Двигаясь по прямой егэ

Задания

Версия для печати и копирования в MS Word

Тип 7 № 41221

В одном из выделенных ниже слов допущена ошибка в образовании формы слова. Исправьте ошибку и запишите слово правильно.

ДВИГАЯСЬ по прямой

ПРИШЕДШИЙ вовремя

на ТРЁХСОТ шестой странице

ЛЕГЧАЙШАЯ ткань

более ОСТРОЕ лезвие

Спрятать пояснение

Пояснение.

Неверно: на трёхсот шестой странице. Корректно: на триста шестой странице.

Ответ: триста.

Спрятать пояснение

·

·

Сообщить об ошибке · Помощь

Skip to content

ЕГЭ Профиль №9. Задачи на движение по прямой

ЕГЭ Профиль №9. Задачи на движение по прямойadmin2022-10-19T21:50:27+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №9. Задачи на движение по прямой

Задача 1. Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути — со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.

Пусть x км/ч – скорость первого автомобиля, тогда скорость второго на второй половине пути равна x + 16 км/ч. Возьмём расстояние между пунктами за 2 S  км.

v (км/ч) t (ч) S (км)
Первый автомобиль x (frac{{2S}}{x}) S
Второй автомобиль
(1 половина пути)
24 (frac{S}{{24}}) S
Второй автомобиль
(2 половина пути)
x + 16 (frac{S}{{x + 16}}) S

Автомобили были в пути одно и то же время. Следовательно:

(frac{S}{{24}} + frac{S}{{x + 16}} = frac{{2S}}{x},,left| {,:,S ne 0,,,,, Leftrightarrow ,,,,,} right.frac{1}{{24}} + frac{1}{{x + 16}} = frac{2}{x},,,, Leftrightarrow ,,,,,frac{{x + 16 + 24}}{{24left( {x + 16} right)}} = frac{2}{x},,,,, Leftrightarrow )

( Leftrightarrow ,,,,xleft( {x + 40} right) = 48left( {x + 16} right),,,, Leftrightarrow ,,,,{x^2} — 8x — 768 = 0)

(D = 64 + 3072 = 3136;,,,,,{x_1} = frac{{8 + 56}}{2} = 32;,,,,{x_2} = frac{{8 — 56}}{2} =  — 24.)

Так как (x > 0), то скорость первого автомобиля равна 32 км/ч.

Ответ: 32.

Задача 2. Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 13 км/ч, а вторую половину пути — со скоростью 78 км/ч, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 48 км/ч. Ответ дайте в км/ч.

Пусть x км/ч – скорость первого автомобиля, тогда скорость второго на первой половине пути равна x – 13 км/ч. Возьмём расстояние между пунктами за 2 S  км.

v (км/ч) t (ч) S (км)
Первый автомобиль x (frac{{2S}}{x}) S
Второй автомобиль
(1 половина пути)
x – 13 (frac{S}{{x — 13}}) S
Второй автомобиль
(2 половина пути)
78 (frac{S}{{78}}) S

Автомобили были в пути одно и то же время. Следовательно:

(frac{S}{{x — 13}} + frac{S}{{78}} = frac{{2S}}{x},,left| {,:,S ne 0,,,,, Leftrightarrow ,,,,,} right.frac{1}{{x — 13}} + frac{1}{{78}} = frac{2}{x},,,, Leftrightarrow ,,,,,frac{{78 + x — 13}}{{78left( {x — 13} right)}} = frac{2}{x},,,,, Leftrightarrow )

( Leftrightarrow ,,,,xleft( {x + 65} right) = 156left( {x — 13} right),,,, Leftrightarrow ,,,,{x^2} — 91x + 13 cdot 156 = 0)

(D = {91^2} — 4 cdot 13 cdot 156 = {13^2} cdot {7^2} — 4 cdot {13^2} cdot 12 = {13^2}left( {49 — 48} right) = {13^2};,,,,,{x_1} = frac{{91 + 13}}{2} = 52;,,,,{x_2} = frac{{91 — 13}}{2} = 39.)

Так как по условию задачи (x > 48), то скорость первого автомобиля равна 52 км/ч.

Ответ: 52.

Задача 3. Из пункта А в пункт В, расстояние между которыми 75 км, одновременно выехали автомобилист и велосипедист. Известно, что за час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 6 часов позже автомобилиста. Ответ дайте в км/ч.

Пусть x км/ч – скорость велосипедиста, тогда скорость автомобиля равна x + 40 км/ч.

v (км/ч) t (ч) S (км)
Велосипедист x (frac{{75}}{x}) 75
Автомобилист x + 40 (frac{{75}}{{x + 40}}) 75

Так как, велосипедист прибыл в пункт В на 6 часов позже автомобилиста, то его время на 6 часов больше. Следовательно:

(frac{{75}}{x} — frac{{75}}{{x + 40}} = 6,,,,,, Leftrightarrow ,,,,,frac{{75left( {x + 40} right) — 75x}}{{xleft( {x + 40} right)}} = 6,,, Leftrightarrow ,,,,,frac{{75 cdot 40}}{{xleft( {x + 40} right)}} = 6,,,, Leftrightarrow ,,,,6xleft( {x + 40} right) = 75 cdot 40,,left| {,:6,,,, Leftrightarrow } right.)

( Leftrightarrow ,,,{x^2} + 40x — 500 = 0;,,,,D = 1600 + 2000 = 3600;,,,,{x_1} = frac{{ — 40 + 60}}{2} = 10;,,,,{x_2} = frac{{ — 40 — 60}}{2} =  — 50)

Так как (x > 0), то скорость велосипедиста равна 10 км/ч.

Ответ: 10.

Задача 4. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 70 км. На следующий день он отправился обратно в А со скоростью на 3 км/ч больше прежней. По дороге он сделал остановку на 3 часа. В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. Ответ дайте в км/ч.

Пусть x км/ч – скорость велосипедиста из В в А, тогда его скорость из А в В равна x – 3 км/ч.

v (км/ч) t (ч) S (км)
({text{A}} to {text{B}}) (x — 3) (frac{{70}}{{x — 3}}) 70
({text{B}} to {text{A}}) (x) (frac{{70}}{x}) 70

Так как, на обратном пути велосипедист сделал остановку на 3 часа и в результате затратил столько же времени, то:

(frac{{70}}{{x — 3}} — frac{{70}}{x} = 3,,,,,, Leftrightarrow ,,,,,frac{{70x — 70left( {x — 3} right)}}{{xleft( {x — 3} right)}} = 3,, Leftrightarrow ,,,,,frac{{70 cdot 3}}{{xleft( {x — 3} right)}} = 3,,,, Leftrightarrow ,,,,3xleft( {x — 3} right) = 70 cdot 3,,,, Leftrightarrow )

( Leftrightarrow ,,,{x^2} — 3x — 70 = 0;,,,,D = 9 + 280 = 289;,,,,{x_1} = frac{{3 + 17}}{2} = 10;,,,,{x_2} = frac{{3 — 17}}{2} =  — 7)

Так как (x > 0), то скорость велосипедиста из В в А равна 10 км/ч.

Ответ: 10.

Задача 5. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 98 км. На следующий день он отправился обратно со скоростью на 7 км/ч больше прежней. По дороге он сделал остановку на 7 часов. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.

Пусть x км/ч – скорость велосипедиста из А в В, тогда его скорость из В в А равна x + 7 км/ч.

v (км/ч) t (ч) S (км)
({text{A}} to {text{B}}) (x) (frac{{98}}{x}) 98
({text{B}} to {text{A}}) (x + 7) (frac{{98}}{{x + 7}}) 98

Так как, на обратном пути велосипедист делал остановку на 7 часов и в результате затратил столько же времени, то:

(frac{{98}}{x} — frac{{98}}{{x + 7}} = 7,,,,,, Leftrightarrow ,,,,,frac{{98left( {x + 7} right) — 98x}}{{xleft( {x + 7} right)}} = 7,, Leftrightarrow ,,,,,frac{{98 cdot 7}}{{xleft( {x + 7} right)}} = 7,,,, Leftrightarrow ,,,,7xleft( {x + 7} right) = 98 cdot 7,,, Leftrightarrow )

( Leftrightarrow ,,,{x^2} + 7x — 98 = 0;,,,,D = 49 + 392 = 441;,,,,{x_1} = frac{{ — 7 + 21}}{2} = 7;,,,,{x_2} = frac{{ — 7 — 21}}{2} =  — 14)

Так как (x > 0), то скорость велосипедиста из А в В равна 7 км/ч.

Ответ: 7.

Задача 6. Два велосипедиста одновременно отправились в 240-километровый пробег. Первый ехал со скоростью, на 1 км/ч большей, чем скорость второго, и прибыл к финишу на 1 час раньше второго. Найти скорость велосипедиста, пришедшего к финишу первым. Ответ дайте в км/ч.

Пусть x км/ч – скорость велосипедиста, пришедшего к финишу первым, тогда скорость второго велосипедиста x – 1 км/ч.

v (км/ч) t (ч) S (км)
Первый велосипедист (x) (frac{{240}}{x}) 240
Второй велосипедист (x — 1) (frac{{240}}{{x — 1}}) 240

Так как первый велосипедист приехал на 1 час раньше второго, то его время на 1 час меньше. Следовательно:

(frac{{240}}{{x — 1}} — frac{{240}}{x} = 1,,,,,, Leftrightarrow ,,,,,frac{{240x — 240left( {x — 1} right)}}{{xleft( {x — 1} right)}} = 1,,,,, Leftrightarrow ,,,,,frac{{240}}{{xleft( {x — 1} right)}} = 1,,,, Leftrightarrow ,,,,xleft( {x — 1} right) = 240,,, Leftrightarrow )( Leftrightarrow ,,,,,{x^2} — x — 240 = 0;,,,,,D = 1 + 4 cdot 240 = 961;,,,,,{x_1} = frac{{1 + 31}}{2} = 16;,,,,,{x_2} = frac{{1 — 31}}{2} =  — 15.)

Так как (x > 0), то скорость велосипедиста, пришедшего к финишу первым, равна 16 км/ч.

Ответ: 16.

Задача 7. Из двух городов, расстояние между которыми равно 560 км, навстречу друг другу одновременно выехали два автомобиля. Через сколько часов автомобили встретятся, если их скорости равны 65 км/ч и 75 км/ч?

Пусть t ч – время движения автомобилей до встречи. Тогда первый автомобиль пройдет расстояние – 65t км, а второй – 75t км. Следовательно:

(65t + 75t = 560,,,, Leftrightarrow ,,,,140t = 560,,,, Leftrightarrow ,,,,t = 4).

Таким образом, автомобили встретятся через 4 часа.

Ответ: 4.

Задача 8. Из городов A и B, расстояние между которыми равно 330 км, навстречу друг другу одновременно выехали два автомобиля и встретились через 3 часа на расстоянии 180 км от города B. Найдите скорость автомобиля, выехавшего из города A. Ответ дайте в км/ч.

Так как автомобили встретились на расстоянии 180 км от города В, то автомобиль, выехавший из города А, проехал расстояние (330 — 180 = 150) км за 3 часа. Следовательно, его скорость равна:

(V = frac{{150}}{3} = 50) км/ч.

Ответ: 50.

Задача 9. Расстояние между городами A и B равно 435 км. Из города A в город B со скоростью 60 км/ч выехал первый автомобиль, а через час после этого навстречу ему из города B выехал со скоростью 65 км/ч второй автомобиль. На каком расстоянии от города A автомобили встретятся? Ответ дайте в километрах.

Пусть t ч – время движения до встречи автомобиля, выехавшего из города А, тогда время второго автомобиля t – 1 ч. За t часов первый автомобиль проехал расстояние 60t км, а второй за t – 1 ч проехал 65(t – 1), а вместе до встречи они проехали 435 км. Следовательно:

(60t + 65left( {t — 1} right) = 435,,,,, Leftrightarrow ,,,,,60t + 65t — 65 = 435,,,,, Leftrightarrow ,,,,125,t = 500,,,,, Leftrightarrow ,,,,,t = 4.)

Следовательно, первый проехал расстояние (60 cdot 4 = 240) км, и оно равно расстоянию от города А до встречи автомобилей.

Задача 10. Расстояние между городами A и B равно 470 км. Из города A в город B выехал первый автомобиль, а через 3 часа после этого навстречу ему из города B выехал со скоростью 60 км/ч второй автомобиль. Найдите  скорость  первого  автомобиля,  если  автомобили  встретились  на  расстоянии  350  км  от  города  A.  Ответ  дайте  в  км/ч.

Автомобиль, выехавший из города В со скоростью 60 км/ч, проехал расстояние (470 — 350 = 120) км. Следовательно, он затратил на этот путь время равное: (frac{{120}}{{60}} = 2) часа. Тогда автомобиль, выехавший из города А, затратил на расстояние равное 350 км время равное: (2 + 3 = 5) часов. Поэтому его скорость равна: (frac{{350}}{5} = 70) км/ч.

Ответ: 70.

Задача 11. Из городов A и B навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 3 часа раньше, чем велосипедист приехал в A, а встретились они через 48 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?

Пусть время движения велосипедиста из В в А равно x ч, тогда время движения мотоциклиста из А в В равно x – 3 ч, при этом (x — 3 > 0), то есть (x > 3). Обозначим расстояние между городами за S км. Тогда скорость велосипедиста равна: (frac{S}{x}), а скорость мотоциклиста (frac{S}{{x — 3}}).

За время 48 минут ((frac{{48}}{{60}} = frac{4}{5}) ч) велосипедист проехал расстояние: (frac{4}{5} cdot frac{S}{x}) км, а мотоциклист: (frac{4}{5} cdot frac{S}{{x — 3}}) км, а вместе они преодолели расстояние равное S км. Следовательно:

(frac{4}{5} cdot frac{S}{x} + frac{4}{5} cdot frac{S}{{x — 3}} = S,,left| : right.,,S ne 0,,,,, Leftrightarrow ,,,,,frac{4}{{5x}} + frac{4}{{5left( {x — 3} right)}} = 1,,,,, Leftrightarrow ,,,,,frac{{4left( {x — 3} right) + 4x}}{{5xleft( {x — 3} right)}} = 1,,,, Leftrightarrow )

( Leftrightarrow ,,,,5{x^2} — 15x = 8x — 12,,,, Leftrightarrow ,,,,5{x^2} — 23x + 12 = 0;)

(D = 529 — 240 = 289;,,,,{x_1} = frac{{23 + 17}}{{10}} = 4;,,,,{x_2} = frac{{23 — 17}}{{10}} = frac{3}{5}.)

Так как (x > 3), то время велосипедиста их В в А равно 4 часа.

Ответ: 4.

Задача 12. Товарный поезд каждую минуту проезжает на 750 метров меньше, чем скорый, и на путь в 180 км тратит времени на 2 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.

Пусть x км/ч – скорость товарного поезда, тогда скорость скорого x км/ч +750 м/мин = (x + frac{{750}}{{1000}} cdot 60 = x + 45) км/ч.

v (км/ч) t (ч) S (км)
Товарный поезд (x) (frac{{180}}{x}) 180
Скорый поезд (x + 45) (frac{{180}}{{x + 45}}) 180

По условию задачи время товарного поезда на 2 часа больше. Следовательно:

(frac{{180}}{x} — frac{{180}}{{x + 45}} = 2,,,,,, Leftrightarrow ,,,,,frac{{180left( {x + 45} right) — 180x}}{{xleft( {x + 45} right)}} = 2,, Leftrightarrow ,,,,,frac{{180 cdot 45}}{{xleft( {x + 45} right)}} = 2,,,, Leftrightarrow )

( Leftrightarrow ,,,,2xleft( {x + 45} right) = 180 cdot 45,left| {,:} right.2,,,, Leftrightarrow ,,,,{x^2} + 45 — 90 cdot 45 = 0)

(D = {45^2} + 4 cdot 90 cdot 45 = {45^2}left( {1 + 4 cdot 2} right) = {45^2} cdot 9;,,,,,,sqrt D  = ,,45 cdot 3 = 135;)

(,,,{x_1} = frac{{ — 45 + 135}}{2} = 45;,,,,{x_2} = frac{{ — 45 — 135}}{2} =  — 90.)

Так как (x > 0), то скорость товарного поезда равна 45 км/ч.

Ответ: 45.

Задача 13. Расстояние между городами A и B равно 150 км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 90 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.

Пусть x км – расстояние от А до С, а y км/ч – скорость автомобиля. Рассмотрим сначала движение автомобиля и мотоцикла от А до С.

({text{A}} to {text{C}}) v (км/ч) t (ч) S (км)
Автомобиль (y) (frac{x}{y}) x
Мотоцикл 90 (frac{x}{{90}}) x

Так как автомобиль выехал на 30 мин раньше, то его время на (frac{1}{2}) часа больше. Тогда первое уравнение будет иметь вид:  (frac{x}{y} — frac{x}{{90}} = frac{1}{2}.)

Теперь рассмотрим случай движения автомобиля из С в В, а мотоциклиста из С в А.

v (км/ч) t (ч) S (км)
Автомобиль y (frac{{150 — x}}{y}) (150 — x)
Мотоцикл 90 (frac{x}{{90}}) x

Так как мотоциклист вернулся в А одновременно с автомобилистом, приехавшим в В, то второе уравнение будет иметь вид:  (frac{{150 — x}}{y} = frac{x}{{90}}.)

Таким образом, получаем систему уравнений:   (left{ {begin{array}{*{20}{c}}  {frac{x}{y} — frac{x}{{90}} = frac{1}{2};} \   {frac{{150 — x}}{y} = frac{x}{{90}}.} end{array}} right.)

Из второго уравнения: (y = frac{{90left( {150 — x} right)}}{x}) подставляя в первое уравнение, получим:

(frac{{{x^2}}}{{90left( {150 — x} right)}} — frac{x}{{90}} = frac{1}{2},,,,,, Leftrightarrow ,,,,,,frac{{{x^2} — xleft( {150 — x} right)}}{{90left( {150 — x} right)}} = frac{1}{2},,,,,, Leftrightarrow ,,,,,,frac{{2{x^2} — 150x}}{{90left( {150 — x} right)}} = frac{1}{2},,,,,, Leftrightarrow )

( Leftrightarrow ,,,,4{x^2} — 300x = 90 cdot 150 — 90x,,left| {,:,2,,,,, Leftrightarrow ,,,,2{x^2} — 105x — 6750 = 0} right.;)

(D = {105^2} + 4 cdot 2 cdot 6750 = {15^2} cdot {7^2} + 4 cdot 2 cdot {15^2} cdot 30 = {15^2}left( {49 + 240} right) = {15^2} cdot 289;,,,)

(sqrt D  = 15 cdot 17 = 255;,,,,,{x_1} = frac{{105 + 255}}{4} = 90;,,,,,{x_2} = frac{{105 — 255}}{4} =  — 37,5.)

Так как (x > 0), то расстояние от А до С равно 90 км.

Ответ: 90.

Задача 14. Два пешехода отправляются одновременно в одном направлении из одного и того же места на прогулку по аллее парка. Скорость первого на 1,5 км/ч больше скорости второго. Через сколько минут расстояние между пешеходами станет равным 300 метрам?

Пусть x км/ч – скорость второго пешехода, тогда x + 1,5 км/ч – скорость первого, а в пути они были t ч.

v (км/ч) t (ч) S (км)
Первый пешеход (x + 1,5) t (left( {x + 1,5} right)t)
Второй пешеход (x) t (xt)

Так как расстояние между пешеходами должно стать равно 300 м = 0,3 км, то первый должен пройти на 0,3 км больше. Следовательно:

(left( {x + 1,5} right)t — x,t = 0,3,,,,,, Leftrightarrow ,,,,,x,t + 1,5,t — x,t = 0,3,, Leftrightarrow ,,,,,1,5t = 0,3,,,, Leftrightarrow ,,,,t = frac{1}{5},.,,)

Следовательно, через (frac{1}{5}) часа или (frac{1}{5} cdot 60 = 12) минут расстояние между пешеходами будет ровно 300 м.

Ответ: 12.

Второй вариант решения:

Так как скорость первого пешехода на 1,5 км/ч больше скорости второго, то через 1 час (60 минут) расстояние между пешеходами будет равно 1,5 км (1500 м). Следовательно, чтобы расстояние между пешеходами стало равно 300 м (это в 5 раз меньше чем 1500 м) понадобиться 12 минут (это в 5 раз меньше чем 60 минут).

Ответ: 12.

Задача 15. Первый велосипедист выехал из поселка по шоссе со скоростью 15 км/ч. Через час после него со скоростью 10 км/ч из того же поселка в том же направлении выехал второй велосипедист, а еще через час после этого — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 2 часа 20 минут после этого догнал первого. Ответ дайте в км/ч.

Пусть x км/ч – скорость третьего велосипедиста, а t ч – время, которое ему понадобилось, чтобы догнать второго велосипедиста. Тогда за время t ч третий проехал расстояние равное (x cdot t) км, а второй выехал на 1 час раньше третьего, поэтому он проехал расстояние (10left( {t + 1} right)) км. Следовательно, первое уравнение будет иметь вид:  (x cdot t = 10left( {t + 1} right)).

Теперь рассмотрим, как третий велосипедист догоняет первого. Третьему велосипедисту понадобилось t ч, чтобы догнать второго, а затем еще 2 часа 20 минут, чтобы догнать первого, то есть третий догонял первого (t + frac{7}{3}) часа и проехал расстояние: (x cdot left( {t + frac{7}{3}} right)). Первый выехал на 2 часа раньше третьего, поэтому он проехал расстояние равное: (15 cdot left( {t + frac{7}{3} + 2} right)).

Следовательно, второе уравнение будет иметь вид:  (xleft( {t + frac{7}{3}} right) = 15left( {t + frac{{13}}{3}} right)).

Таким образом, получаем систему уравнений:  (left{ {begin{array}{*{20}{c}}  {x cdot t = 10left( {t + 1} right);,,,,,,,,,,,,,,,,,,,,} \   {x cdot left( {t + frac{7}{3}} right) = 15left( {t + frac{{13}}{3}} right).} end{array}} right.)

Из первого уравнения: (x = frac{{10left( {t + 1} right)}}{t}). Подставляя во второе первое, получим:

(frac{{10t + 10}}{t} cdot frac{{3t + 7}}{3} = 15t + 65,,,, Leftrightarrow ,,,,30{t^2} + 70t + 30t + 70 = 45{t^2} + 195t,,,, Leftrightarrow )

( Leftrightarrow ,,,,15{t^2} + 95t — 70 = 0,,left| {,:} right.5,,,, Leftrightarrow ,,,,3{t^2} + 19t — 14 = 0;)

(D = 361 + 168 = 529;,,,,{t_1}, = frac{{ — 19 + 23}}{6} = frac{2}{3};,,,,{t_2} = frac{{ — 19 — 23}}{6} =  — 7)

Так как, (t > 0), то (t = frac{2}{3}) часа. Следовательно, скорость третьего велосипедиста:  (x = frac{{10 cdot left( {frac{2}{3} + 1} right)}}{{frac{2}{3}}} = 25) км/ч.

()Ответ: 25.

Задача 16. Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 74 км/ч, а вторую половину времени — со скоростью 66 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Чтобы найти среднюю скорость на протяжении пути, нужно весь пройденный путь разделить на все время движения. Пусть автомобиль находился в пути 2t часов. Тогда за первую половину времени (то есть за t часов) он проехал расстояние равное 74t км, а за вторую половину 66t км. Тогда средняя скорость автомобиля будет равна:

(V = frac{{74t + 66t}}{{2t}} = frac{{140t}}{{2t}} = 70)  км/ч.

Ответ: 70.

Задача 17. Путешественник переплыл море на яхте со средней скоростью 20 км/ч. Обратно он летел на спортивном самолете со скоростью 480 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.

Чтобы найти среднюю скорость на протяжении пути, нужно весь пройденный путь разделить на все время движения. Пусть путешественник проплыл расстояние на яхте равное S км, тогда его время на яхте составило ({t_1} = frac{S}{{20}}) ч, а на самолете ({t_2} = frac{S}{{480}}) ч. Тогда средняя скорость будет равна:

(v = frac{{S + S}}{{{t_1} + {t_2}}} = frac{{2S}}{{frac{S}{{20}} + frac{S}{{480}}}} = frac{{2S}}{{frac{{24S + S}}{{480}}}} = frac{{2S cdot 480}}{{25,S}} = 38,4) км/ч.

Ответ: 38,4.

Задача 18. Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть — со скоростью 120 км/ч, а последнюю — со скоростью 110 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Чтобы найти среднюю скорость на протяжении пути, нужно весь пройденный путь разделить на все время движения. Пусть 3S км – весь путь автомобиля, тогда его время на первом участке ({t_1} = frac{S}{{60}}), на втором ({t_2} = frac{S}{{120}}), а на третьем ({t_3} = frac{S}{{110}}). Тогда средняя скорость будет равна:

(V = frac{{S + S + S}}{{{t_1} + {t_2} + {t_3}}} = frac{{3S}}{{frac{S}{{60}} + frac{S}{{120}} + frac{S}{{110}}}} = frac{{3S}}{{frac{{2S + S}}{{120}} + frac{S}{{110}}}} = frac{{3S}}{{frac{S}{{40}} + frac{S}{{110}}}} = frac{{3S}}{{frac{{11S + 4S}}{{440}}}} = frac{{3S cdot 440}}{{15S}} = 88) км/ч.

Ответ: 88.

Задача 19. Первые два часа автомобиль ехал со скоростью 50 км/ч, следующий час — со скоростью 100 км/ч, а затем два часа — со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Чтобы найти среднюю скорость на протяжении пути, нужно весь пройденный путь разделить на все время движения. Автомобиль был в пути время равное (2 + 1 + 2 = 5) часов и проехал за это время расстояние равное (2 cdot 50 + 1 cdot 100 + 2 cdot 75 = 350) км. Тогда его средняя скорость: (V = frac{{350}}{5} = 70)  км/ч.

Ответ: 70.

Задача 20. Первые 190 км автомобиль ехал со скоростью 50 км/ч, следующие 180 км — со скоростью 90 км/ч, а затем 170 км — со скоростью 100 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Чтобы найти среднюю скорость на протяжении пути, нужно весь пройденный путь разделить на все время движения. Первые 190 км автомобиль проехал за время ({t_1} = frac{{190}}{{50}} = frac{{19}}{5}) часа, следующие 180 км за ({t_2} = frac{{180}}{{90}} = 2) часа, а последние 170 км за ({t_3} = frac{{170}}{{100}} = frac{{17}}{{10}}) часа. Таким образом, он проехал расстояние равное (190 + 180 + 170 = 540) км за время  ({t_{}} = frac{{19}}{5} + 2 + frac{{17}}{{10}} = frac{{15}}{2}) часа.

Следовательно, его средняя скорость равна:  (V = frac{{540}}{{frac{{15}}{2}}} = 72) км/ч.

Ответ: 72.

Задача 21. Поезд, двигаясь равномерно со скоростью 80 км/ч, проезжает мимо придорожного столба за 36 секунд. Найдите длину поезда в метрах.

Проезжая мимо столба, поезд проезжает расстояние равное своей длине, то есть длина поезда равна расстоянию, которое проехал поезд.

(t = 36) с ( = frac{{36}}{{3600}}) ч ( = frac{1}{{100}}) ч.      (S = V cdot t = 80 cdot frac{1}{{100}} = 0,8) км.

Следовательно, длина поезда равна 0,8 км = 800 м.

Ответ: 800.

Задача 22. Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо лесополосы, длина которой равна 400 метрам, за 1 минуту. Найдите длину поезда в метрах.

Проезжая мимо лесополосы, поезд проезжает расстояние равное сумме длин лесополосы и самого поезда, то есть длина поезда равна расстоянию, которое проехал поезд минус длина лесополосы.

(t = 1) мин ( = frac{1}{{60}}) ч.    (S = V cdot t = 60 cdot frac{1}{{60}} = 1) км.

Следовательно, поезд проехал расстояние равное 1000 м, тогда длина поезда (1000 — 400 = 600) м.

Ответ: 600.

Задача 23. По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 90 км/ч и 30 км/ч. Длина товарного поезда равна 600 метрам. Найдите длину пассажирского поезда, если время, за которое он прошел мимо товарного поезда, равно 1 минуте. Ответ дайте в метрах.

Так как поезда едут в одном направлении, то их скорость сближения равна (V = 90 — 30 = 60) км/ч. Следовательно, за 1 минуту пассажирский поезд сместится относительно товарного на 1 км. При этом он преодолеет расстояние равное сумме длин поездов. Поэтому длина пассажирского поезда равна (1000 — 600 = 400) м.

Ответ: 400.

Задача 24. По двум параллельным железнодорожным путям навстречу друг другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 65 км/ч и 35 км/ч. Длина пассажирского поезда равна 700 метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо пассажирского поезда, равно 36 секундам. Ответ дайте в метрах.

Так как поезда едут навстречу друг другу, то их скорость сближения равна (V = 65 + 35 = 100) км/ч. За 36 секунд скорый поезд сместится относительно пассажирского на расстояние:  (S = 100 cdot frac{{36}}{{3600}} = 1) км.

При этом он преодолел расстояние равное сумме длин поездов. Поэтому длина скорого поезда равна (1000 — 700 = 300)м.

Ответ: 300.

Задача 25. Два человека отправляются из одного и того же места на прогулку до опушки леса, находящейся в 4,4 км от места отправления. Один идёт со скоростью 2,5 км/ч, а другой — со скоростью 3 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?

Пусть x км – расстояние, которое не дошел до опушки первый человек, оно равно расстоянию, которое прошел от опушки до места встречи второй человек. Следовательно, первый прошел расстояние равное (4,4 — x) км, а второй (4,4 + x).

v (км/ч) t (ч) S (км)
Первый человек 2,5 (frac{{4,4 — x}}{{2,5}}) (4,4 — x)
Второй человек 3 (frac{{4,4 + x}}{3}) (4,4 + x)

Путники затратили одно и тоже время:

(frac{{4,4 — x}}{{2,5}} = frac{{4,4 + x}}{3},,,,,, Leftrightarrow ,,,,,4,4 cdot 3 — 3x = 2,5 cdot 4,4 + 2,5x,, Leftrightarrow ,,,,,5,5x = 4,4 cdot 3 — 2,5 cdot 4,4,,,, Leftrightarrow ,,,)( Leftrightarrow ,,,,5,5x = 4,4left( {3 — 2,5} right),,,, Leftrightarrow ,,,,5,5 = 4,4 cdot 0,5,,,, Leftrightarrow ,,,,x = frac{{4,4 cdot 0,5}}{{5,5}} = 0,4).

Следовательно, встреча произойдет от точки отправления на расстоянии (4,4 — 0,4 = 4) км.

Ответ: 4.

Задача 26. Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 8 км. Турист прошёл путь из А в В за 5 часов. Время его движения на спуске составило 1 час. С какой скоростью турист шёл на спуске, если скорость его движения на подъёме меньше скорости движения на спуске на 3 км/ч?

Пусть x км/ч – скорость туриста на спуске, тогда скорость на подъёме (x — 3) км/ч. Время на подъёме: (5 — 1 = 4) часа.

v (км/ч) t (ч) S (км)
подъём (x — 3) 4 (4left( {x — 3} right))
спуск (x) 1 (1 cdot x)

Так как весь путь равен 8 км, то:   (4left( {x — 3} right), + x = 8,,,,, Leftrightarrow ,,,,,5x = 20,,,,, Leftrightarrow ,,,,,x = 4) км/ч.

Ответ: 4.

Задача 27. Иван и Алексей договорились встретиться в N-ске. Иван звонит Алексею и узнаёт, что тот находится в 275 км от N-ска и едет с постоянной скоростью 75 км/ч. Иван в момент разговора находится в 255 км от N-ска и ещё должен по дороге сделать 50-минутную остановку. С какой скоростью должен ехать Иван, чтобы прибыть в N-ск одновременно с Алексеем?

Пусть x км/ч – скорость Ивана.

v (км/ч) t (ч) S (км)
Иван (x) (frac{{255}}{x}) 255
Алексей 75 (frac{{275}}{{75}}) 275

Поскольку Иван должен сделать 50 – минутную остановку, то его время движения будет на (frac{5}{6}) часа меньше.

(frac{{275}}{{75}} — frac{{255}}{x} = frac{5}{6},,,,,,, Leftrightarrow ,,,,,,frac{{255}}{x} = frac{{11}}{3} — frac{5}{6},,,,,, Leftrightarrow ,,,,,,,frac{{255}}{x},, = frac{{17}}{6},,,,,,, Leftrightarrow ,,,,,,,x = frac{{255 cdot 6}}{{17}} = 90,)  км/ч.

Ответ: 90.

Решу ЕГЭ 2023 задание №8 по математике 11 класс профильный уровень с ответами и решением для практики и подготовки к экзамену.

  • Скачать задачи на движение по прямой
  • Скачать задачи на движение по окружности
  • Скачать задачи на движение по воде
  • Скачать задачи на работу
  • Скачать задачи на проценты
  • Скачать задачи на прогрессии

Тренировочные варианты ЕГЭ 2023 по математике профиль

Решу ЕГЭ 8 задание задачи на движения по прямой с ответами:

Решу ЕГЭ 8 задание задачи на движения по окружности с ответами:

Решу ЕГЭ 8 задание задачи на движения по воде с ответами:

Решу ЕГЭ 8 задание задачи на работу с ответами:

Решу ЕГЭ 8 задание задачи на проценты с ответами:

Решу ЕГЭ 8 задание задачи на прогрессии с ответами:

1)Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути — со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч

Правильный ответ: 32

2)Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 13 км/ч, а вторую половину пути — со скоростью 78 км/ч, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 48 км/ч. Ответ дайте в км/ч.

Правильный ответ: 52

3)Из пункта А в пункт В, расстояние между которыми 75 км, одновременно выехали автомобилист и велосипедист. Известно, что за час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 6 часов позже автомобилиста. Ответ дайте в км/ч.

Правильный ответ: 10

4)Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 70 км. На следующий день он отправился обратно в А со скоростью на 3 км/ч больше прежней. По дороге он сделал остановку на 3 часа. В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. Ответ дайте в км/ч.

Правильный ответ: 10

5)Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 98 км. На следующий день он отправился обратно со скоростью на 7 км/ч больше прежней. По дороге он сделал остановку на 7 часов. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.

Правильный ответ: 7

6)Два велосипедиста одновременно отправились в 240- километровый пробег. Первый ехал со скоростью, на 1 км/ч большей, чем скорость второго, и прибыл к финишу на 1 час раньше второго. Найти скорость велосипедиста, пришедшего к финишу первым. Ответ дайте в км/ч.

Правильный ответ: 16

7)Из двух городов, расстояние между которыми равно 560 км, навстречу друг другу одновременно выехали два автомобиля. Через сколько часов автомобили встретятся, если их скорости равны 65 км/ч и 75 км/ч?

Правильный ответ: 4

8)Из городов A и B, расстояние между которыми равно 330 км, навстречу друг другу одновременно выехали два автомобиля и встретились через 3 часа на расстоянии 180 км от города B. Найдите скорость автомобиля, выехавшего из города A. Ответ дайте в км/ч.

Правильный ответ: 50

9)Расстояние между городами A и B равно 435 км. Из города A в город B со скоростью 60 км/ч выехал первый автомобиль, а через час после этого навстречу ему из города B выехал со скоростью 65 км/ч второй автомобиль. На каком расстоянии от города A автомобили встретятся? Ответ дайте в километрах.

Правильный ответ: 240

10)Расстояние между городами A и B равно 470 км. Из города A в город B выехал первый автомобиль, а через 3 часа после этого навстречу ему из города B выехал со скоростью 60 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 350 км от города A. Ответ дайте в км/ч.

Правильный ответ: 70

11)Из городов A и B навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 3 часа раньше, чем велосипедист приехал в A, а встретились они через 48 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?

Правильный ответ: 4

12)Товарный поезд каждую минуту проезжает на 750 метров меньше, чем скорый, и на путь в 180 км тратит времени на 2 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.

Правильный ответ: 45

13)Расстояние между городами A и B равно 150 км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 90 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.

Правильный ответ: 90

14)Два пешехода отправляются одновременно в одном направлении из одного и того же места на прогулку по аллее парка. Скорость первого на 1,5 км/ч больше скорости второго. Через сколько минут расстояние между пешеходами станет равным 300 метрам?

Правильный ответ: 12

15)Первый велосипедист выехал из поселка по шоссе со скоростью 15 км/ч. Через час после него со скоростью 10 км/ч из того же поселка в том же направлении выехал второй велосипедист, а еще через час после этого — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 2 часа 20 минут после этого догнал первого. Ответ дайте в км/ч.

Правильный ответ: 25

16)Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 74 км/ч, а вторую половину времени — со скоростью 66 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Правильный ответ: 70

17)Путешественник переплыл море на яхте со средней скоростью 20 км/ч. Обратно он летел на спортивном самолете со скоростью 480 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.

Правильный ответ: 38,4

18)Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть — со скоростью 120 км/ч, а последнюю — со скоростью 110 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Правильный ответ: 88

19)Первые два часа автомобиль ехал со скоростью 50 км/ч, следующий час — со скоростью 100 км/ч, а затем два часа — со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Правильный ответ: 70

20)Первые 190 км автомобиль ехал со скоростью 50 км/ч, следующие 180 км — со скоростью 90 км/ч, а затем 170 км — со скоростью 100 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Правильный ответ: 72

21)Поезд, двигаясь равномерно со скоростью 80 км/ч, проезжает мимо придорожного столба за 36 секунд. Найдите длину поезда в метрах.

Правильный ответ: 800

22)Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо лесополосы, длина которой равна 400 метрам, за 1 минуту. Найдите длину поезда в метрах.

Правильный ответ: 600

23)По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 90 км/ч и 30 км/ч. Длина товарного поезда равна 600 метрам. Найдите длину пассажирского поезда, если время, за которое он прошел мимо товарного поезда, равно 1 минуте. Ответ дайте в метрах

Правильный ответ: 400

24)По двум параллельным железнодорожным путям навстречу друг другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 65 км/ч и 35 км/ч. Длина пассажирского поезда равна 700 метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо пассажирского поезда, равно 36 секундам. Ответ дайте в метрах.

Правильный ответ: 300

25)Два человека отправляются из одного и того же места на прогулку до опушки леса, находящейся в 4,4 км от места отправления. Один идёт со скоростью 2,5 км/ч, а другой — со скоростью 3 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?

Правильный ответ: 4

26)Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 8 км. Турист прошёл путь из А в В за 5 часов. Время его движения на спуске составило 1 час. С какой скоростью турист шёл на спуске, если скорость его движения на подъёме меньше скорости движения на спуске на 3 км/ч?

Правильный ответ: 4

27)Иван и Алексей договорились встретиться в N-ске. Иван звонит Алексею и узнаёт, что тот находится в 275 км от N-ска и едет с постоянной скоростью 75 км/ч. Иван в момент разговора находится в 255 км от N-ска и ещё должен по дороге сделать 50- минутную остановку. С какой скоростью должен ехать Иван, чтобы прибыть в N-ск одновременно с Алексеем?

Правильный ответ: 90

28)Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой равна 14 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 21 км/ч больше скорости другого?

Правильный ответ: 20

29)Из одной точки круговой трассы, длина которой равна 14 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 80 км/ч, и через 40 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.

Правильный ответ: 59

30)Из пункта A круговой трассы выехал велосипедист, а через 30 минут следом за ним отправился мотоциклист. Через 10 минут после отправления он догнал велосипедиста в первый раз, а еще через 30 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км/ч.

Правильный ответ: 80

31)Часы со стрелками показывают 8 часов 00 минут. Через сколько минут минутная стрелка в четвертый раз поравняется с часовой?

Правильный ответ: 240

32)Два гонщика участвуют в гонках. Им предстоит проехать 60 кругов по кольцевой трассе протяжённостью 3 км. Оба гонщика стартовали одновременно, а на финиш первый пришёл раньше второго на 10 минут. Чему равнялась средняя скорость второго гонщика, если известно, что первый гонщик в первый раз обогнал второго на круг через 15 минут? Ответ дайте в км/ч.

Правильный ответ: 108

33)Моторная лодка прошла против течения реки 112 км и вернулась в пункт отправления, затратив на обратный путь на 6 часов меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 11 км/ч. Ответ дайте в км/ч.

Правильный ответ: 3

34)Моторная лодка прошла против течения реки 255 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч

Правильный ответ: 16

35)Моторная лодка в 10:00 вышла из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 2 часа 30 минут, лодка отправилась назад и вернулась в пункт А в 18:00. Определите (в км/ч) собственную скорость лодки, если известно, что скорость течения реки 1 км/ч.

Правильный ответ: 11

36)Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.

Правильный ответ: 5

37)От пристани А к пристани В отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним со скоростью на 1 км/ч большей отправился второй. Расстояние между пристанями равно 420 км. Найдите скорость первого теплохода, если в пункт В оба теплохода прибыли одновременно. Ответ дайте в км/ч.

Правильный ответ: 20

38)Баржа в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 20 минут, баржа отправилась назад и вернулась в пункт А в 16:00. Определите (в км/час) скорость течения реки, если известно, что собственная скорость баржи равна 7 км/ч.

Правильный ответ: 2

39)Пристани A и B расположены на озере, расстояние между ними 390 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 3 км/ч больше прежней, сделав по пути остановку на 9 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Правильный ответ: 10

40)Теплоход, скорость которого в неподвижной воде равна 25 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 5 часов, а в исходный пункт теплоход возвращается через 30 часов после отплытия из него. Сколько километров прошел теплоход за весь рейс?

Правильный ответ: 616

41)Расстояние между пристанями A и B равно 120 км. Из A в B по течению реки отправился плот, а через час вслед за ним отправилась яхта, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошел 24 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч. Ответ дайте в км/ч.

Правильный ответ: 22

42)По морю параллельными курсами в одном направлении следуют два сухогруза: первый длиной 120 метров, второй — длиной 80 метров. Сначала второй сухогруз отстает от первого, и в некоторый момент времени расстояние от кормы первого сухогруза до носа второго составляет 400 метров. Через 12 минут после этого уже первый сухогруз отстает от второго так, что расстояние от кормы второго сухогруза до носа первого равно 600 метрам. На сколько километров в час скорость первого сухогруза меньше скорости второго?

Правильный ответ: 6

43)Весной катер идёт против течения реки в 2 1 3 раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в 1 1 2 раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).

Правильный ответ: 5

44)Заказ на 110 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше?

Правильный ответ: 10

45)На изготовление 475 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 550 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает первый рабочий?

Правильный ответ: 25

46)Двое рабочих, работая вместе, могут выполнить работу за 12 дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за два дня выполняет такую же часть работы, какую второй — за три дня?

Правильный ответ: 20

47)Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 110 литров она заполняет на 1 минуту дольше, чем вторая труба?

Правильный ответ: 10

48)Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 110 литров она заполняет на 2 минуты дольше, чем вторая труба заполняет резервуар объемом 99 литров?

Правильный ответ: 10

49)Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает вторая труба, если резервуар объемом 375 литров она заполняет на 10 минут быстрее, чем первая труба заполняет резервуар объемом 500 литров?

Правильный ответ: 25

50)Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 15 часов. Через 3 часа после того, как один из них приступил к выполнению заказа, к нему присоединился второй рабочий, и работу над заказом они довели до конца уже вместе. Сколько часов потребовалось на выполнение всего заказа?

Правильный ответ: 9

51)Один мастер может выполнить заказ за 12 часов, а другой — за 6 часов. За сколько часов выполнят заказ оба мастера, работая вместе?

Правильный ответ: 4

52)Первый насос наполняет бак за 20 минут, второй — за 30 минут, а третий — за 1 час. За сколько минут наполнят бак три насоса, работая одновременно?

Правильный ответ: 10

53)Игорь и Паша красят забор за 9 часов. Паша и Володя красят этот же забор за 12 часов, а Володя и Игорь — за 18 часов. За сколько часов мальчики покрасят забор, работая втроем?

Правильный ответ: 8

54)Даша и Маша пропалывают грядку за 12 минут, а одна Маша — за 20 минут. За сколько минут пропалывает грядку одна Даша?

Правильный ответ: 30

55)Две трубы наполняют бассейн за 3 часа 36 минут, а одна первая труба наполняет бассейн за 6 часов. За сколько часов наполняет бассейн одна вторая труба?

Правильный ответ: 9

56)Первая труба наполняет резервуар на 6 минут дольше, чем вторая. Обе трубы наполняют этот же резервуар за 4 минуты. За сколько минут наполняет этот резервуар одна вторая труба?

Правильный ответ: 6

57)В помощь садовому насосу, перекачивающему 5 литров воды за 2 минуты, подключили второй насос, перекачивающий тот же объем воды за 3 минуты. Сколько минут эти два насоса должны работать совместно, чтобы перекачать 25 литров воды?

Правильный ответ: 6

58)Петя и Ваня выполняют одинаковый тест. Петя отвечает за час на 8 вопросов текста, а Ваня — на 9. Они одновременно начали отвечать на вопросы теста, и Петя закончил свой тест позже Вани на 20 минут. Сколько вопросов содержит тест?

Правильный ответ: 24

59)Плиточник должен уложить 175 м 2 плитки. Если он будет укладывать на 10 м 2 в день больше, чем запланировал, то закончит работу на 2 дня раньше. Сколько квадратных метров плитки в день планирует укладывать плиточник?

Правильный ответ: 25

60)Первый и второй насосы наполняют бассейн за 9 минут, второй и третий — за 14 минут, а первый и третий — за 18 минут. За сколько минут эти три насоса заполнят бассейн, работая вместе?

Правильный ответ: 8,4

61)Две бригады, состоящие из рабочих одинаковой квалификации, одновременно начали строить два одинаковых дома. В первой бригаде было 16 рабочих, а во второй — 25 рабочих. Через 7 дней после начала работы в первую бригаду перешли 8 рабочих из второй бригады, в результате чего оба дома были построены одновременно. Сколько дней потребовалось бригадам, чтобы закончить работу в новом составе?

Правильный ответ: 9

62)В 2008 году в городском квартале проживало 40000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 8%, а в 2010 году — на 9% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

Правильный ответ: 47088

63)В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на 4% дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?

Правильный ответ: 20

64)Четыре рубашки дешевле куртки на 8%. На сколько процентов пять рубашек дороже куртки?

Правильный ответ: 15

65)Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Правильный ответ: 27

66)Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 20000 рублей, через два года был продан за 15842 рублей.

Правильный ответ: 11

67)Митя, Антон, Гоша и Борис учредили компанию с уставным капиталом 200000 рублей. Митя внес 14% уставного капитала, Антон — 42000 рублей, Гоша — 0,12 уставного капитала, а оставшуюся часть капитала внес Борис. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1000000 рублей причитается Борису? Ответ дайте в рублях.

Правильный ответ: 530000

68)В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?

Правильный ответ: 5

69)Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Правильный ответ: 17

70)Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Правильный ответ: 21

71)Виноград содержит 90% влаги, а изюм — 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?

Правильный ответ: 190

72)Имеется два сплава. Первый сплав содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго.

Правильный ответ: 100

73)Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Правильный ответ: 9

74)Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50- процентного раствора той же кислоты, то получили бы 41- процентный раствор кислоты. Сколько килограммов 30- процентного раствора использовали для получения смеси?

Правильный ответ: 60

75)Имеются два сосуда. Первый содержит 30 кг, а второй — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Правильный ответ: 18

76)Клиент А. сделал вклад в банке в размере 7700 рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал клиент Б. Еще ровно через год клиенты А. и Б. закрыли вклады и забрали все накопившиеся деньги. При этом клиент А. получил на 847 рублей больше клиента Б. Какой процент годовых начислял банк по этим вкладам?

Правильный ответ: 10

77)Бригада маляров красит забор длиной 240 метров, ежедневно увеличивая норму покраски на одно и то же число метров. Известно, что за первый и последний день в сумме бригада покрасила 60 метров забора. Определите, сколько дней бригада маляров красила весь забор.

Правильный ответ: 8

78)Рабочие прокладывают тоннель длиной 500 метров, ежедневно увеличивая норму прокладки на одно и то же число метров. Известно, что за первый день рабочие проложили 3 метра туннеля. Определите, сколько метров туннеля проложили рабочие в последний день, если вся работа была выполнена за 10 дней.

Правильный ответ: 97

79)Васе надо решить 490 задач. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за первый день Вася решил 5 задач. Определите, сколько задач решил Вася в последний день, если со всеми задачами он справился за 14 дней.

Правильный ответ: 65

80)Турист идет из одного города в другой, каждый день проходя больше, чем в предыдущий день, на одно и то же расстояние. Известно, что за первый день турист прошел 10 километров. Определите, сколько километров прошел турист за третий день, если весь путь он прошел за 6 дней, а расстояние между городами составляет 120 километров.

Правильный ответ: 18

81)Грузовик перевозит партию щебня массой 210 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что за первый день было перевезено 2 тонны щебня. Определите, сколько тонн щебня было перевезено на девятый день, если вся работа была выполнена за 14 дней.

Правильный ответ: 18

82)Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние больше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в общей сложности 10 метров. Определите, сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 150 метрам.

Правильный ответ: 30

83)Вере надо подписать 640 открыток. Ежедневно она подписывает на одно и то же количество открыток больше по сравнению с предыдущим днем. Известно, что за первый день Вера подписала 10 открыток. Определите, сколько открыток было подписано за четвертый день, если вся работа была выполнена за 16 дней.

Правильный ответ: 22

84)Бизнесмен Бубликов получил в 2000 году прибыль в размере 5000 рублей. Каждый следующий год его прибыль увеличивалась на 300% по сравнению с предыдущим годом. Сколько рублей заработал Бубликов за 2003 год?

Правильный ответ: 320000

85)Компания «Альфа» начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 5000 долларов. Каждый год, начиная с 2002 года, она получала прибыль, которая составляла 200% от капитала предыдущего года. А компания «Бета» начала инвестировать средства в другую отрасль в 2003 году, имея капитал в размере 10000 долларов, и, начиная с 2004 года, ежегодно получала прибыль, составляющую 400% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2006 года, если прибыль из оборота не изымалась.

Правильный ответ: 35000

Статград варианты МА2110401-МА2110412 математика 11 класс работа ЕГЭ 2022 с ответами

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ

24 апреля 2020

В закладки

Обсудить

Жалоба

Задачи на движение по прямой

Обучающие карточки для подготовки к ЕГЭ по математике. Задание №11.

В работе приводятся алгоритмы решения задач (схема-рисунок и словесное описание) и задачи для самостоятельного решения.

dv-pr.pdf

Автор: Полиёва Елена.

Текстовые задачи на движение – легко! Алгоритм решения и успех на ЕГЭ

Смотри видео «Текстовые задачи на ЕГЭ по математике».

Почему текстовые задачи относятся к простым?

Во-первых, все такие задачи решаются по единому алгоритму, о котором мы вам расскажем. Во-вторых, многие из них однотипны — это задачи на движение или на работу. Главное — знать к ним подход.

Внимание! Чтобы научиться решать текстовые задачи, вам понадобится всего три-четыре часа самостоятельной работы, то есть два-три занятия. Всё, что нужно, — это здравый смысл плюс умение решать квадратное уравнение. И даже формулу для дискриминанта мы вам напомним, если вдруг забыли.

Прежде чем перейти к самим задачам — проверьте себя.

Запишите в виде математического выражения:

  1. x на 5 больше y;
  2. x в пять раз больше y;
  3. z на 8 меньше, чем x;
  4. z меньше x в 3,5 раза;
  5. t_1 на 1 меньше, чем t_2;
  6. частное от деления a на b в полтора раза больше b;
  7. квадрат суммы x и y равен 7;
  8. x составляет 60 процентов от y;
  9. m больше n на 15 процентов.

Пока не напишете — в ответы не подглядывайте! :-)

Казалось бы, на первые три вопроса ответит и второклассник. Но почему-то у половины выпускников они вызывают затруднения, не говоря уже о вопросах 7 и 8. Из года в год мы, репетиторы, наблюдаем парадоксальную картину: ученики одиннадцатого класса долго думают, как записать, что «x на 5 больше y». А в школе в этот момент они «проходят» первообразные и интегралы :-)

Итак, правильные ответы:

  1. x=y+5.
    x больше, чем y. Разница между ними равна пяти. Значит, чтобы получить большую величину, надо к меньшей прибавить разницу.
  2. x=5y.
    x больше, чем y, в пять раз. Значит, если y умножить на 5, получим x.
  3. z=x-5.
    z меньше, чем x. Разница между ними равна 8. Чтобы получить меньшую величину, надо из большей вычесть разницу.
  4. z=x:3,5.
  5. t_1=t_2-1.
    t_1 меньше, чем t_2. Значит, если из большей величины вычтем разницу, получим меньшую.
  6. a:b=1,5b.
  7. left( x+y right)^2=7.
    На всякий случай повторим терминологию:
    Сумма — результат сложения двух или нескольких слагаемых.
    Разность — результат вычитания.
    Произведение — результат умножения двух или нескольких множителей.
    Частное — результат деления чисел.
  8. x=0,6y.
    Мы помним, что 60%y = left( 60/100 right)cdot y=0,6y.
  9. m=1,15n.
    Если n принять за 100%, то m на 15 процентов больше, то есть m=115%n.

Начнем мы с задач на движение. Они часто встречаются в вариантах ЕГЭ. Здесь всего два правила:

  1. Все эти задачи решаются по одной-единственной формуле: S=v cdot t, то есть расстояние = скорость cdot время. Из этой формулы можно выразить скорость v=S/t или время t=s/v.
  2. В качестве переменной x удобнее всего выбирать скорость. Тогда задача точно решится!

Для начала очень внимательно читаем условие. В нем все уже есть. Помним, что текстовые задачи на самом деле очень просты.


1. Из пункта A в пункт B, расстояние между которыми 50 км, одновременно выехали автомобилист и велосипедист. Известно, что в час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 4 часа позже автомобилиста. Ответ дайте в км/ч.

Что здесь лучше всего обозначить за x? Скорость велосипедиста. Тем более, что ее и надо найти в этой задаче. Автомобилист проезжает на 40 километров больше, значит, его скорость равна x+40.

Нарисуем таблицу. В нее сразу можно внести расстояние — и велосипедист, и автомобилист проехали по 50 км. Можно внести скорость — она равна x и x+40 для велосипедиста и автомобилиста соответственно. Осталось заполнить графу «время».

Его мы найдем по формуле: t=genfrac{}{}{}{0}{displaystyle S}{displaystyle v}. Для велосипедиста получим t_1=genfrac{}{}{}{0}{displaystyle 50}{displaystyle x}, для автомобилиста t_2=genfrac{}{}{}{0}{displaystyle 50}{displaystyle x + 40}.
Эти данные тоже запишем в таблицу.

Вот что получится:

v t S
велосипедист x t_1=genfrac{}{}{}{0}{displaystyle 50}{displaystyle x} 50
автомобилист x+40 t_2=genfrac{}{}{}{0}{displaystyle 50}{displaystyle x + 40} 50

Остается записать, что велосипедист прибыл в конечный пункт на 4 часа позже автомобилиста. Позже — значит, времени он затратил больше. Это значит, что t_1 на четыре больше, чем t_2, то есть t_2 + 4 = t_1.

genfrac{}{}{}{0}{displaystyle 50}{displaystyle x + 40}+4=genfrac{}{}{}{0}{displaystyle 50}{displaystyle x}.

Решаем уравнение.

genfrac{}{}{}{0}{displaystyle 50}{displaystyle x} - genfrac{}{}{}{0}{displaystyle 50}{displaystyle x + 40} = 4.

Приведем дроби в левой части к одному знаменателю.

Первую дробь домножим на x+4, вторую — на x.

Если вы не знаете, как приводить дроби к общему знаменателю (или — как раскрывать скобки, как решать уравнение…), подойдите с этим конкретным вопросом к вашему учителю математики и попросите объяснить. Бесполезно говорить учительнице: «Я не понимаю математику» — это слишком абстрактно и не располагает к ответу. Учительница может ответить, например, что она вам сочувствует. Или, наоборот, даст какую-либо характеристику вашей личности. И то и другое неконструктивно.

А вот если вы зададите конкретный вопрос: «Как приводить дроби к одному знаменателю?» или «Как раскрывать скобки?» — вы получите нужный вам конкретный ответ. Вам ведь необходимо в этом разобраться! Если педагог занят, договоритесь о времени, когда вы можете с ним (или с ней) встретиться, чтобы получить консультацию. Используйте ресурсы, которые у вас под рукой!

Получим:

genfrac{}{}{}{0}{displaystyle 50left( x+40 right)-50x}{displaystyle xleft( x + 40 right)}=4;

genfrac{}{}{}{0}{displaystyle 50x+2000 -50x}{displaystyle xleft( x + 40 right)}=4;

genfrac{}{}{}{0}{displaystyle 2000}{displaystyle xleft( x + 40 right)}=4.

Разделим обе части нашего уравнения на 4. В результате уравнение станет проще. Но почему-то многие учащиеся забывают это делать, и в результате получают сложные уравнения и шестизначные числа в качестве дискриминанта.

genfrac{}{}{}{0}{displaystyle 500}{displaystyle xleft( x + 40 right)}=1.

Умножим обе части уравнения на xleft( x + 40 right). Получим:

xleft( x + 40 right)=500.

Раскроем скобки и перенесем всё в левую часть уравнения:

x^2+40x=500;

x^2+40x-500=0.

Мы получили квадратное уравнение. Напомним, что квадратным называется уравнение вида ax^2+bx+c=0. Решается оно стандартно — сначала находим дискриминант по формуле D=b^2-4ac, затем корни по формуле x_{1,2} = genfrac{}{}{}{0}{displaystyle -b pm sqrt{D}}{displaystyle 2a}.

В нашем уравнении a=1, b=40, c=-500.

Найдем дискриминант D=1600+2000=3600 и корни:

x_1=10, x_2=-50.

Ясно, что x_2 не подходит по смыслу задачи — скорость велосипедиста не должна быть отрицательной.

Ответ: 10.

Следующая задача — тоже про велосипедиста.


2. Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 70 км. На следующий день он отправился обратно со скоростью на 3 км/ч больше прежней. По дороге он сделал остановку на 3 часа. В результате он затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B. Ответ дайте в км/ч.

Пусть скорость велосипедиста на пути из A в B равна x. Тогда его скорость на обратном пути равна x+3. Расстояние в обеих строчках таблицы пишем одинаковое — 70 километров. Осталось записать время. Поскольку t=genfrac{}{}{}{0}{displaystyle S}{displaystyle v}, на путь из A в B велосипедист затратит время t_1=genfrac{}{}{}{0}{displaystyle 70}{displaystyle x}, а на обратный путь время t_2=genfrac{}{}{}{0}{displaystyle 70}{displaystyle x + 3}.

v t S
туда x t_1=genfrac{}{}{}{0}{displaystyle 70}{displaystyle x} 70
обратно x+3 t_2=genfrac{}{}{}{0}{displaystyle 70}{displaystyle x + 3} 70

На обратном пути велосипедист сделал остановку на 3 часа и в результате затратил столько же времени, сколько на пути из A в B. Это значит, что на обратном пути он крутил педали на 3 часа меньше.

Значит, t_2 на три меньше, чем t_1. Получается уравнение:

genfrac{}{}{}{0}{displaystyle 70}{displaystyle x + 3}+3=genfrac{}{}{}{0}{displaystyle 70}{displaystyle x}.

Как и в предыдущей задаче, сгруппируем слагаемые:

genfrac{}{}{}{0}{displaystyle 70}{displaystyle x} - genfrac{}{}{}{0}{displaystyle 70}{displaystyle x + 3} = 3.

Точно так же приводим дроби к одному знаменателю:

genfrac{}{}{}{0}{displaystyle 70left( x+3 right) - 70x}{displaystyle xleft( x+3 right)}=3;

genfrac{}{}{}{0}{displaystyle 210}{displaystyle xleft( x+3 right)}=3.

Разделим обе части уравнения на 3.

genfrac{}{}{}{0}{displaystyle70}{displaystyle xleft( x+3 right)}=1.

Напомним — если вам непонятны какие-либо действия при решении уравнений, обращайтесь к учительнице! Показывайте конкретную строчку в решении задачи и говорите: «Пожалуйста, объясните, как это делать». Для нее такое объяснение — дело пятнадцати минут, а вы наконец научитесь решать уравнения, что очень важно для сдачи ЕГЭ по математике.

Умножим обе части уравнения на xleft( x+3 right), раскроем скобки и соберем все в левой части.

x^2+3x-70=0.

Находим дискриминант. Он равен 9+4cdot 70=289.

Найдем корни уравнения:

x_1=7. Это вполне правдоподобная скорость велосипедиста. А ответ x_2 = -10 не подходит, так как скорость велосипедиста должна быть положительна.

Ответ: 7.

Следующий тип задач — когда что-нибудь плавает по речке, в которой есть течение. Например, теплоход, катер или моторная лодка. Обычно в условии говорится о собственной скорости плавучей посудины и скорости течения. Собственной скоростью называется скорость в неподвижной воде.

При движении по течению эти скорости складываются. Течение помогает, по течению плыть — быстрее.

Скорость при движении по течению равна сумме собственной скорости судна и скорости течения.

А если двигаться против течения? Течение будет мешать, относить назад. Теперь скорость течения будет вычитаться из собственной скорости судна.


3. Моторная лодка прошла против течения реки 255 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.

Пусть скорость лодки в неподвижной воде равна x.

Тогда скорость движения моторки по течению равна x+1, а скорость, с которой она движется против течения x-1.

Расстояние и в ту, и в другую сторону одинаково и равно 255 км.

Занесем скорость и расстояние в таблицу.

Заполняем графу «время». Мы уже знаем, как это делать. При движении по течению t_1=genfrac{}{}{}{0}{displaystyle 255}{displaystyle x+1}, при движении против течения t_2=genfrac{}{}{}{0}{displaystyle 255}{displaystyle x-1}, причем t_2 на два часа больше, чем t_1.

v t S
по течению x+1 t_1=genfrac{}{}{}{0}{displaystyle 255}{displaystyle x+1} 255
против течения x-1 t_2=genfrac{}{}{}{0}{displaystyle 255}{displaystyle x-1} 255

Условие «t_2 на два часа больше, чем «t_1» можно записать в виде:

t_1+2=t_2.

Составляем уравнение:

genfrac{}{}{}{0}{displaystyle 255}{displaystyle x+1}+2=genfrac{}{}{}{0}{displaystyle 255}{displaystyle x-1}

и решаем его:

genfrac{}{}{}{0}{displaystyle 255}{displaystyle x-1}-genfrac{}{}{}{0}{displaystyle 255}{displaystyle x+1}=2.

Приводим дроби в левой части к одному знаменателю:

genfrac{}{}{}{0}{displaystyle 255left( x+1 right)-255left( x-1 right)}{displaystyle left( x+1 right)left( x-1 right)}=2.

Раскрываем скобки:

genfrac{}{}{}{0}{displaystyle 510}{displaystyle x^2-1}=2.

Делим обе части на 2, чтобы упростить уравнение:

genfrac{}{}{}{0}{displaystyle 255}{displaystyle x^2-1}=1.

Умножаем обе части уравнения на x^2-1:

x^2-1=255;

x^2=256.

Вообще-то это уравнение имеет два корня: x_1=16 и x_2=-16 (оба этих числа при возведении в квадрат дают 256). Но конечно же, отрицательный ответ не подходит — скорость лодки должна быть положительной.

Ответ: 16.


4. Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.

Снова обозначим за x скорость течения. Тогда скорость движения теплохода по течению равна 15+x, скорость его движения против течения равна 15-x. Расстояния — и туда, и обратно — равны 200 км.

Теперь графа «время».

Поскольку t=genfrac{}{}{}{0}{displaystyle S}{displaystyle v}, время t_1 движения теплохода по течению равно genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15+x}, которое теплоход затратил на движение против течения, равно genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15-x}.

v t S
по течению x+15 genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15+x} 200
против течения 15-x genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15-x} 200

В пункт отправления теплоход вернулся через 40 часов после отплытия из него. Стоянка длилась 10 часов, следовательно, 30 часов теплоход плыл — сначала по течению, затем против.

Значит, t_1+t_2=30;

genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15+x}+ genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15-x}=30.

Прежде всего разделим обе части уравнения на 10. Оно станет проще!

genfrac{}{}{}{0}{displaystyle 20}{displaystyle 15+x}+ genfrac{}{}{}{0}{displaystyle 20}{displaystyle 15-x}=3.

Мы не будем подробно останавливаться на технике решения уравнения. Всё уже понятно — приводим дроби в левой части к одному знаменателю, умножаем обе части уравнения на 255-x^2, получаем квадратное уравнение x^2=25. Поскольку скорость течения положительна, получаем: x=5.

Ответ: 5.

Наверное, вы уже заметили, насколько похожи все эти задачи. Текстовые задачи хороши еще и тем, что ответ легко проверить с точки зрения здравого смысла. Ясно, что если вы получили скорость течения, равную 300 километров в час — задача решена неверно.


5. Баржа в 10:00 вышла из пункта A в пункт B, расположенный в 15 км от A. Пробыв в пункте B 1 час 20 минут, баржа отправилась назад и вернулась в пункт A в 16:00. Определите (в км/час) скорость течения реки, если известно, что собственная скорость баржи равна 7 км/ч.

Пусть скорость течения равна x. Тогда по течению баржа плывет со скоростью 7+x, а против течения со скоростью 7-x.

Сколько времени баржа плыла? Ясно, что надо из 16 вычесть 10, а затем вычесть время стоянки. Обратите внимание, что 1 час 20 минут придется перевести в часы: 1 час 20 минут =1genfrac{}{}{}{0}{displaystyle 1}{displaystyle 3} часа. Получаем, что суммарное время движения баржи (по течению и против) равно 4genfrac{}{}{}{0}{displaystyle 2}{displaystyle 3} часа.

v t S
по течению x+7 t_1 15
против течения 7-x t_2 15

t_1+t_2=4genfrac{}{}{}{0}{displaystyle 2}{displaystyle 3}.

Возникает вопрос — какой из пунктов, A или B, расположен выше по течению? А этого мы никогда не узнаем! :-)
Да и какая разница — ведь в уравнение входит сумма t_1+t_2, равная genfrac{}{}{}{0}{displaystyle 15}{displaystyle 7+x}+genfrac{}{}{}{0}{displaystyle 15}{displaystyle 7-x}.

Итак, genfrac{}{}{}{0}{displaystyle 15}{displaystyle 7+x}+genfrac{}{}{}{0}{displaystyle 15}{displaystyle 7-x}=4genfrac{}{}{}{0}{displaystyle 2}{displaystyle 3}.

Решим это уравнение. Число 4genfrac{}{}{}{0}{displaystyle 2}{displaystyle 3} в правой части представим в виде неправильной дроби: 4genfrac{}{}{}{0}{displaystyle 2}{displaystyle 3}=genfrac{}{}{}{0}{displaystyle 14}{displaystyle 3}.

Приведем дроби в левой части к общему знаменателю, раскроем скобки и упростим уравнение. Получим:

30 cdot 7=genfrac{}{}{}{0}{displaystyle 14}{displaystyle 3} cdot left( 49-x^2 right).

Работать с дробными коэффициентами неудобно! Если мы разделим обе части уравнения на 14 и умножим на 3, оно станет значительно проще:

45=49-x^2;

x^2=4.

Поскольку скорость течения положительна, x=2.

Ответ: 2.

Еще один тип текстовых задач в вариантах ЕГЭ по математике — это задачи на работу.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Текстовые задачи на движение – легко! Алгоритм решения и успех на ЕГЭ» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Задачи ЕГЭ профиль

Из городов A и B, расстояние между которыми 280 км, одновременно навстречу друг другу выехали два мотоциклиста и встретились через 4 часа на расстоянии 80 км от города B. Найдите скорость мотоциклиста, выехавшего из города A. Ответ дайте в км/ч.

Из городов A и B, расстояние между которыми равно 300 км, навстречу друг другу одновременно выехали два автомобиля и встретились через 2 часа на расстоянии 160 км от города B. Найдите скорость автомобиля, выехавшего из города A. Ответ дайте в км/ч.

Из городов А и В, расстояние между которыми равно 300 км, навстречу друг другу одновременно выехали два автомобиля и встретились через 2 часа на расстоянии 160 км от города В. Найдите скорость автомобиля, выехавшего из города А. Ответ дайте в км/ч.

Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 60 км/ч, а вторую половину времени — со скоростью 46 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

Два велосипедиста одновременно выехали из пункта А в пункт В, расстояние между которыми составляет 60 км. Скорость первого на 10 км/ч больше, чем скорость второго, и он прибыл к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым (в км/ч).

Велосипедист выехал с постоянной скоростью из города А в город Б, расстояние между которыми равно 180 км. На следующий день он отправился обратно со скоростью на 8 км/ч больше прежней. По дороге он сделал остановку на 8 часов. В результате он затратил на обратный путь столько же времени, сколько на путь из А в Б. Найдите скорость велосипедиста на пути из А в Б. Ответ дайте в км/ч.

Два велосипедиста одновременно отправились в 224-километровый пробег. Первый ехал со скоростью, на 2 км/ч большей, чем скорость второго, и прибыл к финишу на 2 часа раньше второго. Найти скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч.

От пристани A к пристани B, расстояние между которыми равно 208 км, отправился с постоянной скоростью первый теплоход, а через 3 часа после этого следом за ним со скоростью на 3 км/ч большей отправился второй. Найдите скорость первого теплохода, если в пункт B оба теплохода прибыли одновременно. Ответ дайте в км/ч.

Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 154 км. На следующий день он отправился обратно со скоростью на 3 км/ч больше прежней. По дороге он сделал остановку на 3 часа. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.

Из пункта А в пункт В, расстояние между которыми 60 км, одновременно выехали автомобилист и велосипедист. Известно, что в час автомобилист проезжает на 50 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 5 часов позже автомобилиста. Ответ дайте в км/ч.

Like this post? Please share to your friends:
  • Дви это экзамен как расшифровывается
  • Дви это что такое экзамен
  • Дви экзамен расшифровка
  • Дви в медицинский вуз какие экзамены
  • Двести граммов егэ