-
Главная
-
Теория ЕГЭ
-
Математика — теория ЕГЭ
-
Справочные материалы к ЕГЭ по математике (профиль)
Справочные материалы к ЕГЭ по математике (профиль)
- 03.10.2017
Мы подготовили для вас сборник всех необходимых справочных материалов — теоремы, свойства, признаки, формулы и т.д. — для ЕГЭ по математике профильного уровня.
Материал подготовлен Школой Пифагор.
Смотреть в PDF:
Или прямо сейчас: cкачать в pdf файле.
Сохранить ссылку:
Комментарии (0)
Добавить комментарий
Добавить комментарий
Комментарии без регистрации. Несодержательные сообщения удаляются.
Имя (обязательное)
E-Mail
Подписаться на уведомления о новых комментариях
Отправить
- Треугольник
- Четырехугольники
- Окружность и круг
- Призма
- Пирамида
- Усеченная пирамида
- Цилиндр
- Конус
- Усеченный конус
- Сфера и шар
1. Формулы сокращённого умножения
Наверх
2. Модуль числа
Определение:
Основные свойства модуля:
Наверх
3. Степень с действительным показателем
Свойства степени с действительным показателем
Пусть Тогда верны следующие соотношения:
Наверх
4. Корень n-ой степени из числа
Корнем n-ой степени из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.
Основные свойства арифметического корня:
Наверх
5. Логарифмы
Определение логарифма:
Основное логарифмическое тождество:
Основные свойства логарифмов
Пусть Тогда верны следующие соотношения:
Наверх
6. Арифметическая прогрессия
Формула n-го члена арифметической прогрессии:
Характеристическое свойство арифметической прогрессии:
Сумма n первых членов арифметической прогрессии:
При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
7. Геометрическая прогрессия
Формула n-го члена геометрической прогрессии:
Характеристическое свойство геометрической прогрессии:
Сумма n первых членов геометрической прогрессии:
При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
8. Бесконечно убывающая геометрическая прогрессия
Сумма бесконечно убывающей геометрической прогрессии:
Наверх
9. Основные формулы тригонометрии
Зависимость между тригонометрическими функциями одного аргумента:
Формулы сложения:
Формулы тригонометрических функций двойного аргумента:
Формулы понижения степени:
Формулы приведения
Все формулы приведения получаются из соответствующих формул сложения. Например:
Применение формул приведения укладывается в следующую схему:
— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что ;
— определяется знак приводимой функции;
— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид или , то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид , то функция названия не меняет.
Например, получим формулу :
— — IV четверть;
— в IV четверти тангенс отрицательный;
— аргумент приводимой функции имеет вид , следовательно, название функции меняется. Таким образом,
Формулы преобразования суммы тригонометрических функций в произведение:
Формулы преобразования произведения тригонометрических функций в сумму:
Наверх
10. Производная и интеграл
Таблица производных некоторых элементарных функций
Правила дифференцирования:
1.
2.
3.
4.
5.
Уравнение касательной к графику функции в его точке :
Таблица первообразных для некоторых элементарных функций
Правила нахождения первообразных
Пусть ― первообразные для функций и соответственно, a, b, k ― постоянные, Тогда:
— ― первообразная для функции
— ― первообразная для функции
— ― первообразная для функции
— Формула Ньютона-Лейбница:
1. Треугольник
Пусть ― длины сторон BC, AC, AB треугольника ABC соответственно; ― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно; ― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC; ― площадь треугольника ABC. Тогда имеют место следующие соотношения:
(теорема синусов);
(теорема косинусов);
Наверх
2. Четырёхугольники
Параллелограмм
Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.
Прямоугольником называется параллелограмм, у которого все углы прямые.
Ромбом называется параллелограмм, все стороны которого равны.
Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.
Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.
Площадь четырехугольника
Площадь параллелограмма равна произведению его основания на высоту.
Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.
Площадь трапеции равна произведению полусуммы ее оснований на высоту.
Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Наверх
3. Окружность и круг
Соотношения между элементами окружности и круга
Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, — длина дуги в градусов, — длина дуги в радиан, — площадь сектора, ограниченного дугой в n градусов, — площадь сектора, ограниченного дугой в радиан. Тогда имеют место следующие соотношения:
Вписанный угол
Вписанный угол измеряется половиной дуги, на которую он опирается.
Вписанные углы, опирающиеся на одну и ту же дугу, равны.
Вписанный угол, опирающийся на полуокружность, — прямой.
Вписанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
Описанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.
Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны
Наверх
4. Призма
Пусть H ― высота призмы, AA1 ― боковое ребро призмы, ― периметр основания призмы, ― площадь основания призмы, ― площадь боковой поверхности призмы, ― площадь полной поверхности призмы, V ― объем призмы, ― периметр перпендикулярного сечения призмы, ― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Свойства параллелепипеда:
— противоположные грани параллелепипеда равны и параллельны;
— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;
— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Наверх
5. Пирамида
Пусть H ― высота пирамиды, ― периметр основания пирамиды, ― площадь основания пирамиды, ― площадь боковой поверхности пирамиды, ― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:
;
.
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то
Наверх
6. Усечённая пирамида
Пусть H ― высота усеченной пирамиды, и ― периметры оснований усеченной пирамиды, и ― площади оснований усеченной пирамиды, ― площадь боковой поверхности усеченной пирамиды, ― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.
Тогда имеют место следующие соотношения:
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то:
Наверх
7. Цилиндр
Пусть h ― высота цилиндра, r ― радиус цилиндра, ― площадь боковой поверхности цилиндра, ― площадь полной поверхности цилиндра, V ― объем цилиндра.
Тогда имеют место следующие соотношения:
Наверх
8. Конус
Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, ― площадь боковой поверхности конуса, ― площадь полной поверхности конуса, V ― объем конуса.
Тогда имеют место следующие соотношения:
Наверх
9. Усечённый конус
Пусть h ― высота усеченного конуса, r и ― радиусы основания усеченного конуса, l ― образующая усеченного конуса, ― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:
Наверх
10. Сфера и шар
Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара, ― объем сегмента, высота которого равна h, ― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:
Наверх
Материалы для подготовки к ЕГЭ по математике базового и профильного уровня
Оглавление:
-
Поиск по материалам:
-
Полный курс для подготовки к ЕГЭ по математике
-
Профильный ЕГЭ по математике. Все задачи
-
Варианты Статград
-
Задачи из сборника И. В. Ященко, 2021 год
-
Задачи из сборника И. В. Ященко, 2020 год
-
Новые варианты для подготовки к ЕГЭ и ОГЭ с ответами и решениями:
-
Выберите раздел:
-
Необходимый минимум
-
Планиметрия
-
Алгебра
-
Тригонометрия
-
Стереометрия
-
Часть 2 (задачи 13 — 19) на ЕГЭ по математике.
-
Советы и рекомендации по подготовке к экзамену
-
Об этом сайте:
Полный спектр материалов для подготовки к ЕГЭ по математике + решение задач по всем темам ЕГЭ. В каждой теме и каждой задаче есть свои секреты. О них вам может рассказать только очень хороший учитель или репетитор. Такой, как мы. Читайте, изучайте, скачивайте то, чего не найдёте в учебниках! Вы можете скачать весь курс бесплатно сразу или найти то, что ищете, на этой странице.
Справочник для подготовки к ЕГЭ Анны Малковой
Актуальные видео по математике
к оглавлению ▴
Полный курс для подготовки к ЕГЭ по математике
-
New
ЕГЭ-2022, математика. Все задачи с решениями
-
New
Задачи с параметрами на ЕГЭ-2022: модули, окружности, квадратные уравнения
-
New
Тренировочная работа от 28.09.2021, Статград. Задача №18 (Числа и их свойства)
-
New
Новые задачи по теории вероятностей из Открытого Банка заданий ЕГЭ, 2021-2022 год
-
New
Комплексные числа на ЕГЭ по математике
-
New
ЕГЭ-2021, Математика. Все задачи
-
New
Тренировочная работа № 3. Задачи 13-19
-
New
Задача с секретом о пиратах и дукатах из сборника И. В. Ященко
- Стрим 20 августа 2020 года. Лучшие задачи ЕГЭ-2020
- ЕГЭ-2020 по математике. Сложные задачи, неравноценные варианты и одно неравенство для всей страны
- Тренировочная работа 18 декабря 2019 года. Задача 19
- Учителю и репетитору: Методика, программы подготовки к ЕГЭ, поурочные планы
- Тесты и варианты ЕГЭ с решениями и ответами
- Алгебра – основные понятия и формулы
- Теория вероятностей
- Текстовые задачи
- Решение уравнений
- Решение неравенств
- Тригонометрия
- Планиметрия
- Стереометрия
- Функции и графики. Производная и первообразная
- «Экономические» задачи на ЕГЭ по математике
- Задачи с параметрами
- Нестандартные задачи на числа и их свойства
- Советы и рекомендации для подготовки к ЕГЭ по математике
к оглавлению ▴
Профильный ЕГЭ по математике. Все задачи
- Задание 1. Планиметрия
- Задание 2. Стереометрия
- Задание 3. Теория вероятностей. Основные понятия
- Задание 4. Теория вероятностей, повышенный уровень сложности
- Задание 5. Простейшие уравнения
- Задание 6. Вычисления и преобразования
- Задание 7. Производная и первообразная
- Задание 8. Задачи с прикладным содержанием
- Задание 9. Текстовые задачи
- Задание 10. Функции и графики
- Задание 11. Исследование функций
- Задание 12. Уравнения на ЕГЭ по математике
- Задание 13. Стереометрия на ЕГЭ по математике
- Задание 14. Неравенства на ЕГЭ по математике
- Задание 15. «Экономические» задачи на ЕГЭ по математике
- Задание 16. Планиметрия на ЕГЭ по математике
- Задание 17. Задачи с параметрами на ЕГЭ по математике
- Задание 18. Задачи на числа и их свойства на ЕГЭ по математике Нестандартные задачи
- Таблица перевода баллов ЕГЭ, Профильный уровень
Как решалась задача №17 на ЕГЭ-2018?
к оглавлению ▴
Варианты Статград
New
Тренировочная работа № 3. Задачи 13-19
Тренировочная работа 29.01.20. Вариант Восток
Тренировочная работа 29.01.20. Вариант Запад
Тренировочная работа 25.09.19. Вариант Запад
Тренировочная работа 25.09.19. Вариант Восток
Тренировочная работа 24.01.19. Вариант Запад
Тренировочная работа 24.01.19. Вариант Восток
Тренировочная работа 18.12.19 Вариант Запад
Тренировочная работа 30.09.20
Диагностическая работа 16.12.20
Досрочный ЕГЭ 2020 года, Профильная математика
Новая задача 18 Профильного ЕГЭ по математике (числа и их свойства), январь, восток
Новая задача 18 Профильного ЕГЭ по математике, Параметры, 24 января 2019, запад
Новая задача 16 Профильного ЕГЭ по математике, Геометрия, январь, запад
к оглавлению ▴
Задачи из сборника И. В. Ященко, 2021 год
- Вариант 1, Задача 13
- Вариант 6, Задача 13
- Вариант 11, Задача 13
- Вариант 17, Задача 13
- Вариант 22, Задача 13
- Вариант 28, Задача 13
- Вариант 1, Задача 15
- Вариант 3, Задача 15
- Вариант 5, Задача 15
- Вариант 12, Задача 15
- Вариант 17, Задача 15
- Вариант 24, Задача 15
- Задача 18. Пираты и дукаты
к оглавлению ▴
Задачи из сборника И. В. Ященко, 2020 год
- Вариант 6, задача 14
- Вариант 8, задача 15
- Вариант 32, задача 15
- Вариант 36, задача 15
- Вариант 2, задача 16
- Вариант 4, задача 16
- Вариант 6, задача 16
- Вариант 8, задача 16
- Вариант 12, задача 16
- Вариант 1, задача 17
- Вариант 5, задача 17
- Вариант 11, задача 17
- Вариант 26, задача 17
- Вариант 36, задача 17
- Вариант 27, задача 19
к оглавлению ▴
Новые варианты для подготовки к ЕГЭ и ОГЭ с ответами и решениями:
- ЕГЭ-2018, профильный уровень. Разбор задач 13-19
- ЕГЭ, профильный уровень. Тренировочный вариант 1
- ЕГЭ, профильный уровень. Тренировочный вариант 2
- ЕГЭ, профильный уровень. Тренировочный вариант 3
- ЕГЭ, профильный уровень. Тренировочный вариант 4
- ЕГЭ, профильный уровень. Тренировочный вариант 5
- ОГЭ. Тренировочный вариант 1
- ОГЭ. Тренировочный вариант 2
к оглавлению ▴
Выберите раздел:
- Методика подготовки к ЕГЭ по математике Анны Малковой
- Пройди необычный тест ЕГЭ и узнай будущее!
- Программа подготовки к ЕГЭ по математике
- Учителям и репетиторам: программа подготовки к ЕГЭ для 10-го класса
- Как распределить время на ЕГЭ по математике
- Необходимый минимум
- Тригонометрия
- Планиметрия
- Стереометрия
- Алгебра
- Задачи 13-19
к оглавлению ▴
Необходимый минимум
-
- Задача 1. Решается всегда!
- Задача 2. Чтение графика функции
- Теория вероятностей. Основные понятия.
-
Видео бесплатно!
Теория вероятностей на ЕГЭ по математике. Полный курс.
- Текстовые задачи. Движение и работа
- Текстовые задачи. Проценты, сплавы, растворы…
- ЕГЭ без ошибок. Вычисляем без калькулятора
к оглавлению ▴
Планиметрия
- Геометрия. Формулы площадей фигур.
- Программа по геометрии. Список необходимых фактов и теорем.
- Синус, косинус и тангенс острого угла прямоугольного треугольника
- Тригонометрический круг: вся тригонометрия на одном рисунке
- Внешний угол треугольника. Синус и косинус внешнего угла
- Высота в прямоугольном треугольнике
- Сумма углов треугольника
- Углы при параллельных прямых и секущей
- Высоты, медианы, биссектрисы треугольника
- Четырёхугольники
- Параллелограмм
- Прямоугольник
- Ромб
- Квадрат
- Трапеция
- Окружность. Центральный и вписанный угол
- Касательная к окружности
- Вписанные и описанные треугольники. Теорема синусов
- Вписанные и описанные четырёхугольники
- Правильный треугольник
- Правильный шестиугольник
- Векторы и операции над ними
- Геометрия в школе: засада для абитуриента
- Геометрический парадокс: Прямой угол равен тупому
- Геометрический парадокс: Катет равен гипотенузе
к оглавлению ▴
Алгебра
- Числовые множества
- Степени и корни.
- Что такое функция?
- Чтение графика функции
- Парабола и квадратные неравенства.
- Степенная функция
- Показательная функция
- Показательные уравнения
- Логарифмы
- Логарифмическая функция
- Элементарные функции и их графики
- Показательные и логарифмические неравенства. 1
- Показательные и логарифмические неравенства. 2
- Число e
-
Видео бесплатно!
Производная функции. Геометрический смысл производной
- Таблица производных и правила дифференцирования
- Модуль числа
- Уравнения и неравенства с модулем
- Метод интервалов
к оглавлению ▴
Тригонометрия
- Тригонометрический круг: вся тригонометрия на одном рисунке
- Тригонометрические формулы. Необходимый минимум
-
Видео бесплатно!
Формулы приведения
- Тригонометрические формулы. Сводка для части 1
- Тригонометрические формулы. Сводка для части 2
- Тригонометрические функции
- Простейшие тригонометрические уравнения, 1
- Простейшие тригонометрические уравнения, 2
- Тригонометрические уравнения
к оглавлению ▴
Стереометрия
- Многогранники: формулы объема и площади поверхности
- Тела вращения: формулы объема и площади поверхности
- Задачи по стереометрии часть 1: Просто применяем формулы
- Задачи по стереометрии часть 2: Приемы и секреты
- Задача 14 (часть 2 ЕГЭ по математике). Программа по стереометрии
- Плоскость в пространстве. Взаимное расположение плоскостей
- Прямые в пространстве. Пересекающиеся, параллельные, скрещивающиеся прямые
- Параллельность прямой и плоскости
- Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости
- Параллельность плоскостей
- Угол между плоскостями. Перпендикулярность плоскостей
- Угол и расстояние между скрещивающимися прямыми. Расстояние от точки до плоскости
- Теорема о трёх перпендикулярах
- Параллельное проецирование
- Как строить чертежи в задачах по стереометрии
- Векторы и метод координат в задаче 14, часть 2 ЕГЭ по математике
- В.М. Мамаева. «Перпендикулярность. Книга для учащихся»
- В.М. Мамаева. «Перпендикулярность. Книга для учителя»
- В.М. Мамаева. «Тела вращения. Книга для учащихся»
- В.М. Мамаева. «Тела вращения. Книга для учителя»
к оглавлению ▴
Часть 2 (задачи 13 — 19) на ЕГЭ по математике.
Видео
Задача 13: Уравнения на ЕГЭ по математике. Полный курс.
Видео
Задача 14: Стереометрия на ЕГЭ по математике. Полный курс. Оба метода — классика и векторы. Более 3 часов видео.
Видео
Задача 15: Неравенства на ЕГЭ по математике. Полный курс в двух частях.
Видео
Задача 16: Геометрия на ЕГЭ по математике. Полный курс. Более 5 часов видео.
Видео
Задачи по математике с экономическим содержанием. Задача 17 на ЕГЭ по математике и задачи олимпиад по экономике.
Видео бесплатно!
Задача 18: Параметры на ЕГЭ по математике. Графический метод.
Видео
Задача 18: Параметры на ЕГЭ по математике. Полный курс. Более 5 часов видео.
Задача 19 на числа и их свойства на ЕГЭ по математике.
Задача 19 на ЕГЭ по математике 2016 года. Решение.
Задача 19 на ЕГЭ по математике 2017 года. Решение.
Видео
Впервые! Видеокурс «Ключ к С6». Нестандартные задачи на ЕГЭ по математике.
к оглавлению ▴
Советы и рекомендации по подготовке к экзамену
- Справочники для подготовки к ЕГЭ по математике
- Методика подготовки к ЕГЭ по математике Анны Малковой
- ЕГЭ по математике – советы и рекомендации
- Репетитор по математике
- Подготовиться к ЕГЭ самостоятельно и бесплатно
- Математика и жизнь. Из воспоминаний бывалого студента.
- Книги и учебники для подготовки к ЕГЭ по Математике
- Как подготовиться к ЕГЭ по математике?
- Как распределить время на ЕГЭ по математике
- Подготовка к ЕГЭ по Математике с нуля
- Самостоятельная подготовка к ЕГЭ по математике
к оглавлению ▴
Об этом сайте:
- Каждый год на этом сайте готовятся к ЕГЭ сотни тысяч учащихся. Нас рекомендуют учителя и репетиторы. Автор сайта, на котором вы находитесь, — репетитор-профессионал, ведущая курсов подготовки к ЕГЭ на высшие баллы, руководитель компании «ЕГЭ-Студия» Анна Георгиевна Малкова.
Также вы можете выбрать базовый уровень подготовки к ЕГЭ по математике онлайн
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Материалы для подготовки к ЕГЭ по математике базового и профильного уровня» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
ЕГЭ по математике профильного уровня — один из самых сложных экзаменов. Планируете сдавать его, но не знаете, с чего начать? Этот экзамен не покажется вам таким трудным, если вы узнаете про него побольше и грамотно подготовитесь. В этой статье обсудим, что нужно знать про ЕГЭ по математике 2023, из каких разделов он состоит и как к нему подготовиться.
Какие темы важно знать для ЕГЭ по математике 2023?
В математике, как и в любом предмете, есть опорные темы. Если вы их выучите, будет легче справиться с экзаменом.
Формулы тригонометрии
Очень важно знать формулы тригонометрии и уметь применять их. Хорошая новость: в справочных материалах можно найти несколько тригонометрических формул.
Но формул гораздо больше. Я советую не зубрить их, а научиться выводить: приходить к формулам шаг за шагом, опираясь на тождества. Кстати, мы учим выводить формулы на курсах подготовки к ЕГЭ: это полезно, чтобы оказаться на экзамене во всеоружии и ничего не перепутать.
Квадратные уравнения
Эти уравнения мы учимся решать еще в 7 классе. Они встречаются в ЕГЭ по математике постоянно: и как самостоятельные задания, и внутри более сложных уравнений или неравенств. Квадратные уравнения могут встретиться в математических моделях № 9 и № 15, в задачах на геометрию и стереометрию, в задании № 17 с параметром.
Самое главное — хорошо знать универсальные методы решения. Первый — через формулу дискриминанта, второй — через теорему Виета, которая может сэкономить время на экзамене.
Треугольники
Эта замечательная тема, которую проходят в 7 классе — основа основ всей геометрии. Она нужна и для решения стереометрии, и для простейших планиметрических задач. Еще треугольники необходимы, чтобы освоить огромное количество теорем. Выучите все, что с ними связано! Особое внимание обратите на прямоугольные треугольники, которые встречаются чаще остальных — тогда геометрические задачи сразу станут проще.
Проценты
Самая нелюбимая тема моих учеников после тригонометрии, которую необходимо хорошо знать. Проценты нужны для реальной математики — это № 9 (с кратким ответом) и № 15 (с развернутым ответом). Понимание этой темы может принести вам 3 первичных балла.
План успешной подготовки к ЕГЭ по математике 2023
Если вы хотите получить больше 80 баллов на ЕГЭ, нужно идеально решать часть с кратким ответом, а также справляться с большинством заданий с развернутым ответом.
Чтобы постепенно прорабатывать материал, воспользуйтесь кодификатором. В нем обратите внимание на таблицу 2, а именно на блоки:
- Алгебра
- Уравнения и неравенства
- Элементы комбинаторики, статистики и теории вероятностей
- Функции
- Начала математического анализа
- Геометрия
Ориентируйтесь на указанную последовательность, но геометрию изучайте параллельно с остальными блоками — на нее нужно больше времени.
Самое главное — ни в коем случае не ограничивайтесь теорией. Ее у вас не спросят на экзамене, а вот задания решать придется. Поэтому тренируйте практические навыки: актуальные задания вы сможете найти в открытом банке заданий на сайте ФИПИ или в нашем тренажере «Решутест».
Как решать часть с кратким ответом
Ни в коем случае не пренебрегайте частью с кратким ответом! Иначе будет обидно: например, вы наберете за экономическую задачу № 15 полные 2 балла, но потеряете их в двух заданиях первой части. Это актуально для всех ЕГЭ: подробнее о том, как идеально справляться с первой частью экзамена, читайте здесь.
Еще одно заблуждение: «часть с кратким ответом простая, к ней можно не готовиться». Даже в первой части иногда встречаются такие задания, которые ученики даже не решают, потому что не готовились к ним.
Как я уже говорила, часть с кратким ответом содержит 11 заданий. Начинать подготовку необходимо именно с заданий базового уровня сложности, потому что это та основа, на которую потом накладывается более сложная теория.
Что касается задач повышенного уровня сложности, то среди каждого номера есть лайфхаки, например, в этой статье я уже рассказывала про № 11, в котором нужно работать с производной.
Задания с развернутым ответом: немного статистики
Многие думают, что эта часть ЕГЭ по математике очень сложная. Поэтому ребята, которые не рассчитывают на высокие баллы, даже не приступают к ней. И очень зря! С помощью этих заданий можно заработать дополнительные баллы и побороться за высокое место в рейтинге.
Сейчас будет немного статистики. В среднем около 35% учеников получают полные 2 балла за решение № 12, а вот неравенство № 14 дается хуже, только около 12% с ним справляются на полный балл. Геометрия даётся ещё хуже: стереометрию № 13 полностью решают 2% выпускников, планиметрию (№ 16) менее 5%. А вот с экономической задачей (№ 15) справляются около 20%, а это целых 2 балла! Что касается № 17 и 18, то они даются ещё хуже, но на то они и самые сложные, хотя 1 балл за № 18 по статистике получают около 25% сдающих — там нужно просто привести пример.
Особенности уровней ЕГЭ по математике
В 2015 году ЕГЭ по математике разделили на базовый и профильный уровни. Это упростило жизнь выпускникам, которые не планируют поступать на специальности, связанные с математикой. Если ЕГЭ по математике нужен только для получения аттестата, можно сдать его облегченную версию, оставив время и силы для профильных экзаменов.
Базовый уровень ЕГЭ по математике
Как устроен базовый ЕГЭ по математике? Экзамен идет 180 минут, он состоит из 21 задания, за каждое из которых можно получить 1 балл. Этот экзамен единственный, который переводится не в 100-бальную систему, а в оценки.
В ЕГЭ по математике базового уровня 6 тематических блоков:
Также обратите внимание, что базовый ЕГЭ по математике не поменялся с точки зрения наполнения, изменился лишь порядок заданий. Вот что пишут ФИПИ:
Подробнее про базовый ЕГЭ по математике, включая разбор всех заданий, читайте здесь, а мы перейдём к профильному.
Профильный уровень ЕГЭ по математике
Данный экзамен, как и остальные ЕГЭ, переводится в 100-бальную систему:
Экзамен состоит из двух частей: Часть 1 с кратким ответом, а Часть 2 — с развернутым. Длится он 235 минут. Всего есть 18 заданий, которые разделены на 3 блока: алгебра, геометрия и реальная математика. Максимальное количество первичных баллов — 31.
База, профиль — неважно, к какому именно уровню вы готовитесь. В любом случае надо не только правильно решить каждое задание, но и оформить его так, чтобы проверяющие ни к чему не придрались. Нарисовать и описать график, расписать решение уравнения или задачи… И это не все: нужно еще и внести ответы в бланк без ошибок. И все это — за ограниченный период времени! Так можно перенервничать и запороть даже самую простую задачку. А на ЕГЭ — каждый балл на счету.
Поэтому на своих занятиях я сразу показываю своим ученикам, как правильно оформлять каждое задание в ЕГЭ по математике. Мы разбираем все критерии и учимся правильно отвечать на вопросы. А еще я всегда помогаю ученикам закрыть пробелы в знаниях и объясняю сложные темы столько раз, сколько нужно. И куда же без лайфхаков? Всегда рассказываю лучший способ решения типичных заданий. Так что мои ученики приходят на экзамены подготовленными и не нервничают, когда видят задачу. Хотите также? Приходите ко мне на курсы подготовки к ЕГЭ по математике — научу!
Структура ЕГЭ по математике 2023
Часть 1:
- Приносит 11 баллов, то есть 35% всего экзамена
- 11 заданий с кратким ответом
Часть 2:
- Приносит 20 баллов, то есть 65% всего экзамена
- 7 заданий с развернутым ответом
Внимание! Вся нумерация заданий в статье соответствует ЕГЭ 2023 года.
В заданиях с кратким ответом нужно лишь записать верное число в бланк. Заданий с развернутым ответом 7, в них нужно подробно расписать решение, которое должно соответствовать критериям оценивания.
ЕГЭ — стандартизированный экзамен, поэтому каждое задание всегда соответствует определенной теме.
Обратите внимание, что по сравнению с 2022 годом, в части 1 изменился только порядок заданий. Сами сотрудники ФИПИ говорят следующее:
Задания с кратким ответом принесут вам до 11 первичных баллов (64 вторичных). Если не понимаете, что это за баллы и откуда они берутся, почитайте эту статью. Самая популярная цель на ЕГЭ по математике — набрать 80 баллов, для этого раньше было необходимо 19 первичных баллов. Ранее многие ученики пользовались рабочей стратегией — решить всю часть с кратким ответом, а также № 12, 14 и 15. Если хорошо разбирались в геометрии, выбирали № 13 и 16 — или использовали их как запасные задания. Сейчас стратегия должна быть другая, так как № 13 (стереометрия) стал стоить дороже — 3 балла вместо 2, а № 15 (экономическая задача) — подешевел с 3 баллов до 2. Изменилась также шкала перевода баллов, поэтому подумайте, какими заданиями вы сможете набрать необходимое количество первичных баллов.
Разделы ЕГЭ по математике
- Алгебра и начала анализа — 8 заданий, 13 первичных баллов
- Геометрия — 4 задания, 8 первичных баллов
- Реальная математика — 6 заданий, 10 первичных баллов
Какие задания входят в ЕГЭ по математике?
Здесь вам на помощь приходят документы с официального сайта ФИПИ: кодификатор, демоверсия и спецификация.
- Кодификатор — это краткий перечень всех блоков и тем, которые включены в экзамен.
Сейчас кодификатор общий для обоих уровней экзамена, как базового, так и профильного. Он снова представляет собой единый документ, так что не запутаетесь.
- Демоверсия — типовой вариант ЕГЭ. Он показывает уровень экзамена и ориентировочную сложность заданий.
- Спецификация — это документ, описывающий структуру экзамена и разбалловку.
Что в итоге
Теперь вы знаете больше про ЕГЭ по математике 2023. Вы познакомились со структурой и поняли, на что стоит обращать внимание при подготовке. А еще узнали, что первую часть обязательно решать на максимум, а вторая не такая страшная, как кажется. Но наверняка у вас еще осталась куча вопросов: по оформлению и конкретному решению каких-то заданий точно.
Обо всем этом я подробно рассказываю своим ученикам во время подготовки к ЕГЭ по математике. Мы изучаем все непонятные темы, а потом прорешиваем много однотипных заданий — так легче запоминается формат. Еще мы всегда проводим пробные экзамены, чтобы выявить слабые места. Я анализирую ошибки каждого ученика и индивидуально разбираю их с ними. Благодаря этому мои выпускники гарантированно сдают ЕГЭ на 80+. Если вы хотите оказаться среди них — записывайтесь на курсы!
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
Справочные материалы ЕГЭ по профильной математике 2022-2023
sin2 α + cos2 α = 1
sin 2α = 2sin α * cos α
cos 2α = cos2α — sin2α
sin (α + β) = sin α *cos β + cos α *sin β
cos (α + β) = cos α * cos β — sin α * sin β
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.