Документы по егэ по математике

ПРЕЗЕНТАЦИЯ НА ТЕМУ: перечень  нормативных актов  и документов,  регламентирующих  подготовку и проведение ЕГЭ по математике

ПРЕЗЕНТАЦИЯ НА ТЕМУ:

перечень нормативных актов и документов, регламентирующих подготовку и проведение ЕГЭ по математике

 Единый государственный экзамен представляет собой форму объективной оценки качества подготовки  лиц, освоивших образовательные  программы основного общего и среднего (полного) общего образования, с использованием заданий стандартизированной формы (контрольных измерительных материалов).

Единый государственный экзамен представляет собой форму объективной оценки качества подготовки

лиц, освоивших образовательные

программы основного общего и среднего (полного) общего образования, с использованием заданий стандартизированной формы (контрольных измерительных материалов).

Основная цель ЕГЭ Обеспечить равные условия при поступлении в ВУЗы и устранить субъективность в оценке знаний выпускников школ. При проведении ЕГЭ по всей России применяются однотипные задания и единая шкала отметки (хотя в конструировании КИМ используются разнотипные задания). Результаты ЕГЭ учитываются сразу как оцениваемый факт завершения обучения в школе, так и при поступлении в ВУЗ. Отказываться от участия в ЕГЭ по математике нельзя.

Основная цель ЕГЭ

Обеспечить равные условия при поступлении в ВУЗы и устранить субъективность в оценке знаний выпускников школ. При проведении ЕГЭ по всей России применяются однотипные задания и единая шкала отметки (хотя в конструировании КИМ используются разнотипные задания). Результаты ЕГЭ учитываются сразу как оцениваемый факт завершения обучения в школе, так и при поступлении в ВУЗ. Отказываться от участия в ЕГЭ по математике нельзя.

Достоверным источником информации о содержании и объеме материала, структуре и системе оценивания экзаменационной работы являются следующие документы: Кодификатор элементов содержания по математике для составления контрольных измерительных материалов единого государственного экзамена ; - Кодификатор требований к уровню подготовки выпускников по математике для составления контрольных измерительных материалов единого государственного экзамена ; Спецификация контрольных измерительных материалов единого государственного экзамена по математике  Демонстрационный вариант контрольных измерительных материалов для ЕГЭ по математике. Создан Открытый банк математических задач, обеспечивающую цель поддержки работы учителя и самостоятельной работы учащихся по подготовке к сдаче экзамена на базовом уровне.

Достоверным источником информации о содержании и объеме материала, структуре и системе оценивания экзаменационной работы являются следующие документы:

  • Кодификатор элементов содержания по математике для составления контрольных измерительных материалов единого государственного экзамена ;

— Кодификатор требований к уровню подготовки выпускников по математике для составления контрольных измерительных материалов единого государственного экзамена ;

  • Спецификация контрольных измерительных материалов единого государственного экзамена по математике
  • Демонстрационный вариант контрольных измерительных материалов для ЕГЭ по математике.

Создан Открытый банк математических задач, обеспечивающую цель поддержки работы учителя и самостоятельной работы учащихся по подготовке к сдаче экзамена на базовом уровне.

Материалы сайта ФИПИ ( http://www.fipi.ru ) На сайте ФИПИ размещены следующие нормативные, аналитические, учебно-методические и информационные материалы, которые могут быть использованы при организации учебного процесса и  подготовке учащихся к ЕГЭ: - Аналитический отчет «Результаты единого государственного экзамена »; - Учебно-методические материалы для членов и председателей региональных предметных комиссий по проверке выполнения заданий с развернутым ответом;  - Документы, регламентирующие разработку КИМ ЕГЭ по математике ; - Обучающая компьютерная программа «Эксперт ЕГЭ»;  - Методические письма прошлых лет;   - Открытый банк математических задач.

Материалы сайта ФИПИ ( http://www.fipi.ru )

На сайте ФИПИ размещены следующие нормативные, аналитические, учебно-методические и информационные материалы, которые могут быть использованы при организации учебного процесса и

подготовке учащихся к ЕГЭ:

— Аналитический отчет «Результаты единого государственного экзамена »;

— Учебно-методические материалы для членов и председателей региональных предметных комиссий по проверке выполнения заданий с развернутым ответом;

— Документы, регламентирующие разработку КИМ ЕГЭ по математике ;

— Обучающая компьютерная программа «Эксперт ЕГЭ»;

— Методические письма прошлых лет;

— Открытый банк математических задач.

Рекомендуется руководствоваться следующими нормативно-правовыми документами Федерального и Регионального уровня: • «Закон об образовании» М «Творческий центр» 2006г (дополнение Федерального Закона от 12.2007г № 309-ФЗ ст.7); • Концепция модернизации Российского образования на период до 2010 года, утверждённая распоряжением Правительства РФ № 1756-р от 29.12.2001г; • Концепция профильного обучения на старшей ступени общего образования. Утверждена Приказом МО России от 18.07.2002г № 2783, «УГ» - 2002г, журнал «Математика в школе» № 7 2006г; • БУП ОУ РФ - утверждён Приказом МО России от 09. 02. 1998г № 322;

Рекомендуется руководствоваться следующими нормативно-правовыми документами Федерального и Регионального уровня:

  • «Закон об образовании» М «Творческий центр» 2006г (дополнение Федерального Закона от 12.2007г № 309-ФЗ ст.7);
  • Концепция модернизации Российского образования на период до 2010 года, утверждённая распоряжением Правительства РФ № 1756-р от 29.12.2001г;
  • Концепция профильного обучения на старшей ступени общего образования. Утверждена Приказом МО России от 18.07.2002г № 2783, «УГ» — 2002г, журнал «Математика в школе» № 7 2006г;
  • БУП ОУ РФ — утверждён Приказом МО России от 09. 02. 1998г № 322;

Рекомендуется руководствоваться следующими нормативно-правовыми документами Федерального и Регионального уровня: - Временные требования к обязательному минимуму содержания математического образования, утверждённого Приказом МО России от 19.05.1998г № 1326; - РБУП, утверждён Приказом МО РК № 599 от 05.05.2006г; - Приказ МО России от 05.03. 2004г № 1089 «Об утверждении Федерального компонента государственных стандартов начального общего, основного общего и среднего (полного) общего образования» //Сборник нормативных документов «Математика» М 2004г - Приказ МО России от 09.03.2004г «Об утверждении БУП для начального общего, основного общего и среднего (полного) общего образования» // Сборник нормативных документов «Математика» М 2004г

Рекомендуется руководствоваться следующими нормативно-правовыми документами Федерального и Регионального уровня:

  • — Временные требования к обязательному минимуму содержания математического образования, утверждённого Приказом МО России от 19.05.1998г № 1326;
  • — РБУП, утверждён Приказом МО РК № 599 от 05.05.2006г;
  • — Приказ МО России от 05.03. 2004г № 1089 «Об утверждении Федерального компонента государственных стандартов начального общего, основного общего и среднего (полного) общего образования» //Сборник нормативных документов «Математика» М 2004г
  • — Приказ МО России от 09.03.2004г «Об утверждении БУП для начального общего, основного общего и среднего (полного) общего образования» // Сборник нормативных документов «Математика» М 2004г

 Примерная программа для основной и средней (полной) школы, размещена на сайте Минобранауки России;  Информационно-методическое письмо «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования основной школы» // Письмо МО России от 23.09.2003г №03-93 ин/13-03// журнал «Математика в школе» № 9 2003г;  Методическое письмо «О преподавании математики (разъяснение изучения учебного предмета «Математика» в условиях введения государственного стандарта среднего (полного) общего образования) РБУП» Письмо МО РК от 09.10. 2006г № 05-13/20- м.

  • Примерная программа для основной и средней (полной) школы, размещена на сайте Минобранауки России;
  • Информационно-методическое письмо «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования основной школы» // Письмо МО России от 23.09.2003г №03-93 ин/13-03// журнал «Математика в школе» № 9 2003г;
  • Методическое письмо «О преподавании математики (разъяснение изучения учебного предмета «Математика» в условиях введения государственного стандарта среднего (полного) общего образования) РБУП» Письмо МО РК от 09.10. 2006г № 05-13/20- м.

При проведении итоговой государственной аттестации выпускников 9, 11 классов следует руководствоваться нормативными документами: Приказ МО и науки России от 28.11.2008г № 362 «Об утверждении Положения о формах и порядке проведения государственной (итоговой) аттестации обучающихся, освоивших основные общеобразовательные программы среднего (полного) образования» – ВО №2 2009г;   Приказ МО и науки России от 30. 01.2009г № 16 «О внесении изменения в Положение о формах и порядке проведения государственной итоговой аттестации обучающихся, освоивших основные общеобразовательные программы среднего (полного) общего образования, утверждённое приказом МО и науки РФ от 28.11.2008г № 362, об утверждении образца Справки об обучении в ОУ, реализующем ООП ООО или среднего (полного) образования» - ВО № 8 2009г;   Приказ МО России от 24.02.2009г № 57 «Об утверждении Порядка проведения ЕГЭ» - ВО № 8 2009г;   Анализ результатов ЕГЭ по математике в РК в 2009г (http// www. ipk.karelia.ru).

При проведении итоговой государственной аттестации выпускников 9, 11 классов следует руководствоваться нормативными документами:

  • Приказ МО и науки России от 28.11.2008г № 362 «Об утверждении Положения о формах и порядке проведения государственной (итоговой) аттестации обучающихся, освоивших основные общеобразовательные программы среднего (полного) образования» – ВО №2 2009г;
  • Приказ МО и науки России от 30. 01.2009г № 16 «О внесении изменения в Положение о формах и порядке проведения государственной итоговой аттестации обучающихся, освоивших основные общеобразовательные программы среднего (полного) общего образования, утверждённое приказом МО и науки РФ от 28.11.2008г № 362, об утверждении образца Справки об обучении в ОУ, реализующем ООП ООО или среднего (полного) образования» — ВО № 8 2009г;
  • Приказ МО России от 24.02.2009г № 57 «Об утверждении Порядка проведения ЕГЭ» — ВО № 8 2009г;
  • Анализ результатов ЕГЭ по математике в РК в 2009г (http// www. ipk.karelia.ru).

СПАСИБО ЗА ВНИМАНИЕ!!! ПРЕЗЕНТАЦИЮ ПОДГОТОВИЛА СТУДЕНТКА ГР. МДМ-109 АНАШКИНА АНАСТАСИЯ

СПАСИБО ЗА ВНИМАНИЕ!!!

ПРЕЗЕНТАЦИЮ ПОДГОТОВИЛА СТУДЕНТКА ГР. МДМ-109 АНАШКИНА АНАСТАСИЯ

Геометрия

  • Треугольник
  • Четырехугольники
  • Окружность и круг
  • Призма
  • Пирамида
  • Усеченная пирамида
  • Цилиндр
  • Конус
  • Усеченный конус
  • Сфера и шар

1. Формулы сокращённого умножения

 левая круглая скобка a плюс b правая круглая скобка в квадрате =a в квадрате плюс 2ab плюс b в квадрате

 левая круглая скобка a минус b правая круглая скобка в квадрате =a в квадрате минус 2ab плюс b в квадрате

 левая круглая скобка a плюс b правая круглая скобка в кубе =a в кубе плюс 3a в квадрате b плюс 3ab в квадрате плюс b в кубе

 левая круглая скобка a минус b правая круглая скобка в кубе =a в кубе минус 3a в квадрате b плюс 3ab в квадрате минус b в кубе

a в квадрате минус b в квадрате = левая круглая скобка a минус b правая круглая скобка левая круглая скобка a плюс b правая круглая скобка

a в кубе плюс b в кубе = левая круглая скобка a плюс b правая круглая скобка левая круглая скобка a в квадрате минус ab плюс b в квадрате правая круглая скобка

a в кубе минус b в кубе = левая круглая скобка a минус b правая круглая скобка левая круглая скобка a в квадрате плюс ab плюс b в квадрате правая круглая скобка

Наверх

2. Модуль числа

Определение: left| a |= система выражений новая строка a,a больше или равно 0, новая строка минус a,a меньше 0. конец системы .

Основные свойства модуля:

|a| больше или равно 0;

|a|=| минус a|;

 система выражений новая строка |a| больше или равно a, новая строка |a| больше или равно минус a; конец системы .

|a|=a равносильно a больше или равно 0;

|a|= минус a равносильно a меньше или равно 0.

Наверх

3. Степень с действительным показателем

Свойства степени с действительным показателем

Пусть a больше 0,b больше 0,x принадлежит R ,y принадлежит R . Тогда верны следующие соотношения:

Наверх

4. Корень n-ой степени из числа

Корнем n-ой степени  левая круглая скобка n принадлежит N ,n больше или равно 2 правая круглая скобка из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n  левая круглая скобка n=2k,k принадлежит N правая круглая скобка из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.

Основные свойства арифметического корня:

a больше или равно 0: левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка в степени левая круглая скобка n правая круглая скобка =a, корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка =a, корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка m правая круглая скобка = левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка в степени левая круглая скобка m правая круглая скобка , корень m степени из левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка = корень mn степени из левая круглая скобка a правая круглая скобка ;

a принадлежит R : корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка = |a|;

a больше или равно 0,b больше или равно 0: корень n степени из левая круглая скобка ab правая круглая скобка = корень n степени из левая круглая скобка a правая круглая скобка умножить на корень n степени из левая круглая скобка b правая круглая скобка , корень n степени из левая круглая скобка дробь: числитель: a, знаменатель: b конец дроби правая круглая скобка = дробь: числитель: корень n степени из левая круглая скобка a правая круглая скобка , знаменатель: корень n степени из левая круглая скобка b правая круглая скобка конец дроби  левая круглая скобка b не равно 0 правая круглая скобка ;

a меньше 0,b меньше 0: корень n степени из левая круглая скобка ab правая круглая скобка = корень n степени из левая круглая скобка минус a правая круглая скобка умножить на корень n степени из левая круглая скобка минус b правая круглая скобка , корень n степени из левая круглая скобка дробь: числитель: a, знаменатель: b конец дроби правая круглая скобка = дробь: числитель: корень n степени из левая круглая скобка минус a правая круглая скобка , знаменатель: корень n степени из левая круглая скобка минус b правая круглая скобка конец дроби ;

a больше или равно 0,b больше или равно 0:a корень n степени из левая круглая скобка b правая круглая скобка = корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка b;

a меньше 0,b больше или равно 0:a корень n степени из левая круглая скобка b правая круглая скобка = минус корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка b.

Наверх

5. Логарифмы

Определение логарифма: log _ab=cunderseta больше 0,a не равно 1mathop равносильно a в степени левая круглая скобка c правая круглая скобка =b.

Основное логарифмическое тождество: a в степени левая круглая скобка log правая круглая скобка _ab=b.

Основные свойства логарифмов

Пусть a больше 0, a не равно 1, b больше 0, b не равно 1, x больше 0, y больше 0, p принадлежит R . Тогда верны следующие соотношения:

Наверх

6. Арифметическая прогрессия

Формула n-го члена арифметической прогрессии: a_n=a_1 плюс d левая круглая скобка n минус 1 правая круглая скобка .

Характеристическое свойство арифметической прогрессии: a_n= дробь: числитель: a_n минус 1 плюс a_n плюс 1, знаменатель: 2 конец дроби ,n больше или равно 2.

Сумма n первых членов арифметической прогрессии: S_n= дробь: числитель: a_1 плюс a, знаменатель: 2 конец дроби n.

При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: 2a_1 плюс d левая круглая скобка n минус 1 правая круглая скобка , знаменатель: 2 конец дроби n;

S_n= дробь: числитель: 2a_n минус d левая круглая скобка n минус 1 правая круглая скобка , знаменатель: 2 конец дроби n;

a_n= дробь: числитель: a_n минус k плюс a_n плюс k, знаменатель: 2 конец дроби ,k меньше n;

a_k плюс a_n=a_k минус m плюс a_n плюс m,m меньше k;

d= дробь: числитель: a_n минус a_k, знаменатель: n минус k конец дроби .

Наверх

7. Геометрическая прогрессия

Формула n-го члена геометрической прогрессии: a_n=a_1q в степени левая круглая скобка n минус 1 правая круглая скобка .

Характеристическое свойство геометрической прогрессии: a_n в квадрате =a_n минус 1a_n плюс 1,n больше или равно 2.

Сумма n первых членов геометрической прогрессии: S_n= дробь: числитель: a_1 минус a_nq, знаменатель: 1 минус q конец дроби , q не равно 1.

При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: a_1 левая круглая скобка 1 минус q в степени левая круглая скобка n правая круглая скобка правая круглая скобка , знаменатель: 1 минус q конец дроби ;

a_n в квадрате =a_n минус ka_n плюс k,k меньше n;

a_ka_n=a_k минус ma_n плюс m,m меньше k;

|q|= корень n минус k степени из левая круглая скобка дробь: числитель: a правая круглая скобка _n, знаменатель: a_k конец дроби .

Наверх

8. Бесконечно убывающая геометрическая прогрессия

Сумма бесконечно убывающей геометрической прогрессии: S= дробь: числитель: a_1, знаменатель: 1 минус q конец дроби .

Наверх

9. Основные формулы тригонометрии

Зависимость между тригонометрическими функциями одного аргумента:

 синус в квадрате альфа плюс косинус в квадрате альфа =1;

 тангенс альфа = дробь: числитель: синус альфа , знаменатель: косинус альфа конец дроби ;

ctg альфа = дробь: числитель: косинус альфа , знаменатель: синус альфа конец дроби ;

 тангенс альфа ctg альфа =1;

1 плюс тангенс в квадрате альфа = дробь: числитель: 1, знаменатель: косинус в квадрате альфа конец дроби ;

1 плюс ctg в квадрате альфа = дробь: числитель: 1, знаменатель: синус в квадрате альфа конец дроби .

Формулы сложения:

 косинус левая круглая скобка альфа плюс бета правая круглая скобка = косинус альфа косинус бета минус синус альфа синус бета ;

 косинус левая круглая скобка альфа минус бета правая круглая скобка = косинус альфа косинус бета плюс синус альфа синус бета ;

 синус левая круглая скобка альфа плюс бета правая круглая скобка = синус альфа косинус бета плюс косинус альфа синус бета ;

 синус левая круглая скобка альфа минус бета правая круглая скобка = синус альфа косинус бета минус косинус альфа синус бета ;

 тангенс левая круглая скобка альфа плюс бета правая круглая скобка = дробь: числитель: тангенс альфа плюс тангенс бета , знаменатель: 1 минус тангенс альфа тангенс бета конец дроби ;

 тангенс левая круглая скобка альфа минус бета правая круглая скобка = дробь: числитель: тангенс альфа минус тангенс бета , знаменатель: 1 плюс тангенс альфа тангенс бета конец дроби ;

ctg левая круглая скобка альфа плюс бета правая круглая скобка = дробь: числитель: ctg альфа ctg бета минус 1, знаменатель: ctg бета плюс ctg альфа конец дроби ;

ctg левая круглая скобка альфа минус бета правая круглая скобка = дробь: числитель: ctg альфа ctg бета плюс 1, знаменатель: ctg бета минус ctg альфа конец дроби .

Формулы тригонометрических функций двойного аргумента: синус 2 альфа =2 синус альфа косинус альфа ;

 синус 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 косинус 2 альфа = косинус в квадрате альфа минус синус в квадрате альфа ;

 косинус 2 альфа =2 косинус в квадрате альфа минус 1;

 косинус 2 альфа =1 минус 2 синус в квадрате альфа ;

 косинус 2 альфа = дробь: числитель: 1 минус тангенс в квадрате альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 тангенс 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 минус тангенс в квадрате альфа конец дроби ;

ctg2 альфа = дробь: числитель: ctg в квадрате альфа минус 1, знаменатель: 2ctg альфа конец дроби .

Формулы понижения степени:

 синус в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 2 конец дроби ;

 косинус в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 2 конец дроби ;

 тангенс в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 1 плюс косинус 2 альфа конец дроби ;

ctg в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 1 минус косинус 2 альфа конец дроби .

Формулы приведения

Все формулы приведения получаются из соответствующих формул сложения. Например:

 косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = косинус дробь: числитель: Пи , знаменатель: 2 конец дроби косинус альфа минус синус дробь: числитель: Пи , знаменатель: 2 конец дроби синус альфа = минус синус альфа .

Применение формул приведения укладывается в следующую схему:

— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что  альфа принадлежит левая круглая скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка ;

— определяется знак приводимой функции;

— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид  левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка или  левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка , то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид  левая круглая скобка Пи pm альфа правая круглая скобка , то функция названия не меняет.

Например, получим формулу  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка :

 дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа принадлежит левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби ;2 Пи правая круглая скобка — IV четверть;

— в IV четверти тангенс отрицательный;

— аргумент приводимой функции имеет вид  дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа , следовательно, название функции меняется. Таким образом,  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = минус ctg альфа .

Формулы преобразования суммы тригонометрических функций в произведение:

 синус альфа плюс синус бета =2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 синус альфа минус синус бета =2 синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби ;

 косинус альфа плюс косинус бета =2 косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 косинус альфа минус косинус бета = минус 2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 тангенс альфа плюс тангенс бета = дробь: числитель: синус левая круглая скобка альфа плюс бета правая круглая скобка , знаменатель: косинус альфа косинус бета конец дроби ;

 тангенс альфа минус тангенс бета = дробь: числитель: синус левая круглая скобка альфа минус бета правая круглая скобка , знаменатель: косинус альфа косинус бета конец дроби ;

ctg альфа плюс ctg бета = дробь: числитель: синус левая круглая скобка альфа плюс бета правая круглая скобка , знаменатель: синус альфа синус бета конец дроби ;

ctg альфа минус ctg бета = дробь: числитель: синус левая круглая скобка бета минус альфа правая круглая скобка , знаменатель: синус альфа синус бета конец дроби .

Формулы преобразования произведения тригонометрических функций в сумму:

 косинус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка косинус левая круглая скобка альфа минус бета правая круглая скобка плюс косинус левая круглая скобка альфа плюс бета правая круглая скобка правая круглая скобка ;

 синус альфа синус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка косинус левая круглая скобка альфа минус бета правая круглая скобка минус косинус левая круглая скобка альфа плюс бета правая круглая скобка правая круглая скобка ;

 синус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка синус левая круглая скобка альфа плюс бета правая круглая скобка плюс синус левая круглая скобка альфа минус бета правая круглая скобка правая круглая скобка .

Наверх

10. Производная и интеграл

Таблица производных некоторых элементарных функций

Правила дифференцирования:

1.  левая круглая скобка f левая круглая скобка x правая круглая скобка плюс g левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка x правая круглая скобка плюс g' левая круглая скобка x правая круглая скобка ;

2.  левая круглая скобка cf левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =cf' левая круглая скобка x правая круглая скобка ;

3.  левая круглая скобка f левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка плюс f левая круглая скобка x правая круглая скобка g' левая круглая скобка x правая круглая скобка ;

4.  левая круглая скобка дробь: числитель: f левая круглая скобка x правая круглая скобка , знаменатель: g левая круглая скобка x правая круглая скобка конец дроби правая круглая скобка в степени левая круглая скобка prime правая круглая скобка = дробь: числитель: f' левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка минус f левая круглая скобка x правая круглая скобка g' левая круглая скобка x правая круглая скобка , знаменатель: g в квадрате левая круглая скобка x правая круглая скобка конец дроби ;

5.  левая квадратная скобка f левая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка правая квадратная скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка g' левая круглая скобка x правая круглая скобка .

Уравнение касательной к графику функции y=f левая круглая скобка x правая круглая скобка в его точке  левая круглая скобка x_0;f левая круглая скобка x_0 правая круглая скобка правая круглая скобка :

y=f' левая круглая скобка x_0 правая круглая скобка левая круглая скобка x минус x_0 правая круглая скобка плюс f левая круглая скобка x_0 правая круглая скобка .

Таблица первообразных для некоторых элементарных функций

Правила нахождения первообразных

Пусть F левая круглая скобка x правая круглая скобка ,G левая круглая скобка x правая круглая скобка ― первообразные для функций f левая круглая скобка x правая круглая скобка и g левая круглая скобка x правая круглая скобка соответственно, a, b, k ― постоянные, k не равно 0. Тогда:

F левая круглая скобка x правая круглая скобка плюс G левая круглая скобка x правая круглая скобка ― первообразная для функции f левая круглая скобка x правая круглая скобка плюс g левая круглая скобка x правая круглая скобка ;

aF левая круглая скобка x правая круглая скобка ― первообразная для функции af левая круглая скобка x правая круглая скобка ;

 дробь: числитель: 1, знаменатель: k конец дроби F левая круглая скобка kx плюс b правая круглая скобка ― первообразная для функции f левая круглая скобка kx плюс b правая круглая скобка ;

— Формула Ньютона-Лейбница:  принадлежит t пределы: от a до b, f левая круглая скобка x правая круглая скобка dx=F левая круглая скобка b правая круглая скобка минус F левая круглая скобка a правая круглая скобка .

1. Треугольник

Пусть a,b,c ― длины сторон BC, AC, AB треугольника ABC соответственно; p= дробь: числитель: a плюс b плюс c, знаменатель: 2 конец дроби ― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно; h_a,h_b,h_c ― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC; S_vartriangle ABC ― площадь треугольника ABC. Тогда имеют место следующие соотношения:

 дробь: числитель: a, знаменатель: синус A конец дроби = дробь: числитель: b, знаменатель: синус B конец дроби = дробь: числитель: c, знаменатель: синус C конец дроби =2R (теорема синусов);

c в квадрате =a в квадрате плюс b в квадрате минус 2ab косинус C (теорема косинусов);

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ah_a;

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ab синус C;

S_vartriangle ABC= дробь: числитель: abc, знаменатель: 4R конец дроби ;

S_vartriangle ABC=pr;

S_vartriangle ABC= корень из p левая круглая скобка p минус a правая круглая скобка левая круглая скобка p минус b правая круглая скобка левая круглая скобка p минус c правая круглая скобка .

Наверх
2. Четырёхугольники

Параллелограмм

Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.

Прямоугольником называется параллелограмм, у которого все углы прямые.

Ромбом называется параллелограмм, все стороны которого равны.

Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.

Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.

Площадь четырехугольника

Площадь параллелограмма равна произведению его основания на высоту.

Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.

Площадь трапеции равна произведению полусуммы ее оснований на высоту.

Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.

Наверх

3. Окружность и круг

Соотношения между элементами окружности и круга

Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, l_n градусов  — длина дуги в n градусов, l_ альфа  — длина дуги в  альфа радиан, S_n градусов  — площадь сектора, ограниченного дугой в n градусов, S_ альфа  — площадь сектора, ограниченного дугой в  альфа радиан. Тогда имеют место следующие соотношения:

Вписанный угол

Вписанный угол измеряется половиной дуги, на которую он опирается.

Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на полуокружность, — прямой.

Вписанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.

Описанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.

Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны 180 градусов.

Наверх

4. Призма

Пусть H ― высота призмы, AA1 ― боковое ребро призмы, P_осн ― периметр основания призмы, S_осн ― площадь основания призмы, S_бок ― площадь боковой поверхности призмы, S_полн ― площадь полной поверхности призмы, V ― объем призмы, P_bot  ― периметр перпендикулярного сечения призмы, S_bot  ― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

S_бок=P_bot AA_1;

S_полн=2S_осн плюс S_бок;

V=S_bot AA_1;

V=S_оснH.

Свойства параллелепипеда:

— противоположные грани параллелепипеда равны и параллельны;

— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;

— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Наверх

5. Пирамида

Пусть H ― высота пирамиды, P_осн ― периметр основания пирамиды, S_осн ― площадь основания пирамиды, S_бок ― площадь боковой поверхности пирамиды, S_полн ― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:

S_полн=S_осн плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби S_оснH .


Замечание.
Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби P_оснh_бок= дробь: числитель: S_осн, знаменатель: косинус бета конец дроби .

Наверх

6. Усечённая пирамида

Пусть H ― высота усеченной пирамиды, P_1 и P_2 ― периметры оснований усеченной пирамиды, S_1 и S_2 ― площади оснований усеченной пирамиды, S_бок ― площадь боковой поверхности усеченной пирамиды, S_полн ― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.

Тогда имеют место следующие соотношения:

S_полн=S_1 плюс S_2 плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби H левая круглая скобка S_1 плюс S_2 плюс корень из S_1S_2 правая круглая скобка .

Замечание. Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то: S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка P_1 плюс P_2 правая круглая скобка h_бок= дробь: числитель: |S_1 минус S_2|, знаменатель: косинус бета конец дроби .

Наверх

7. Цилиндр

Пусть h ― высота цилиндра, r ― радиус цилиндра, S_бок ― площадь боковой поверхности цилиндра, S_полн ― площадь полной поверхности цилиндра, V ― объем цилиндра.

Тогда имеют место следующие соотношения:

S_бок=2 Пи rh;

S_полн=2 Пи r левая круглая скобка r плюс h правая круглая скобка ;

V= Пи r в квадрате h.

Наверх

8. Конус

Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, S_бок ― площадь боковой поверхности конуса, S_полн ― площадь полной поверхности конуса, V ― объем конуса.

Тогда имеют место следующие соотношения:

S_бок= Пи rl;

S_полн= Пи r левая круглая скобка r плюс l правая круглая скобка ;

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи r в квадрате h.

Наверх

9. Усечённый конус

Пусть h ― высота усеченного конуса, r и r_1 ― радиусы основания усеченного конуса, l ― образующая усеченного конуса, S_бок ― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:

S_бок= Пи левая круглая скобка r плюс r_1 правая круглая скобка l;

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи h левая круглая скобка r в квадрате плюс rr_1 плюс r_1 в квадрате правая круглая скобка .

Наверх

10. Сфера и шар

Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, S_h ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара, V_сегм ― объем сегмента, высота которого равна h, V_сект ― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:

Наверх

Skip to content

Справочные материалы ЕГЭ База 2022-2023 по математике

Справочные материалы ЕГЭ База 2022-2023 по математикеadmin2023-01-27T15:52:12+03:00

10 марта 2015

В закладки

Обсудить

Жалоба

Справочные материалы к базовому уровню ЕГЭ по математике

ФИПИ добавил в демоверсию по математике справочные материалы к базовому уровню.

В спецификации к демоверсии сказано, что необходимые справочные материалы будут выданы вместе с текстом экзаменационной работы.
Демоверсию можно скачать здесь.

spravochnye_materialy_dlya_bazovogo_ege.pdf

График экзаменов ЕГЭ по математике и физике в 2023 году (11 класс)

Экзамены ЕГЭ по математике и физике в 2023 году будут проводиться в следующие сроки.

График экзаменов ОГЭ по математике и физике в 2023 году (9 класс)

Экзамены ОГЭ по математике и физике в 2023 году будут проводиться в следующие сроки.

ОГЭ: Демоверсии, Спецификации, Кодификаторы по физике и математике

Демоверсии, Спецификации, Кодификаторы для ОГЭ в 2023 году по физике и математике

ЕГЭ: Демоверсии, Спецификации, Кодификаторы по физике и математике

Демоверсии, Спецификации, Кодификаторы для ЕГЭ в 2023 году по физике и математике

Like this post? Please share to your friends:
  • Документ удостоверяющий личность на егэ
  • Документ ударение егэ
  • Документ результатов егэ
  • Документы необходимые для сдачи экзамена на адвоката
  • Документы необходимые для сдачи экзамена в ростехнадзоре