Два студента сдают экзамен отвечая на два вопроса программы

Дискретной
называют случайную величину X, принимающую
конечное или счетное (можно перенумеровать)
число значений
:
x1,
x2,….
Значение xk
принимается с некоторой вероятностью.

При этом

Соответствие,
которое каждому значению

дискретной случайной величины X
сопоставляет его вероятность
,
называется законом распределения

случайной величины X.

Закон
распределения обычно задается в виде
таблицы, которая называется рядом
распределения
:

X

x1

x2

. . .

P

p1

p2

.
. .

Функция
распределения случайной величины

в дискретном случае является
кусочно-постоянной и может быть найдена
по формуле
.

Математическим
ожиданием (средним значением) дискретной
случайной величины X называется число:

Если
случайная величина принимает счетное
число значений, то говорят что
математическое ожидание существует,
если ряд

сходится, при расходимости ряда говорят,
что математического ожидания не
существует.

Дисперсией
случайной величины X называют

математическое ожидание квадрата
отклонения случайной величины от ее
математического ожидания:
.

Дисперсию
удобно вычислять по формуле
.

Средним
квадратичным отклонением случайной
величины называют квадратный корень
из дисперсии:

Среднее
квадратичное отклонение является одной
из характеристик рассеяния возможных
значений случайной величины вокруг ее
математического ожидания
(см. с.
27-30, 32-36 учебного пособия
).

В задачах часто
используется биномиальное распределение,
то есть распределение случайной величины
X – числа наступления события A в п
независимых опытах, в каждом из которых
событие A может произойти с одной и той
же вертят
ностью
p. Случайная величина
X
принимает целочисленные значения
m= 0,
1, …, n с
вероятностями.

Математическое
ожидание, дисперсия и среднее квадратичное
отклонение случайной величины X,
распределенной по биномиальному закону,
находятся по формулам


,
где
q=1-
p
.

Для
всех вариантов расшифровка задания: ”
Построить
*
отклонение

читается так:

Построить ряд распределения, найти
функцию распределения, математическое
ожидание и среднее квадратичное
отклонение
…”.

Задача
1.
Спортсмен должен
последовательно преодолеть 4 препятствия,
каждое из которых преодолевается им с
вероятностью p = 0,9.
Если спортсмен не преодолевает какое-либо
препятствие, он выбывает из соревнований.

Построить*отклонение
числа препятствий, преодолённых
спортсменом.

Найти
вероятность
того, что спортсмен
преодолеет:

а) не
более двух препятствий;

б) более
трёх препятствий.

Задача
2
.
Из коробки, в которой находятся 2 зелёных,
2 чёрных и 6 красных стержней для шариковой
руки, случайным образом извлекаются 4
стержня.

Построить*
отклонение числа извлечённых
стержней красного цвета.

Найти
вероятность того, что при
этом красных стержней будет:

а) не менее трёх

б) хотя
бы один.

Задача
3.
База снабжает 6 магазинов.
От каждого из них может поступить заявка
на данный день с вероятностью 1/3.

Построить*
отклонение числа заявок на
базу на данный день.

Найти
вероятность того, что их
будет более пяти.

Задача
4.
Наблюдение
за районом осуществляется тремя
радиолокационными станциями. В район
наблюдений попал объект, который
обнаруживается любой радиолокационной
станцией с вероятностью 0,2.

Построить*
отклонение числа радиостанций,
обнаруживших объект.

Найти
вероятность того, что их будет не менее
двух.

Задача
5.
Опыт состоит из четырёх
независимых подбрасываний двух правильных
монет, т.е. выпадение герба и цифры
равновозможные события.

Построить*
отклонение числа одновременного
выпадения двух цифр.

Найти
вероятность того, что это
событие произойдёт не менее трёх раз.

Задача
6
. Автоматизированную линию
обслуживают 5 манипуляторов. При плановом
осмотре их поочередно проверяют. Если
характеристики проверяемого манипулятора
не удовлетворяют техническим условиям,
вся линия останавливается для переналадки.
Вероятность того, что при проверке
характеристики манипулятора окажутся
неудовлетворительными, равна 0,3.

Построить*
отклонение числа манипуляторов,
проверенных до остановки линии.

Найти
вероятность того, что до
остановки линии будет проверено:

а) не более двух
манипуляторов

б) более трёх
манипуляторов.

Задача
7
. На пяти карточках написаны
цифры 1, 2, 3, 4, 5. Две из карточек вынимаются
наугад одновременно.

Построить*
отклонение суммы чисел, записанных на
этих карточках.

Найти
вероятность того, что эта
сумма будет:

а) менее шести

б) не менее пяти.

Задача
8
. Производятся 4 независимых
опыта, в каждом из которых с вероятностью
0,2; 0,4; 0,6; 0,8 соответственно может появиться
случайное событие A.

Построить*
отклонение числа появлений события А.

Найти
вероятность того, что А
произойдёт не менее чем в половине
опытов.

Задача
9
. В коробке имеются 7
карандашей, из которых 5 красных. Из этой
коробки наудачу извлекаются 3 карандаша.

Построить*
отклонение числа красных
карандашей в выборке.

Найти
вероятность того, что в
выборке будет:

а) хотя бы один красный
карандаш

б) менее двух красных
карандашей.

Задача
10
. Стрелок, имеющий 4 патрона,
стреляет последовательно по двум
мишеням, до поражения обеих мишеней или
пока не израсходует все 4 патрона. При
попадании в первую мишень стрельба по
ней прекращается, и стрелок начинает
стрелять по второй мишени. Вероятность
попадания при любом выстреле 0,8.

Построить*
отклонение числа поражённых мишеней.

Найти
вероятность того, что
будет поражена хотя бы одна мишень.

Задача
11.
Из
ящика, содержащего 4 годных и 3 бракованных
детали, наугад извлекают 4 детали.

Построить*
отклонение числа вынутых годных деталей.

Найти
вероятность того, что годных деталей
будет:

а)
менее трех;

б)
хотя бы одна.

Задача
12.
Имеется
набор из четырех карточек, на каждой из
которых написана одна из цифр 1, 2, 3, 4. Из
набора наугад извлекают карточку, затем
ее возвращают обратно, после чего наудачу
извлекают вторую карточку.

Построить*
отклонение случайной величины, равной
сумме чисел, написанных на вынутых
карточках.

Найти
вероятность того, что эта сумма:

а)
не превзойдет числа 4;

б)
будет не менее 6.

Задача
13.

Три стрелка независимо друг от друга
стреляют в цель. Вероятность попадания
каждым стрелком в цель равна 0.6.

Построить*
отклонение числа попаданий, если каждый
стрелок делает только один выстрел.

Найти
вероятность того, что:

а)
будет хотя бы одно попадание;

б)
будет не более одного попадания.

Задача
14.

Три стрелка независимо друг от друга
стреляют каждый по своей мишени один
раз. Вероятности попадания при одном
выстреле у стрелков равны соответственно:

Построить*
отклонение числа пораженных мишеней.

Найти
вероятность того, что пораженных мишеней
будет:

а)
хотя бы одна;

б)
менее двух.

Задача
15.

Опыт состоит из трех независимых
подбрасываний одновременно трех монет,
каждая из которых с одинаковой вероятностью
падает гербом или цифрой вверх.

Построить*
отклонение числа одновременного
выпадения двух гербов.

Найти
вероятность того, что два герба
одновременно выпадут хотя бы один раз.

Задача
16.

На пути автомобиля 5 светофоров, каждый
из них автомобиль проезжает с вероятностью
0,6.

Построить*
отклонение числа светофоров, которые
автомобиль проезжает до первой остановки.

Найти
вероятность
того, что до первой остановки автомобиль
проедет:

а)
хотя бы один светофор;

б)
более трех светофоров.

Задача
17.

Из урны, в которой было 4 белых и 2 черных
шара, переложен один шар в другую урну,
в которой находилось 3 черных шара и
один белый. После перемешивания из
последней урны вынимают 3 шара.

Построить*
отклонение
числа черных шаров, вынутых из второй
урны.

Найти
вероятность того, что из нее будет
извлечено:

а)
по крайней мере, два шара;

б)
не более двух шаров.

Задача
18.

Стрелок стреляет по мишени до трех
попаданий или до тех пор, пока не
израсходует все патроны, после чего
прекращает стрельбу. Вероятность
попадания при каждом выстреле равна
0,6.

Построить*
отклонение числа выстрелов, произведенных
стрелком, если у стрелка имеется 5
патронов.

Найти
вероятность того, что стрелок произведет,
по крайней мере, четыре выстрела.

Задача
19.

Ракетная установка обстреливает две
удаленные цели. Вероятность попадания
при каждом выстреле равна 0,6. Цель при
попадании в нее уничтожается.
Запуск
ракет прекращается после уничтожения
обеих целей или после использования
имеющихся пяти ракет.

Построить*
отклонение числа запущенных ракет.

Найти
вероятность того, что при этом будет
запущено:

а)
не более трех ракет;

б)
от двух до четырех ракет.

Задача
20.

Три ракетные установки стреляют каждая
по своей цели независимо друг от друга
до первого попадания, затем прекращают
стрельбу. Каждая ракетная установка
имеет две ракеты. Вероятность попадания
одной ракеты для первой установки –
0,4, для второй – 0,5, для третьей – 0,6.

Построить*
отклонение
числа ракетных установок, у которых
осталась неизрасходованная ракета.

Найти
вероятность того, что будет хотя бы одна
такая установка.

Задача
21.

Батарея состоит из трех орудий. Вероятность
попадания в мишень при одном выстреле
равна 0,9 для одного из орудий и 0,6 для
каждого из двух других. Наугад выбирают
два орудия, и каждое из них стреляет
один раз.

Построить*
отклонение числа попаданий в мишень.

Найти
вероятность:

а)
хотя бы одного попадания в мишень;

б)
хотя бы одного непопадания в мишень.

Задача
22.

Группа состоит из пяти отличных, пяти
хороших и десяти посредственных
студентов. Вероятность правильного
ответа на один вопрос экзаменационной
программы равна 0,9 для отличного студента,
0,7 для хорошего студента и 0,6 для
посредственного студента.

Построить*
отклонение числа правильных ответов
на два вопроса наугад выбранного билета
одним случайно выбранным студентом
данной группы.

Найти
вероятность
того, что правильным будет ответ хотя
бы на один вопрос.

Задача
23.

С вероятностью попадания при одном
выстреле 0,7 охотник стреляет по дичи до
первого попадания, но успевает сделать
не более четырех выстрелов.

Построить*
отклонение числа промахов.

Найти
вероятность того, что промахов будет:

а)
менее двух;

б)
не менее трех.

Задача
24.

Рабочий обслуживает 4 независимо
работающих станка. Вероятность того,
что в течение часа станок потребует
внимания рабочего, равна для первого
станка 0,7, для второго – 0,75, для третьего
– 0,8 для четвертого – 0,9.

Построить*
отклонение числа станков, которые
потребуют внимания рабочего.

Найти
вероятность того, что таких станков
будет не более половины.

Задача
25
.
Монету подбрасывают 6 раз.

Построить*
отклонение
разности числа появлений герба и числа
появлений цифры.

Найти
вероятность
того, что эта разность будет менее двух.

Задача
26.

В кошельке лежат 5 монет по 1 руб., две
монеты по 2 руб. и три монеты по 5 руб.

Построить*
отклонение числа рублей, извлеченных
из кошелька, если из него извлекают
наугад две монеты.

Найти
вероятность
того, что извлеченных рублей будет:

а)
не менее четырех;

б)
более семи.

Задача
27
.
Производится по два последовательных
выстрела по каждой из трех целей.
Вероятность попадания при одном выстреле
в любую цель равна 0,7. При попадании в
цель стрельба по ней прекращается,
неизрасходованный патрон при стрельбе
по другим целям не используется.

Построить*
отклонение числа пораженных целей.

Найти
вероятность того, что будет поражено
хотя бы две цели.

Задача
28.

Для контроля трех партий деталей
выбирается случайным образом любая
партия, и из нее берут наугад две детали.

Построить*
отклонение числа бракованных деталей,
среди этих двух, если в первой партии
2/3 недоброкачественных деталей, во
второй 1/3 и в третьей бракованных деталей
нет.

Найти
вероятность
того, что среди этих двух деталей будет
хотя бы одна доброкачественная.

Задача
29.

Имеются два одинаковых ящика с деталями.
В первом ящике содержатся 8 деталей, из
них 3 бракованных, во втором – 4 детали,
из них – 2 бракованных. Из одного ящика
вынимают 3 детали.

Построить*
отклонение числа бракованных деталей
среди трех вынутых, если выбор ящиков
равновероятен.

Найти
вероятность
того, что будет вынуто не более двух
бракованных деталей.

Задача
30.

Два студента сдают экзамен, отвечая на
два вопроса программы, независимо друг
от друга. Вероятность правильного ответа
на любой вопрос программы для первого
студента – 0,6, для второго – 0,8. При
неправильном ответе на вопрос экзамен
прекращается.

Построить*
отклонение числа студентов, пытавшихся
ответить на оба вопроса.

Найти
вероятность
того, что будет хотя бы один такой
студент.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Здравствуйте, решаю задачку по этой теме.

Два студента сдают экзамен, отвечая на два вопроса программы, независимо друг от друга. Вероятность правильного ответа на любой вопрос программы для первого студента – 0,6, для второго – 0,8. При неправильном ответе на вопрос экзамен прекращается.
Построить*… отклонение числа студентов, пытавшихся ответить на оба вопроса.

В общем загвоздка у меня уже на первой стадии, как тут составить закон распределения? Полную систему я нашел, получилось 9 чисел в сумме единица. Когда первый студент за валился на первом вопросе, а второй на втором и т.д. Просто с одной величиной таблица легко строится, например, как со спортсменом, преодолевающим препятствия, а тут я не могу разобраться, да и с порядком непонятно. Помогите пожалуйста, а саму задачу я сам решу.

__________________
Помощь в написании контрольных, курсовых и дипломных работ, диссертаций здесь

Программа экзамена содержит 20 вопросов. Студент знает 10 из них. Для сдачи экзамена требуется ответить на два предложенных вопроса

Закажите у меня новую работу, просто написав мне в чат!

Программа экзамена содержит 20 вопросов. Студент знает 10 из них. Для сдачи экзамена требуется ответить на два предложенных вопроса или на один из них и один вопрос дополнительно. а. Какова вероятность того, что студент сдаст экзамен? б. Студент сдал экзамен. Какова вероятность того, что ему пришлось отвечать на дополнительный вопрос?

Основное событие 𝐴 – студент сдаст экзамен. Гипотезы: 𝐻1 − из взятого билета студент не знает ни одного вопроса; 𝐻2 − из взятого билета студент знает один вопрос; 𝐻3 − из взятого билета студент знает оба вопроса. Вероятности гипотез (по классическому определению вероятности): Условные вероятности (по условию): Если студент знал один вопрос, то для сдачи экзамена он должен знать ответ на заданный дополнительно вопрос (осталось 18 вопросов, из которых он знает 9): а. Вероятность события 𝐴 по формуле полной вероятности равна: б. Вероятность того, что студенту пришлось отвечать на дополнительный вопрос и при этом он экзамен сдал, по формуле Байеса: Ответ: 𝑃(𝐴) = 0,5; 𝑃(𝐻2|𝐴) = 10 19

Сообщения без ответов | Активные темы

Автор Сообщение

Заголовок сообщения: На экзамене студентам задаются по выбору преподавателя два

СообщениеДобавлено: 02 ноя 2018, 14:02 

Не в сети
Продвинутый


Зарегистрирован:
09 май 2018, 20:37
Сообщений: 97
Cпасибо сказано: 43
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации

На экзамене студентам задаются по выбору преподавателя два вопроса из 62 вопросов программы. В каком случае вероятность получения известных вопросов для студента, знающего 58 вопросов, максимальная: когда он идёт отвечать первым или вторым? Предполагается, что заданные ранее вопросы студентам не предлагаются

Что-то запуталась как решить правильно то когда студент заходит отвечать вторым.
Получается остается всего 62-2=60 вопросов. Но из них студент может знать 58 или 57, или 56. И тут я не знаю как дальше ((((
Помогите пожалуйста ((

Вернуться к началу

Профиль  

Cпасибо сказано 

Andy

Заголовок сообщения: Re: На экзамене студентам задаются по выбору преподавателя два

СообщениеДобавлено: 02 ноя 2018, 14:32 

LikaLika

LikaLika писал(а):

В каком случае вероятность получения известных вопросов для студента, знающего 58 вопросов, максимальная:

Я думаю, что сначала нужно разобраться с вопросом самОй задачи. Что Вы понимаете под вероятностью получения студентом известных вопросов?

Вернуться к началу

Профиль  

Cпасибо сказано 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Простая задача по выбору оптимального алгоритма

в форуме Комбинаторика и Теория вероятностей

Earl_Us

12

977

13 сен 2013, 09:56

Что спросить у преподавателя по теме производная, п-ло Л-ля?

в форуме Пределы числовых последовательностей и функций, Исследования функций

sfanter

1

276

27 окт 2015, 06:48

Ищем преподавателя для углубленного обучения статистике

в форуме Объявления участников Форума

Finder

1

175

29 май 2020, 13:16

Помощь студентам

в форуме Объявления участников Форума

LOP

5

412

22 май 2019, 10:04

Помощь студентам

в форуме Объявления участников Форума

stupom

0

465

28 июн 2015, 19:52

Помощь студентам по математике

в форуме Объявления участников Форума

stupom

3

1302

17 окт 2015, 17:51

Помощь по математике студентам и школьникам

в форуме Объявления участников Форума

man

0

440

22 ноя 2014, 01:35

Поверхности второго порядка. Как задаются прямые?

в форуме Аналитическая геометрия и Векторная алгебра

MariaVic

11

466

10 дек 2016, 18:30

Определить, какие линии задаются уравнениями

в форуме Аналитическая геометрия и Векторная алгебра

dmitriy1234567

15

617

14 фев 2017, 23:55

Определить, какие линии задаются уравнением

в форуме Аналитическая геометрия и Векторная алгебра

daria596

3

468

11 янв 2017, 19:34

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 9

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Два студента сдают экзамен. Если ввести события: A – экзамен успешно сдал первый студент и B – экзамен успешно сдал второй студент, то событие, заключающееся в том, что только один студент успешно сдал экзамен, будет представлять собой выражение …

Тип вопроса: Вопрос с одним правильными вариантом

Ответ на этот вопрос уже получили: 28 раз(а)

Помогли ответы? Ставь лайк 👍

Вопрос задал(а): Анонимный пользователь, 13 Ноябрь 2020 в 17:53
На вопрос ответил(а): Анастасия Степанова, 13 Ноябрь 2020 в 17:53

Студент знает k вопросов из n вопросов программы. Экзаменатор задаёт три произвольных вопроса из имеющихся. Найти вероятность того, что студент знает ответы:  а) на все три вопроса; Готовое решение: Заказ №8390

Студент знает k вопросов из n вопросов программы. Экзаменатор задаёт три произвольных вопроса из имеющихся. Найти вероятность того, что студент знает ответы:  а) на все три вопроса; Тип работы: Задача

Студент знает k вопросов из n вопросов программы. Экзаменатор задаёт три произвольных вопроса из имеющихся. Найти вероятность того, что студент знает ответы:  а) на все три вопроса;Статус:  Выполнен (Зачтена преподавателем ВУЗа)

Студент знает k вопросов из n вопросов программы. Экзаменатор задаёт три произвольных вопроса из имеющихся. Найти вероятность того, что студент знает ответы:  а) на все три вопроса; Предмет: Теория вероятности

Студент знает k вопросов из n вопросов программы. Экзаменатор задаёт три произвольных вопроса из имеющихся. Найти вероятность того, что студент знает ответы:  а) на все три вопроса; Дата выполнения: 29.08.2020

Студент знает k вопросов из n вопросов программы. Экзаменатор задаёт три произвольных вопроса из имеющихся. Найти вероятность того, что студент знает ответы:  а) на все три вопроса; Цена: 226 руб.

Чтобы получить решение, напишите мне в WhatsApp, оплатите, и я Вам вышлю файлы.

Кстати, если эта работа не по вашей теме или не по вашим данным, не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу, я смогу выполнить её в срок 1-3 дня!

Описание и исходные данные задания, 50% решения + фотография:

1) Студент знает k вопросов из n вопросов программы. Экзаменатор задаёт три произвольных вопроса из имеющихся. Найти вероятность того, что студент знает ответы:

а) на все три вопроса;

б) только на два вопроса;

в) только на один вопрос;

г) не знает ответа ни на один из заданных вопросов.

n = 60,   k = 45.

         Решение.

Всего в программе 60 вопросов, из которых студент знает 45 вопросов и не знает 60–45 = 15 вопросов. Экзаменатор задаёт 3 произвольных вопроса, то есть каждый вопрос с одинаковой вероятностью может быть задан студенту.

Число различных способов, которыми можно выбрать 3 вопроса из 60-и, равно числу сочетаний из 60-и элементов по 3 элемента:

а) Пусть событие A – студент знает ответ на все три вопроса. Чтобы событие A произошло, все три вопроса должны быть из числа 45-и, которые студент знает. Число способов выбора 3-х вопросов, благоприятствующих событию A, равно:

Тогда вероятность события A, по классическому определению вероятности:

б) Событие B – студент знает ответы только два вопроса – состоит в том, что студенту попадутся 2 вопроса из числа 45-и, которые студент знает (число способов выбора), и 1 вопрос из числа 15-и, которые студент не знает (число способов выбора). Согласно правилу произведения в комбинаторике, число способов выбора 3-х вопросов, благоприятствующих событию B, равно:

Тогда вероятность события B, по классическому определению вероятности:

Студент знает k вопросов из n вопросов программы. Экзаменатор задаёт три произвольных вопроса из имеющихся. Найти вероятность того, что студент знает ответы:  а) на все три вопроса;

Студент знает k вопросов из n вопросов программы. Экзаменатор задаёт три произвольных вопроса из имеющихся. Найти вероятность того, что студент знает ответы:  а) на все три вопроса;

Студент знает k вопросов из n вопросов программы. Экзаменатор задаёт три произвольных вопроса из имеющихся. Найти вероятность того, что студент знает ответы:  а) на все три вопроса;

  • Студент знает 20 из 25 вопросов программы. Вычислите вероятность того, что студент знает предложенные ему два вопроса.
  • Студент решил 60 задач, причём в 10 из них допустил ошибки. Преподаватель выбрал случайным образом для проверки 7 задач. Какова вероятность того, что в трёх из них есть ошибки?
  • На столе лежат 20 экзаменационных билетов с номерами 1, 2, … 20. Преподаватель берёт 3 любых билета. Какова вероятность того, что они из первых четырёх?
  • Из 50 вопросов студент выучил 40. В билете содержатся 2 вопроса. Экзамен считается сданным, если студент ответит хотя бы на один вопрос. Найти вероятность того, что студент:  а) сдаст экзамен

Вопросы »

Комбинаторика,вероятность » Студент знает 15 из 20 вопросов учебной программы. На экзамене предлагается ответить на 3 вопроса, которые выбираются случайным образом.

Студент знает 15 из 20 вопросов учебной программы. На экзамене предлагается ответить на 3 вопроса, которые выбираются случайным образом.

создана: 29.09.2019 в 20:05
…………………………………………


 

Isbebi :

Студент знает 15 из 20 вопросов учебной программы. На экзамене предлагается ответить на 3 вопроса, которые выбираются случайным образом.Какова вероятность того,что студент сможет ответить на предложенные вопроы???

Хочу написать ответ

Like this post? Please share to your friends:
  • Двгупс какие экзамены нужно сдавать
  • Дают ли дополнительные баллы на егэ за беременность
  • Два помещика сочинение
  • Дают ли дополнительные баллы беременным на егэ
  • Двгупс зачеты экзамены