Но с хроматической аберрацией можно бороться. Для этого в оптической технике применяют так называемые ахроматические линзы, получаемые накладыванием на собирающую линзу дополнительной рассеивающей линзы. Догадайтесь — зачем нужна рассеивающая линза?

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Дисперсия света.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

3.6.10 Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников

Взаимодействие световых волн

Для упрощения рассмотрения процессов взаимодействия нескольких световых волн, рассмотрим две волны. Рассматриваемые нами процессы могут происходить с любыми существующими волнами (светом, электромагнитными, механическими и др.).

Все превращения, которые происходят в результате наложения волн, наблюдаются в результате сложения их характеристик (амплитуды, фазы и др.).

Если накладываются две волны с одинаковыми фазами, то они соединяются в одну, с большей амплитудой.

Если же волны приходят в противофазе, то происходит постоянное гашение максимума минимумом, в результате чего волна выравнивается в ноль.

Когерентность

Когерентные волны — волны, имеющие одинаковую фазу и постоянную разность фаз (как на картинках выше)

Условия max и min

Кроме перечисленных выше физических величин, важна разность хода.

Для указанных когерентных волн, разностью хода будет разность между отрезками S1P и S2P.

Как можно заметить на рисунке, разность хода между волнами равна длине одной волны — одна имеет три полных длины волны, а вторая — четыре. В точке Р данные волны складываются вместе, а так как мы знаем, что подобное сложение приводит к увеличению амплитуды, то говорят, что наблюдается интерференционный максимум.

Условие максимума: Разность хода волн равна целому числу волн.

Теперь же рассмотрим иную ситуацию сложения двух когерентных волн:

В данном случае фазы отличаются на одинаковое значение, волны находятся в противофазе.

В таком случае наблюдается интерференционный минимум.

Условие минимума: Разность хода равна некоторому количеству полуцелых длин волн.

Интерференция

В результате того, что в некоторых местах наложения волн наблюдается максимум, а в некоторых минимум, появляется интерференционная картина. Однако стоит заметить, что данное явление справедливо только для когерентных волн.

На рисунке изображена интерференция от двух когерентных источников. Как можно заметить на рисунке. Нет конкретного разделения черных и белых полос, существуют промежуточные значения, которые рассматриваются серым цветом. То же можно наблюдать и в результате двух малых источников света — на экране мы будем видеть плавные переходы от черного до белого цвета. Белый — максимум, черный — минимум.

Интерференция в тонких пленках

Все мы наблюдали ситуацию, когда свет, преломляясь на мыльном пузыре, приобретает радужную окраску. Все это происходит в результате интерференции.

Представим себе тонкую прозрачную среду, на которую попадает луч. Как мы знаем, он отражается от нее и преломляется. Как можно заметить, в результате данного процесса выходят два луча. А так как они выпущены от одного источника, то они интерферентны, но с разностью хода. В результате данной разницы хода, белый цвет будет разделяться на цвета радуги, и в зависимости от толщины пленки, выходить будет какой-то один.

Ту же ситуацию можно наблюдать и при соприкосновении стеклышка и линзы.

Е

максимумы:

минимумы:      

3.6.11 Дифракция света. Дифракционная решётка

Дифракция света

Волны могут огибать препятствия, имеющиеся на пути.

Дифракция — это процесс, при котором волна меняет свою траекторию движения, в результате появившегося на пути препятствия.

Аналогичная картина возможна, когда широкая река перетекает в некоторую часть через узкое отверстие. Волны от отверстия начнут распространяться во всех направлениях.

В центре имеется самое яркое пятно — оно, обычно, находится напротив отверстия, а вокруг наблюдаем волны, образованные источником света в результате огибания препятствия.

Дифракционная решётка — приспособление, имеющее большое количество преград, расположенных на небольшом расстоянии друг от друга. Получить её достаточно просто. Для этого необходимо взять тонкую ткань и взглянуть через нее на свет. Свет огибает небольшие преграды, и позволяют отчетливо наблюдать за происходящим.

Дифракционная решетка характеризуется шириной щелей, промежутков между ними, а также периодом решетки, равным сумме ширины щелей и промежутков:

Условие максимумов для дифракционной решетки:

Условие минимумом:

В данной формуле все величины Вам знакомы, кроме угла — это угол падения света.

Белый свет

До этого момента мы рассматривали, как ведет себя монохроматический свет. Но что же будет в случае, когда свет будет белым, то есть состоящий из всех цветов радуги? Данную картину мы наблюдаем с Вами постоянно, когда смотрим на каплю бензина, на компакт диск. В данном случае белый свет разделится на все цвета радуги.

Условие наблюдения главных максимумов при нормальном падении монохроматического света с длиной волны λ на решётку с периодом d

3.6.12 Дисперсия света

Дисперсия — это процесс, при котором белый цвет разделяется в спектр, в случае специальных условий.

Понравилась статья? Поделить с друзьями:
  • Диспансер звоним прибыв кухонный наделит егэ
  • Диснейленд париж сочинение на английском
  • Дискуссии вокруг егэ по истории
  • Дискриминация это егэ
  • Дискриминация егэ определение