Орган представляет собой обособленную часть организма растения, имеющую определенное строение и выполняющую ряд функций. Тело высших растений можно разделить на
вегетативные (от лат. vegetare — расти) и генеративные (лат. generate порождать, производить) органы.
Вегетативные органы
Эти органы — базис, без которого растение существовать не может, они выполняют жизненно важные функции. Перечислим вегетативные органы (с их функциями вы подробнее
познакомитесь в следующих темах, сейчас мы заложим фундамент для их изучения):
- Корень
- Побег
- Лист
- Стебель
Состоит из стебля с расположенными на нём листьями и почками. Запишите себе такую «биологическую» формулу: побег = «стебель + листья + почки». Вы поймете
в следующих темах, насколько вам пригодится эта формула
Имеет радиальную симметрию, растет вверх, против силы тяжести (отрицательный геотропизм). На стебле формируются листья, цветки, плоды.
Все вегетативные органы способны к бесполому (вегетативному) размножению. Так, у срезанной ветки растения, поставленной в воду, начинают развиваться придаточные корни,
и, если такую ветку поместить в землю, создав оптимальные условия, она прорастет в новое растение. Такие же возможности открываются у корня, который разделили надвое,
или у листа, поставленного в воду.
Вегетативные способы размножения растений
Вегетативное размножение изобретено природой, а не садоводом! Однако способы, до которых додумалось человечество в отношении цветковых растений, не могут не
вдохновлять. Многие из них покажутся чудом, что ж давайте их классифицировать!
- Прививка
- Размножение клубнелуковицами
- Размножение клубнями
- Размножение корнеплодами
- Размножение корневищами
- Размножение усами (столонами)
- Размножение отводками
- Размножение черенками
- Размножение луковицами
- Размножение делением кустов
Выполняется путем плотного сопоставления частей разных растений. Главное условие, для того чтобы части срослись —
срастание тканей сосудистого камбия. Выделяется подвой и привой.
Подвой — это растение с сохраненным стеблем и корневой системой, на которое
«подселяют» привой — прививаемые стебель, листья и цветки, также плоды.
Увеличение количества клубнелуковиц происходит путем образования нескольких дочерних (деток). Клубнелуковицы образуют гладиолус,
шафран и другие растения.
Корневые клубни есть, в частности, у георгина, чистяка, батата. Хороший садовод знает, что из каждой почки на клубне может начать развитие новое растение,
так что для размножения нужного сорта перед посадкой клубень разрезают на несколько частей по числу глазков.
С целью размножения растений корнеплодами (свекла, редис, морковь)
листья у корнеплодов-маточников обрезают таким образом, чтобы оставить черешки длиной 1-2 см и верхушечную почку,
из которой будет развиваться новое растение.
Небольшого участка корневища для вегетативного размножения вполне достаточно, главное, чтобы этот участок содержал почку. Корневищные растения отличаются крайне быстрым
распространением на территории, ежегодный прирост одного корневища пырея ползучего может достигать 30 — 40 см. Разветвленная сеть корневищ в почве скрепляет ее, подобно сетке, в связи с этим такие растения активно используют для укрепления оврагов, сыпучих берегов, для предотвращения оползней.
Весьма эффективный способ размножения (к примеру, один экземпляр земляники за два года дает начало в среднем 200 новым растениям) и расселения (куст земляники за год заселяет 1,5 м2 окружающей территории).
Отводком называют однолетний побег, прижатый к почве и в этом месте присыпанный землей. В присыпанной части из побега развиваются придаточные корни, и
формируется новое растение.
Довольно часто для искусственного вегетативного размножения применяют черенки — отрезки, отделенные от родительского растения. В зависимости от места взятия черенка, различают: корневые, стеблевые и листовые черенки.
Каждый год из луковицы можно выделять дочерние луковички, которые также называют детками.
От материнской луковицы можно отделить сразу несколько деток.
Такой способ применяют весной или ближе к осени, в отношении кустарников для увеличения посадочного материала нужных сортов кустарников.
Куст необходимо разделить так, чтобы у каждой части остались надземные побеги и собственная корневая система.
Генеративные органы
Основная функция генеративных органов — семенное размножение растений, или половое. Генеративных органа три:
- Цветок
- Семя
- Плод
При половом размножении происходит слияние гамет, в результате которого образуется зародыш. Органом полового размножения
покрытосеменных растений является цветок, который подробно освещен в соответствующей теме.
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
в условии
в решении
в тексте к заданию
в атрибутах
Категория:
Атрибут:
Всего: 691 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
О чём свидетельствуют связи между процессами жизнедеятельности в растительном организме
1) о клеточном строении растительного организма
2) о связи растения со средой обитания
3) о родстве всех растений
4) о целостности растительного организма
Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.
1. Растения, как и другие организмы, имеют клеточное строение, питаются, дышат, растут, размножаются. 2. Как представители одного царства растения имеют признаки, отличающие их от других царств. 3. Клетки растений имеют клеточную стенку, состоящую из целлюлозы, пластиды, вакуоли с клеточным соком. 4. В клетках высших растений имеются центриоли. 5. В растительных клетках синтез АТФ осуществляется в лизосомах. 6. Запасным питательным веществом в клетках растений является гликоген. 7. По способу питания большинство растений автотрофы.
Источник: ЕГЭ по биологии 09.04.2016. Досрочная волна
В результате вегетативного размножения у растений
1) возникают новые мутации
2) формируются новые генотипы
4) сохраняются наследственные признаки родительского растения
Источник: Яндекс: Тренировочная работа ЕГЭ по биологии. Вариант 2.
Как особенности строения растительной и животной клеток соотносятся с образом жизни растительных и животных организмов соответственно?
Какие органы растений обозначены на рисунке буквами А, Б, В? В чём состоит их роль в жизни растений? Видоизменением какого органа они являются?
Источник: ЕГЭ по биологии 05.05.2014. Досрочная волна. Вариант 1.
Какой орган растения изображён на рисунке? Какие части органа обозначены цифрами 1, 2, 3? Какие функции в жизни растения он выполняет?
Для размножения высокоурожайных сортов земляники у растения используют
Какое размножение характерно для хвойных растений
В царство растений объединяют организмы, способные создавать органические вещества из неорганических с использованием энергии
Укажите признак, характерный только для царства растений
1) имеют клеточное строение
2) дышат, питаются, растут, размножаются
3) имеют фотосинтезирующую ткань
4) питаются готовыми органическими веществами
Укажите основные признаки моховидных растений.
Приведите не менее трех доказательств того, что водоросли относятся к Царству Растения, к группе низших растений.
Источник: ЕГЭ- 2017
На рисунке изображён медуллоза Ноэ — семенной папоротник — вымершее около 270 млн лет назад растение.
Используя фрагмент геохронологической таблицы, установите эру и период, в который вымирает данный организм, а также его возможного «близкого родственника» в современной флоре (ответ — на уровне отдела).
Какие черты строения характеризуют растение медуллоза Ноэ как высшее семенное растение?
Геохронологическая таблица
ЭРА | Период и продолжительность (в млн лет) |
Животный и растительный мир | |
---|---|---|---|
Название и продолжи- тельность (в млн лет) |
Начало (млн лет назад) | ||
Кайнозойская, 67 | 67 | Антропоген, 1,5 | Появление и развитие человека. Животный мир принял современный облик |
Неоген, 23,5 | Господство млекопитающих и птиц | ||
Палеоген, 42 | Появление хвостатых лемуров, позднее — парапитеков, дриопитеков. Бурный расцвет насекомых. Продолжается вымирание крупных пресмыкающихся. Исчезают многие группы головоногих моллюсков. Господство покрытосеменных растений | ||
Мезозойская, 163 | 230 | Меловой, 70 | Появление высших млекопитающих и настоящих птиц, хотя зубастые птицы ещё распространены. Преобладают костистые рыбы. Сокращение папоротников и голосеменных растений. Появление и распространение покрытосеменных растений |
Юрский, 58 | Появление первых птиц, примитивных млекопитающих, расцвет динозавров. Господство голосеменных. Процветание головоногих моллюсков | ||
Триасовый, 35 | Начало расцвета пресмыкающихся. Появление костистых рыб | ||
Палеозой, 340 |
Возможно, 570 | Пермский, 55 | Вымирание трилобитов. Возникновение зверозубых пресмыкающихся. Исчезновение каменноугольных лесов |
Каменноугольный, 75–65 |
Расцвет земноводных. Появление первых пресмыкающихся. Характерно разнообразие насекомых |
Раздел: Основы эволюционного учения
Источник: РЕШУ ЕГЭ
Для исследования влияния соли на жизнедеятельность растения, учащиеся поместили одно растение корнями в подсоленную воду, а другое — в обычную водопроводную воду. Через некоторое время первое растение завяло, а второе осталось без изменения. Какой метод использовали учащиеся? Какие выводы они могли сделать о причинах завядания? Какой параметр задавался экспериментатором (независимая переменная), а какой параметр менялся в зависимости от этого (зависимая переменная)?
Определите, к каким отделам относятся растения, части которых изображены на рисунке. Назовите по два признака, по которым их можно отнести к этим отделам. Что общего в половом размножении этих растений?
Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи
Большую часть зрелой растительной клетки занимают
Споры у цветковых растений в отличие от спор бактерий образуются в процессе
1) адаптации к жизни в неблагоприятных условиях
2) митоза гаплоидных клеток
3) мейоза диплоидных клеток
4) полового размножения
Организмы, клетки которых имеют хлоропласты, относят к царству
Почему не следует срывать цветки у дикорастущих растений?
Как используют знания о дыхании корней при выращивании растений?
Всего: 691 1–20 | 21–40 | 41–60 | 61–80 …
Для растений, как и для любого живого существа, характерны все признаки живого: дыхание, питание, рост, размножение.
Фотосинтез как способ питания характерен только для растительных клеток, в которых есть хлоропласты.
Наука, которая изучает процессы жизнедеятельности в растениях, называется физиология.
Физиология растений— наука, которая изучает закономерности жизненных процессов (фотосинтез, дыхание, минеральное и водное питание, рост и развитие и др.), их сущность и взаимосвязь с окружающими условиями.
В живой клетке цитоплазма по большей части состоит из воды.
При потере воды объем цитоплазмы уменьшается, а при поступлении воды увеличивается до первоначального объёма.
Плазмолиз— отставание цитоплазмы от оболочки клетки в гипертоническом растворе вследствие выхода воды из клетки.
Гипертонический раствор- раствор, имеющий более большую концентрацию вещества по отношению к внутриклеточному раствору.
Деплазмолиз— исчезновение плазмолиза.
Эти процессы способны происходить только в живых клетках, так как только живые клетки обладают свойством полунепроницаемости мембран и цитоплазмы.
Длительный плазмолиз приводит клетку к гибели.
Осмотическое давление
Движение воды в клетке зависит от количества соли в межклеточном пространстве и самой клетке.
Движение воды через полунепроницаемую мембрану из области с низкой концентрацией соли в область с высокой концентрацией соли называется осмос.
Если раствор в клетке перенасыщен солями, то вода, которая находится снаружи клетки, стремится его разбавить.
Когда, наоборот, межклеточная жидкость более «соленая», то вода вытекает из клетки в направлении более высокой концентрации ионов.
Эта информация доступна зарегистрированным пользователям
Более подробно про дыхание растений можно прочитать в нашем уроке «Дыхание растений. Передвижение и испарение воды в растениях»
Давление, которое оказывает раствор на мембрану, называется осмотическим давлением.
Осмотическое давление обусловлено наличием полунепроницаемой перегородки, разделяющей растворы в клетке и вне клетки.
У растворов, не разделенных полунепроницаемой перегородкой, такого явления не наблюдается.
Осмотическое давление связано с такими процессами, как функция поглощения воды, сохранение формы органов, рост и движение растения.
Тургор— напряженное состояние клеточной оболочки. Он зависит от количества воды в клетке.
Тургорное давление— внутреннее давление, которое развивается в растительной клетке, когда в неё в результате осмоса входит вода и цитоплазма прижимается к клеточной стенке; это давление препятствует дальнейшему проникновению воды в клетку.
Тургор обуславливает упругость клеток и тканей, а также открывание и закрывание устьиц листа.
Если тургорное давление в замыкающих клетках большое, то устьичная щель открывается, а если воды становится меньше и тургор уменьшается, то устьичная щель закрывается.
Эта информация доступна зарегистрированным пользователям
Более подробно можно прочитать в нашем уроке «Строение листа»
Если кратко, то осмос- это диффузия воды через клеточную мембрану, а тургор- упругость клеток, тканей органов в следствии давления содержимого клеток на их эластичные стенки.
Сосущая сила клетки- сила, с которой вода поступает в клетку.
Она определяется разницей между осмотическим и тургорным давлением.
От этой силы зависит поступление воды в растение и передвижение ее из клетки в клетку
Эта информация доступна зарегистрированным пользователям
В листовой пластинке растений происходит фотосинтез и испарение воды (транспирация).
В листе развиты следующие ткани, которые так или иначе контролируют водный режим листа и всего растения:
- покровные ткани защищают лист от высыхания благодаря восковому налету, контролируют испарение воды и газообмен благодаря устьицам
- ассимиляционная ткань (хлорофиллоносная паренхима, мезофилл) осуществляет фотосинтез
- проводящая ткань отвечает за проведение веществ
- механическая ткань придает листу прочность
Вспомните строение листа в нашем уроке «Строение листа»
Эта информация доступна зарегистрированным пользователям
Транспирация (движение воды и ее испарение через наружные органы) может осуществляться не только через устьица, но и через клетки кожицы верхней поверхности листа, покрытые кутикулой.
Такое испарение воды называется кутикулярная транспирация.
Но испарение воды с верхней поверхности листа незначительное, т.к. лист покрыт восковым налетом и устьица практически там отсутствуют.
Поэтому устьичная транспирация идет намного интенсивнее, чем кутикулярная.
Испарение воды растением способствует передвижению воды и минеральных веществ от корней по стеблю к листьям.
Лист называют верхним двигателем водного тока.
Посмотрите на опыт, демонстрирующий транспирацию растения:
Эта информация доступна зарегистрированным пользователям
Описание опыта:
Поставьте в баночку с водой срезанные веточки какого-нибудь растения.
Чтобы исключить прямое испарение воды из банки, налейте на ее поверхность чуть-чуть растительного масла: оно полностью закроет поверхность воды и будет препятствовать ее испарению.
Отметьте на банке уровень воды, и скоро вы заметите, как опускается уровень воды в пробирке.
Это будет происходить благодаря устьичной и кутикулярной транспирации.
Важно отметить, что транспирация у хвойных растений идет медленнее и количество испаряемой воды небольшое за счет ограниченного числа устьиц и плотной кожице хвоинок.
Транспирация способствует защите растения от перегревания, току воды и минеральных веществ по сосудам растения и способствует увеличению нагнетающей работы в корне.
Корневое давление
Корень всасывает из почвы воду и растворенные в ней минеральные вещества.
Условием поступления воды в корень является превышение сосущей силы клеток корня над сосущей силой почвенного раствора.
Сосущая сила в клетках корня возникает вследствие испарения воды листьями (транспирации).
Корень может поглощать воду и перемещать ее в стебель растения и без участия листьев и процесса транспирации.
Этот процесс осуществим благодаря корневому давлению.
Корневое давление— сила, с которой корень нагнетает воду в стебель.
Корневое давление возникает за счёт разницы осмотического давления в клетках корня и почвенного раствора.
Корень считают нижним концевым двигателем водного тока.
Корневое давление играет большое значение весной, ведь листьев еще нет и транспирация не осуществляется, поэтому только за счет корневого давления осуществляется ток воды по растению весной.
Это можно проверить опытом, показывающим силу корневого давления:
Берем растение бальзамина и срезаем его побег, оставив только небольшой пенек и корень в почве, на пенек надеваем стеклянную трубку, через некоторое время вода будет подниматься по трубке и вытекать наружу.
Делаем вывод: корень всасывает воду из почвы и по сосудам корня вода под давлением попадает в стебель растения.
Эта информация доступна зарегистрированным пользователям
Также силу корневого давления мы можем увидеть в опыте с березой.
Весной, надломив ветку березы, мы увидим, как из ветки маленькими каплями вытекает жидкость, собрав которую мы получим березовый сок, но как исследователи убедимся, что движение воды в растении происходит и одна из причин- это корневое давление.
Вода, на самом деле, способна двигаться против силы тяжести.
Правда, только в очень тонких сосудах- капиллярах.
В этом ей помогают силы поверхностного натяжения.
Пока воздействие этих сил больше, чем давление столба воздуха, жидкость будет стремиться по капилляру вверх.
Эта информация доступна зарегистрированным пользователям
Можно провести опыт, доказывающий движение воды и минеральных веществ по сосудам растения
Эта информация доступна зарегистрированным пользователям
Возьмем лист бальзамина или цветок подснежника, опустим в воду с окрашенной водой (чернила для окрашивания, как бы дает замену минеральным веществам) и увидим, что по жилкам (сосудам) поднимается окрашенная вода.
Гуттация
Гуттация- процесс выведения воды в виде капель жидкости на поверхности растения.
Её еще называют «плач растения».
Гуттация происходит если количество нагнетаемой корнями воды превышает количество воды, нагнетаемой листьями.
Если в почве достаточно много влаги и в воздухе повышенная влажность, то растение выделяет капельки жидкости на поверхность листьев.
Гуттация также свидетельствует о наличии корневого давления.
Гуттация на листьях клубники:
Эта информация доступна зарегистрированным пользователям
Для растений также, как и для любых живых существ, характерно питание.
Без питательных веществ растение может погибнуть.
Выделяют воздушное и почвенное (корневое) питание растений.
Воздушное питание растений.
Животные являются гетеротрофами, то есть питаются готовыми органическими веществами, а растения являются автотрофами, то есть они сами для себя создают органические вещества.
Фотосинтез- это процесс образования органического вещества (крахмала, глюкозы) из углекислого газа и воды с использованием солнечной энергии.
Опыт, доказывающий образование органического вещества, крахмала, в листьях растений:
Эта информация доступна зарегистрированным пользователям
Растение на несколько дней ставят в темную комнату, чтобы крахмал в листьях был израсходован растением и не образовывался вновь.
На одном листе этого растения закрепим полоску плотной бумаги с двух сторон.
Выставим растение на солнечный свет на час, потом срежем лист, на котором была закреплена полоска бумаги.
Далее опустим его на 1 минуту в кипяток, затем- в горячий спирт.
Промоем лист в воде, а затем в стеклянной чашечке зальём его слабым раствором йода.
Часть листа, на который попадал свет, окрасится в синий цвет.
Участок листа, на который не попадал свет, только слегка пожелтеет от йода.
Вывод: образование крахмала происходит в листьях только на свету.
Отличие дыхания от фотосинтеза:
Дыхание |
Фотосинтез |
свойственно всем клеткам |
характерно только для растений |
кислород поглощается |
кислород выделяется |
углекислый газ выделяется |
углекислый газ поглощается |
образуется энергия |
образуются сложные химические вещества |
Опыт доказывающий выделение кислорода при фотосинтезе:
Эта информация доступна зарегистрированным пользователям
Почвенное питание растений осуществляется корнями, которые всасывают минеральные вещества в виде водного раствора их солей.
Вода является необходимым условием жизни растений, ведь она растворяет минеральные вещества и способствует транспортировке минеральных веществ по растению.
Минеральные вещества необходимые для растений:
- азот необходим для синтеза белков в клетках, значит для роста растений, формирования новых побегов
- фосфор обеспечивает обмен веществ в клетках растений
- из-за недостатка кислорода в переувлажненной почве замедляется поступление в корни фосфора, в результате снижается содержание общего, органического и нуклеинового фосфора, нарушаются процессы фосфорилирования, энергетические процессы в корнях и белковый обмен
- магний способствует образованию хлорофилла в листьях
- при недостатке калия процессы деления клеток замедляются, отмирают кончики корней.
- кислород растениям нужен для окисления глюкозы и получения АТФ в процессе энергетического обмена
Почвенное и воздушное питание растений- два звена одного физиологического процесса.
Только при достаточном минеральном питании фотосинтез протекает интенсивно, и растения хорошо растут и развиваются, а без процесса фотосинтеза клетки не дополучают органические вещества и происходит нарушение жизнедеятельности всего растения.
Растения являются продуцентами, то есть создают сами органические вещества в процессе фотосинтеза, а значит являются начальным звеном пищевой цепи.
Способность растений с помощью хлорофилла и хлоропластов поглощать энергию солнечного света и использовать ее на образование органических веществ из неорганических определяет их космическую роль в природе.
Дыхание растений
Все о дыхании растений и опытах доказывающих дыхание растений, вы можете посмотреть в нашем уроке «Дыхание растений. Передвижение и испарение воды в растениях»
Рыхление почвы обеспечивает доступ кислорода воздуха к корням растений.
Листопад
Листопад- это естественный процесс отделения листа от стебля.
Он является приспособлением растения к перенесению неблагоприятных условий.
Осенью в основании листа многих растений начинает разрастаться отделительный слой, под основанием черешка.
Отделительный слой прекращает поступление соков в лист.
Под ним размножаются пробковые клетки.
Пробковые клетки закрывают место, где был лист, от попадания бактерий, пересыхания и других негативных воздействий.
На схеме видны процессы, которые происходят в растениях во время листопада:
Эта информация доступна зарегистрированным пользователям
У тропических растений листопад может начинаться перед засухой или в холода.
Значение листопада:
Таким образом листопад способствует сохранению воды в растении, а в период неблагоприятных условий избавляет от ненужных (вредных) веществ, которые накопились в растении.
Эта информация доступна зарегистрированным пользователям
Тропизмы— движения, вызванные односторонним воздействием какого-либо фактора внешней среды (света, силы земного притяжения и др.).
Настии— движения, вызванные рассеянным влиянием какого-либо фактора (света, температуры и др.)
Например, если растение изгибается к источнику раздражения, то в этом случае мы говорим о положительных тропизмах и настии.
При отрицательные тропизмах и настии изгибание происходит от источника раздражения.
Фототропизм— ростовая реакция растения на действие света, имеет большое значение, так способствует выносу листьев и стебля к свету, необходимого для жизни зеленного растения.
Геотропизм— ростовая реакция растения на действие силы притяжения.
В большинстве случаев корень обладает положительным геотропизмом (рост по направлению к центру Земли), а стебель отрицательным.
При любом положении проростка в пространстве главный корень всегда изгибается вниз, а стебель вверх.
Хемотропизм— движение растений под влиянием химических веществ.
Фотонастии— движения, вызванные сменой света и темноты.
Цветки одних растений (соцветия одуванчика) закрываются при наступлении темноты и открываются на свету.
Цветки других растений (табака) открываются с наступлением темноты.
Термонастии— движения, вызванные сменой температуры.
Ряд растений (тюльпаны, крокусы) открывают и закрывают цветки в зависимости от температуры.
Рост растений
Рост корня в длину осуществляется за счет деления клеток кончика корня, которые являются верхушечной образовательной тканью- меристемой.
Рост стебля в длину также осуществляется за счет работы верхушечной образовательной ткани.
Корень и стебель растут своими верхушками.
У злаковых растений, обладающих полым стеблем (соломиной), рост происходит не только в верхушке, но и в каждом междоузлии.
Стебель у злаковых состоит из нескольких узлов и междоузлий, и в каждом основании узла идет рост за счёт нахождения там образовательной ткани, этим объясняется быстрый рост стебля злаковых.
Такой рост злаковых растений называется вставочным.
На рост растений, прорастание семян также оказывает влияние температура, количество света и влаги.
При пониженной температуре (+5○С) рост идет очень медленно.
Если температуру повышать до +15○С, то интенсивность роста увеличивается в разы, особенно благоприятна температура +25○С.
Чтобы доказать, что семенам для прорастания необходимо тепло, следует провести следующий опыт: один стакан с влажными семенами поставить в теплое место, а другой — в холодное. Через некоторое время мы заметим, что семена, которые были в теплом месте начинают прорастать, а те семена, которые находились в холодном месте, не прорастают.
Что касается света, то здесь двоякий ответ.
Без солнечного света в растении не идет фотосинтез, то есть жить без солнечных лучей растение не может, однако свет притормаживает рост растений в длину.
В темноте растение активнее растет в длину при наличии органических веществ, которые образовались при фотосинтезе.
Но если длительно держать растение в темноте оно становится хилым, сильно вытягивается, теряет свою окраску, становится бледно-желтого цвета, механические ткани плохо развиты и часто стебель и лист не могут держать свою форму.
Каждое растение нуждается в воде.
Для каждого растения свои нормы влажности почвы.
При недостатке воды растение вянет. Так нарушается тургор клетки, растение испытывает недостаток минеральных солей, падает активность фотосинтеза, снижается концентрация гормонов, влияющих на рост — в конечном итоге всё это может привести к гибели растения.
Вред от избытка воды в почве заключается в том, что доступ воздуха к корням растений затрудняется или совсем прекращается, клетки корня погибают и постепенно гибнет все растение.
Для прорастания семян необходима влага, оптимальная температура, кислород для дыхания.
Но важно учитывать, что хранение влажных семян в зернохранилищах недопустимо.
Ведь именно вода запускает в семенах обменные процессы, при которых усиливается дыхание и активно образуется энергия в семенах, что может вызвать их сильное нагревание.
Если теплота семян не успевает отводиться, то происходит сначала самонагревание, а затем самовозгорание — всё это называется экзотермическая реакция.
Во-вторых, семена поглощая влагу, набухают, а некоторые из них начинают прорастать.
Затем от недостатка влаги проростки погибают.
В-третьих, на влажных семенах может развивается плесень, которая приводит к их порче.
Эта информация доступна зарегистрированным пользователям
Тему о размножении растений вы можете посмотреть в нашем уроке «Размножение растений и животных»
Опыление растений
Опыление- перенос пыльцевых зерен на рыльце пестика у цветковых растений.
У голосеменных происходит перенос пыльцевых зерен на семязачаток, причем опыление у них происходит с помощью ветра.
У цветковых растений выделяют самоопыление и перекрёстное опыление.
Перекрёстное опыление происходит благодаря животным, ветру.
У растений, которые опыляются животными, формируются различные приспособления для привлечения опылителей:
- яркоокрашенные крупные цветки
- соцветия
- нектар и аромат цветка
Характерно для малины, земляники, огурцов (в естественных условиях), кабачков, плодовых деревьев (яблоня, слива, вишня) и др.
При опылении ветром характерно:
- формирование большого количества пыльцы, потому что большая часть пыльцы не попадает на цветки
- происходит удлинение тычиночных нитей для более удобного распространения пыльцевых зерен
- растения характеризуются ранневесенним цветением, когда листья еще не распустились, для того чтобы пыльца не оседала на листьях, а попадала именно на цветки растений
- опыление ветром характерно для кукурузы, пшеницы, ольхи
Самоопыление встречается у относительно небольшого числа цветковых, когда нет возможности для перекрёстного опыления.
При самоопылении пыльца с одного цветка растения попадает на другой цветок этого же растения.
Эта информация доступна зарегистрированным пользователям
Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
РАЗДЕЛ II. МНОГООБРАЗИЕ ЖИВЫХ ОРГАНИЗМОВ. 10. Царство РАСТЕНИЯ
ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА
10. ЦАРСТВО РАСТЕНИЯ
Растения — это эукариотические фотосинтезирующие автотрофные организмы. Царство Растения насчитывает около 500 тыс. видов. Растения являются продуцентами органических веществ и основным источником энергии для других живых организмов. Любые пищевые цепи начинаются с зелёных растений. Они же определяют характер биоценоза, защищают почву от эрозии. Растения служат источником кислорода и оказывают значительное влияние на климат Земли. Человек использует около 1,5 тыс. видов культурных растений как пищевые, технические и лекарственные ресурсы. Продукты питания растительного происхождения обеспечивают организм человека белками, жирами, углеводами и витаминами. Растения вырабатывают фитогормоны (вещества, способные усиливать физиологические процессы) и фитонциды (вещества, способные угнетать рост микроорганизмов или убивать их).
Царству Растения присущ ряд отличительных признаков:
- Автотрофный (фототрофный) тип питания. Встречаются также виды с миксотрофным (насекомоядные растения) и гетеротрофным (растения-паразиты) питанием.
- Специфические черты в организации растительной клетки: окружена клеточной стенкой, образованной целлюлозой; имеет пластиды; содержит крупные вакуоли; основным запасающим веществом является крахмал.
- Неподвижный, в основном прикреплённый, образ жизни. Поэтому растения не имеют костей, мышечной и нервной систем. Движения растений связаны с перемещением их частей тела: ростовые движения корней и стеблей, движение листьев в зависимости от времени суток и освещённости и др.
- Рост возможен в течение всей жизни и осуществляется только в определённых участках тела. Тело большинства растений в той или иной степени ветвится.
- Чередование гаплоидной (гаметофит) и диплоидной (спорофит) фаз развития.
- Практически нет специальных экскреторных органов.
- Расселение происходит спорами и семенами, находящимися в состоянии покоя.
Перечисленные отличия растений от животных не являются абсолютными. Черты животной организации часто встречаются у низших растений, которые соответствуют ранним этапам эволюционного развития. Например, способность и к автотрофному, и к гетеротрофному питанию (эвглена зелёная). Более высоко организованные растения достаточно чётко отличаются от животных.
Растения делят на низшие и высшие. У низших растений тело (слоевище, или таллом) не дифференцировано на ткани и органы. К ним относятся Красные водоросли (Багрянки), Настоящие водоросли и Лишайники. У высших растений тело разделено на органы (корень, стебель, лист), образованные дифференцированными тканями. К высшим растениям относятся Моховидные, Плауновидные, Хвощевидные, Папоротниковидные, Голосеменные и Покрытосеменные (Цветковые). Четыре первых отдела расселяются при помощи спор {споровые), два последних — при помощи семян {семенные).
Размножение растений.
Для всех высших растений характерно чередование в жизненном цикле полового и бесполого размножения и связанное с этим чередование поколений (фаз развития) — гаплоидной (n) (гаметофит) и диплоидной (2n) (спорофит). На спорофите возникают мешковидные образования — спорангии (органы бесполого размножения), в которых в результате спорогенеза, сопровождающегося мейотическим делением, формируются таилоидные споры. Из спор развивается гаметофит. На нём формируются особые половые структуры — гаметангии (органы полового размножения), в которых образуются гаметы.
Мужские половые органы, где формируются сперматозоиды, называются антеридиями, женские половые органы, где формируются яйцеклетки, называются архегониями. Если на гаметофите развиваются и архегонии, и антеридии, то он называется обоеполым, если только антеридии, то мужским, если только архегонии, то женским. При слиянии гамет образуется зигота. Из зиготы развивается спорофит.
Эволюция растений шла в направлении увеличения размеров бесполого поколения (спорофита) и редукции полового поколения (гаметофита). У подавляющего большинства высших растений (за исключением моховидных) в жизненном цикле преобладает спорофитная фаза (рис. 10.1).
10.1. ПОДЦАРСТВО НИЗШИЕ РАСТЕНИЯ. ВОДОРОСЛИ
Строение и жизнедеятельность водорослей.
Водоросли — это фотосинтезирующие автотрофные эукариотические организмы. Насчитывается, около 30 тыс. видов различных водорослей. Выделяют отделы Зелёные, Красные, Бурые водоросли и др. Водоросли бывают одноклеточные, многоклеточные и колониальные.
Тело многоклеточных водорослей (таллом) состоит из сходных клеток и не разделено на органы и ткани. Формы таллома очень разнообразны: монадная, амёбоидная, нитчатая, пластинчатая и др. Хлоропласта водорослей называются хроматофорами. У многих подвижных водорослей имеется светочувствительный глазок {стигма), благодаря чему эти водоросли обладают фототаксисом — способностью к движению по направлению к свету.
Водоросли обитают главным образом в воде, однако большое число видов поселяется на суше во влажных местах обитания (на поверхности почвы, камнях, коре деревьев).
Размножение водорослей.
Водоросли могут размножаться бесполым и половым путём. К бесполому относится вегетативное размножение (деление таллома на части у многоклеточных, деление клеток надвое у одноклеточных, распадение колоний у колониальных форм) и спорообразование (образование в спорангиях подвижных или неподвижных спор). Половое размножение заключается в формировании гамет и их последующем слиянии с образованием зиготы, а также просто слиянии двух одноклеточных водорослей друг с другом либо посредством конъюгации. При половом размножении в жизненном цикле зелёных водорослей преобладает гаметофит, бурых — спорофит (рис. 10.2—10.3).
Сравнительная характеристика некоторых отделов водорослей представлена в табл. 10.1.
Значение водорослей.
Водоросли являются важным компонентом водного сообщества. В водах Мирового океана водоросли являются основными продуцентами органических веществ. Кроме того, они выделяют кислород, необходимый для дыхания животным и растениям. Водоросли, обитающие на поверхности почвы, участвуют в почвообразовании. Водоросли сыграли огромную роль в истории Земли, обогатив атмосферу кислородом. Широко используются водоросли и человеком: в пищу и на корм скоту (богаты витаминами, солями йода и брома), для получения агар-агара и других веществ и т. д.
10.2. ТКАНИ И ОРГАНЫ ВЫСШИХ РАСТЕНИЙ
К высшим растениям относятся моховидные, плауновидные, хвощевидные, папоротниковидные, голосеменные и покрытосеменные (цветковые). В процессе эволюции в качестве приспособления к жизни в наземно-воздушной среде у растений произошла дифференциация клеток на ткани и формирование органов.
10.2.1. Ткани
Ткань — совокупность клеток, сходных по строению, происхождению и выполняющих одинаковые функции. У растений различают следующие ткани: образовательные (меристемы), покровные, основные, механические, проводящие, выделительные (табл. 10.2). Ткани растений делят на временные (меристемы) и постоянные (все остальные ткани).
10.2.2. Вегетативные органы
Орган — часть организма, имеющая определённую форму и строение, состоящая из нескольких тканей, занимающая определённое место в организме и выполняющая специфическую функцию или функции. У растений выделяют следующие органы (табл. 10.3, рис. 10.4).
10.2.2.1. Корень
Корень — вегетативный подземный орган растения. Он имеет радиальную симметрию, не несёт на себе листья, обладает способностью ветвиться, характеризуется неограниченным ростом. Функции корня: закрепление растения в почве, поглощение воды и минеральных веществ, синтез гормонов и ферментов, выделение продуктов метаболизма, запасание воды и питательных веществ.
Типы корневых систем. Совокупность всех корней одного растения называют корневой системой. Различают два типа корневых систем (у семенных): стержневую и мочковатую (табл. 10.4, рис. 10.5).
Придаточные корни могут образовываться и у многих двудольных растений на стеблях, засыпанных землёй, на ползучих и подземных стеблях. Эту способность используют для искусственного вегетативного размножения черенками.
Зоны корня. На продольном разрезе различают четыре основные зоны корня: деления, роста (растяжения), всасывания и проведения (табл.10.5, рис.10.6)
Внутреннее строение. На поперечном срезе корня можно выделить ризодерму, первичную кору из клеток паренхимы и центральный цилиндр, который включает эндодерму, перицикл (образовательная ткань, формирующая боковые корни), первичную флоэму, первичную ксилему и сердцевину. При одревеснении (вторичный рост) ризодерма, первичная кора и эндодерма замещаются перидермой, а камбий образует вторичную флоэму (луб) и вторичную ксилему (древесина). Вода поступает в клетки корня пассивно, в силу разности осмотического давления почвенного раствора и клеточного сока, а минеральные вещества — в результате активного всасывания, требующего затрат энергии на преодоление градиента концентрации. Движение раствора вверх по сосудам корня и стебля обеспечивается корневым давлением, создаваемым всасывающей силой всех корневых волосков, и испарением воды с поверхности листьев (транспирацией).
Особенности корня. В связи с изменением функций корня происходит его видоизменение (табл. 10.6). Образование корнеплодов и корневых клубней связано с накоплением в корне запасных веществ и воды.
Корни многих растений образуют с почвенными организмами симбиозы. Микориза (грибокорень) представляет собой симбиоз высшего растения и гриба. Клубеньки на корнях образуются у бобовых растений в результате их симбиоза с азотфиксирующими микроорганизмами, которые способны усваивать молекулярный азот атмосферы.
10.2.2.2. Стебель
Стебель — вегетативный орган растения, несущий листья и почки. Имеет радиальное строение, может ветвиться, характеризуется неограниченным верхушечным ростом. В ряде случаев стебли могут фотосинтезировать. Функции стебля: проводящая, или транспортная (соединяет два полюса питания растения — корни и листья), опорная (выносит листья к свету), запасающая (служит для накопления питательных веществ и воды), является органом вегетативного размножения.
Стебель с листьями и почками, развившийся из почки в течение одного вегетационного периода, называют побегом (рис. 10.7). Побег состоит из повторяющихся элементов — узлов и междоузлий. Узел — участок стебля, от которого отходит лист (листья). Междоузлие — часть стебля между соседними узлами. Пазуха листа — угол между листом и находящимся выше междоузлием.
Почка — зачаточный, ещё не развившийся побег. Выделяют почки разных типов (табл. 10.7, рис. 10.8).
Рост стебля в длину и ветвление осуществляется деятельностью верхушечной и боковых почек. У ряда растений (бамбук, злаковые) наряду с верхушечным ростом долгое время активно растут основания междоузлий побега (вставочный рост). Для увеличения площади соприкосновения со средой главный побег, выросший из почечки зародыша семени, образует новые побеги, обеспечивающие ветвление стебля. У ряда растений тропиков и субтропиков встречаются неветвящиеся побеги. Различают следующие типы ветвления: дихотомическое, моноподиальное и симподиальное (табл. 10.8; рис. 10.9).
Формы побегов. По характеру расположения в пространстве побеги (стебли) делят на прямостоячие (кукуруза), стелющиеся (земляника), вьющиеся (вьюнок), цепляющиеся (горох). В зависимости от степени одревеснения стебли делятся на одревесневшие (деревья и кустарники) и травянистые (травы). Травянистые формы произошли от древесных.
Внутреннее строение. У семенных растений первичное строение (не одревесневшее) стебля таково; снаружи эпидерма, под ней первичная кора, образованная паренхимой, и проводящие пучки, в которых кнаружи располагается флоэма, а ближе к центру — ксилема. Центральная часть (сердцевина) образована паренхимой.
При одревеснении (рис. 10.10) между флоэмой и ксилемой закладывается камбий (образовательная ткань), образующий единое кольцо. В результате его деятельности формируются вторичная флоэма (луб) и вторичная ксилема (древесина), которой всегда больше. Параллельно с этим первичный покров (эпидерма) замещается вторичным — перидермой, состоящей из пробкового камбия, формирующего кнаружи пробку, вовнутрь — пробковую кожицу. В разные времена года клетки растения растут в различной степени. В результате на поперечном срезе стебля можно обнаружить годичные кольца.
Годичное кольцо прироста — слой клеток древесины, образовавшихся в тёплое время года. Мелкие осенние клетки отличаются от крупных весенних клеток следующего года. По числу годовых колец можно определить возраст дерева.
Видоизменения побега могут выполнять различные функции: запасающую и функцию вегетативного размножения (клубни, корневище, луковица), защитную (колючки), служить органом прикрепления (усики) и т.д. (табл. 10.9).
10.2.2.3. Лист
Лист — вегетативный орган растения, располагающийся на стебле. Обладает ограниченным ростом. Функции листьев: фотосинтез, газообмен и транспирация (испарение влаги).
Внешнее строение листа. Лист состоит из листовой пластинки и черешка. Черешок служит для лучшего расположения листа на стебле по отношению к свету. Листья с черешками называют черешковыми, без черешка — сидячими. Нижняя часть листа, соединяющаяся со стеблем, называется основанием листа. У некоторых растений основание листа охватывает стебель в виде трубки, образуя влагалище. У многих растений в основании листа на стебле образуются выросты — прилистники.
Разнообразие листьев. Листья растений разнообразны по размерам, форме и числу листовых пластинок, расположению их на стебле, жилкованию и т. д.
По числу листовых пластинок листья бывают простые и сложные.
Простые листья состоят из одной листовой пластинки и черешка, сложные листья имеют несколько листовых пластинок на одном черешке. Простые листья могут быть цельными и рассечёнными (листовая пластинка рассечена). Сложные листья делятся на тройчато- и пальчатосложные (несколько листовых пластинок прикреплены к одной точке) и парно- и непарноперистосложные (несколько листовых пластинок прикрепляются по всей длине черешка).
По форме листовой пластинки различают листья округлые, ланцетовидные, овальные, игольчатые, стреловидные и др. (рис. 10.12).
По форме края пластинки листья делят на цельнокрайние, зубчатые, выемчатые и др. (рис. 10.13).
Жилкование листа (разветвления проводящей системы) бывает сетчатое, перистое, дуговое, параллельное и др. (рис. 10.14).
Распределение листьев на стебле может быть очередным (в узле от стебля отходит один лист), супротивным (в узле находятся два листа, располагающиеся друг против друга) и мутовчатым (от узла отходят три листа и более) (рис. 10.15).
Листовая пластинка у однодольных обычно цельная, у двудольных — цельная или изрезанная. Жилкование у однодольных в основном дуговое или параллельное, у двудольных — перистое или сетчатое.
Расположение листьев на растении, их размеры связаны с максимально эффективным использованием солнечных лучей.
Внутреннее строение листа. Сверху лист образован эпидермой верхней поверхности (рис. 10.16). Она покрыта кутикулой — слоем воскоподобного вещества. Под эпидермой располагается столбчатая ассимиляционная паренхима с плотно примыкающими друг к другу клетками; они узкие и длинные, располагаются перпендикулярно поверхности листа. Ниже залегает губчатая ассимиляционная паренхима с беспорядочно расположенными клетками округлой или извилистой формы и большими межклетниками (пространством между клетками). И та и другая паренхима являются фотосинтезирующими. Нижняя поверхность листа представлена эпидермой нижней поверхности и содержит множество устьиц. Жилки листа образованы клетками проводящих тканей ксилемы и флоэмы и механической ткани, придающей листу прочность. В верхней части жилки расположены сосуды ксилемы, в нижней — флоэма.
Испарение воды и газообмен. На нижней поверхности листа располагается множество устьиц, которые обеспечивают транспирацию и газообмен. Каждое устьице (рис. 10.17) состоит из двух замыкающих бобовидных клеток, между которыми находится устьичная щель.
При высоком тургорном давлении замыкающие клетки расправлены и устьице раскрыто, при низком давлении устьице закрывается. Так осуществляется регуляция интенсивности транспирации (испарения воды листом). Транспирация обеспечивает продвижение воды от корня по стеблю к листьям и охлаждение поверхности растения.
Помимо функции испарения воды, устьица обеспечивают поглощение растениями углекислого газа и выделение кислорода при фотосинтезе, а также поглощение кислорода и выделение углекислого газа при дыхании. Замыкающие клетки устьиц содержат хлоропласта, и при освещении в них начинается фотосинтез, продукты которого приводят к повышению осмотического давления. Вследствие притока воды стенки этих клеток растягиваются и устичная щель раскрывается. Так осуществляется регуляция газообмена.
Таким образом, в темноте и в жаркую погоду устьица закрываются.
Видоизменения листьев. В процессе приспособления к условиям окружающей среды листья, помимо основных, приобретают дополнительные функции (табл. 10.10).
Листопад — это приспособление растений к уменьшению испарения воды осенью и зимой. У листопадных растений (липа, берёза и др.) листья живут только один вегетационный сезон, у вечнозелёных (ель, сосна и др.) — дольше и сменяются постепенно. В старых листьях накапливаются не нужные растениям вещества (кремнезём и др.), хлорофилл разрушается.
10.2.3. Генеративные органы растений
10.2.3.1. Цветок
Цветок — орган семенного размножения покрытосеменных растений (рис. 10.18). Цветок представляет собой видоизменённый, укороченный и ограниченный в росте побег. Развитие цветка завершается образованием плода с семенами. Функция цветка — половое размножение.
Строение цветка. Цветок заканчивает собой стебель (главный или боковые). Он соединён со стеблем цветоножкой. Если цветоножка сильно укорочена или отсутствует, цветок называют сидячим. Цветоножка переходит в цветоложе, на котором располагаются все части цветка. В центре цветка находится пестик (или несколько пестиков). Он состоит из рыльца, столбика и завязи. В завязи имеется полость, где находится семяпочка (семязачаток, мегаспорангий). Закрытое положение семяпочки в завязи отличает покрытосеменные растения от голосеменных, у которых семяпочки лежат открыто. Пестик образован одним или несколькими сросшимися плодолистиками (видоизменёнными листьями). Совокупность плодолистиков составляет гинецей (женская часть цветка). Пестик окружён тычинками, в которых различают тычиночную нить и пыльник. Пыльник состоит из двух половинок, каждая из которых включает по два пыльцевых мешка (микроспорангии), в которых образуется пыльца (микроспоры). Совокупность всех тычинок составляет андроцей (мужская часть цветка). Тычинки и пестик окружены околоцветником, который может быть простым и двойным. Простой околоцветник состоит из однородных элементов (цветки тюльпана). Двойной околоцветник состоит из венчика, образованного ярко окрашенными лепестками, и чашечки, образованной зелёными чашелистиками. Кроме того, цветки некоторых растений имеют особые железы — нектарники, которые образуют нектар.
В зависимости от типа симметрии выделяют актиноморфные (лучевая симметрия), зигоморфные (двусторонняя или билатеральная симметрия) и асимметричные цветки.
Обоеполые цветки имеют и тычинки, и пестики. Однополые цветки имеют только тычинки или только пестики. Они образуются в результате редукции андроцея или гинецея. Однодомные (обоеполые) растения — растения, у которых мужские и женские цветы находятся на одной особи (кукуруза, берёза, тыквенные и др.). Двудомные (однополые) растения — растения, у которых мужские и женские цветы находятся на разных особях (тополь, ива, осина и др.).
Соцветия. У одних растений цветки крупные и располагаются одиночно (тюльпан), у других — относительно мелкие и собраны в различные соцветия. Соцветие — часть растения, несущая группировки отдельно расположенных цветков.
Соцветия бывают простые и сложные (табл. 10.11, рис. 10.19). У простых соцветий на главной оси расположены цветки, у сложных — простые соцветия.
Биологическое значение соцветий состоит в повышении вероятности опыления. Мелкие цветки, собранные в соцветие, хорошо заметны для насекомых, что способствует их опылению. У ветроопыляемых растений соцветия находятся обычно на концах стеблей и не прикрыты листьями, что облегчает отдачу и улавливание пыльцы, переносимой воздушными потоками.
10.2.3.2. Опыление и оплодотворение у цветковых
Опыление — процесс переноса пыльцы с тычинок на рыльце пестика. Пыльцевое зерно является мужской спорой, а семязачаток в завязи пестика — женской спорой.
Различают самоопыление и перекрёстное опыление (табл. 10.12).
Оплодотворение. Оплодотворению предшествует образование мужского и женского гаметофитов. Женский гаметофит формируется внутри завязи пестика. В одной из диплоидных клеток семязачатка (мегаспорангия) в результате мейоза образуются четыре гаплоидные мегаспоры. Три из них отмирают, а одна проходит три митотических деления, в результате чего эта клетка содержит восемь гаплоидных ядер. Это и есть женский гаметофит, или зародышевый мешок. В зрелом женском гаметофите образуются яйцеклетка, диплоидная центральная клетка и ряд дополнительных клеток. Мужской гаметофит образуется в пыльниках тычинок. В пыльцевых мешках (микроспорангиях) материнские клетки спор делятся мейозом, в результате чего из каждой образуются четыре гаплоидные микроспоры. Сформировавшаяся микроспора имеет оболочку и ядро. Ядро затем делится митозом с образованием генеративной и вегетативной клеток. Это и есть мужской гаметофит. Генеративная клетка вскоре ещё раз делится митозом и формирует два спермия. Таким образом, пыльцевое зерно содержит вегетативную клетку и два спермия.
После попадания пыльцевого зерна на рыльце пестика оно прорастает (рис. 10.18). Из вегетативной клетки образуется пыльцевая трубка, которая прорастает до зародышевого мешка. По этой трубке в зародышевый мешок проникают два спермия. Один из них сливается с яйцеклеткой, образуя диплоидный зародыш, другой соединяется с диплоидной клеткой, образуя триплоидную клетку, из которой развивается эндосперм. Такой процесс называется двойным оплодотворением. Он был открыт в 1898 г. С. Г. Навашиным.
После этого из завязи образуется плод, а из семязачатков — семя, в котором находится зародыш.
10.2.3.3. Семя
Семя — орган семенного размножения и расселения растений. Оно образуется из семязачатка (семяпочки) в завязи растений. Семя состоит из семенной кожуры, зародыша и запаса питательных веществ (эндосперма) (табл. 10.13, рис. 10.20).
10.2.3.4. Плод
Плод — орган покрытосеменных растений; представляет собой видоизменённый после оплодотворения цветок. Функции плодов — защита и распространение семян. В состав плода входят пестик и другие части цветка: разросшееся цветоложе, сросшиеся основания чашелистиков, лепестков и тычинок. Разросшиеся стенки завязи формируют околоплодник.
Виды плодов. По происхождению, в зависимости от того, из каких элементов цветка образовался плод, различают настоящие и ложные плоды. Настоящие плоды образуются из завязи (слива, томат). Ложные плоды образуются при участии цветоложа (шиповник), околоцветника (яблоко) и др.
Настоящие плоды делят на простые, сложные и соплодия. Простой плод развивается из цветка с одним пестиком (костянка, зерновка, боб), сложный — из цветка, имеющего несколько пестиков (земляника, малина), соплодие — из соцветия со сросшимися цветками (ананас, шелковица).
По консистенции околоплодника (количеству в нём воды) плоды делят на сухие и сочные, по количеству семян — на односемянные и многосемянные (табл. 10.14). Сухие многосемянные плоды имеют механизм вскрытия для разбрасывания семян (раскрывающиеся).
Распространение плодов и семян происходит с помощью ветра, воды, животных и человека, а также саморазбрасыванием (табл. 10.15).
10.3. ПОДЦАРСТВО ВЫСШИЕ РАСТЕНИЯ
10.3.1. СПОРОВЫЕ РАСТЕНИЯ
10.3.1.1. Отдел Моховидные
Моховидные произошли от водорослей и представляют собой эволюционный тупик. Отдел Моховидные включает около 25 тыс. видов. Обычные размеры мхов от 1 мм до 60 см. Одни мхи представляют собой таллом, другие имеют стебель и листья. Моховидные не имеют корней. Некоторые из них имеют одно- или многоклеточные ризоиды, которыми они прикрепляются к грунту и поглощают воду и минеральные вещества.
В жизненном цикле мхов гаплоидный гаметофит преобладает над диплоидным спорофитом (рис. 10.21). Это отличает их от остальных высших растений. Гаметофит развивается из гаплоидной споры. У разных видов мхов гаметофит может быть однополым (двудомным) или двуполым (однодомным). На гаметофите в органах полового размножения (гаметангиях) образуются подвижные сперматозоиды и неподвижные яйцеклетки. Мужские половые органы называются антеридии, женские — архегонии. Оплодотворение происходит в присутствии капельно-жидкой влаги. Из оплодотворённой зиготы развивается коробочка со спорами. Таким образом, взрослое растение мха — половое поколение (гаметофит), а коробочка со спорами — бесполое поколение (спорофит). Половое и бесполое поколения не разделены, а представляют одно растение. Также мхам свойственно и вегетативное размножение.
Наиболее крупный класс Моховидных — Листостебельные мхи. Различают зелёные мхи (кукушкин лён) и сфагновые (белые) мхи (сфагнум).
Зелёные мхи. Представитель — кукушкин лён, многолетнее растение высотой до 20 см. Широко распространён в еловых лесах, на болотах. Гаметофиты кукушкиного льна раздельнополы (двудомны), имеют прямостоячие неветвистые стебли с острыми листьями и ризоиды. На верхушках мужских и женских гаметофитов формируются антеридии и архегонии. Во время дождя или росы двужгутиковые сперматозоиды проникают к яйцеклеткам и сливаются с ними. После оплодотворения на женских растениях образуется диплоидный спорофит — коробочка на длинной ножке. Внутри коробочки формируется спорангий с гаплоидными спорами. Попадая в почву, спора прорастает в зелёную ветвящуюся нить -1 протонему, похожую на зелёную водоросль. Часть протонемы углубляется в почву, теряет хлорофилл и превращается в ризоиды; а из наземной части протонемы образуется стебель мха с листьями.
Сфагновые (белые) мхи. Представитель — сфагнум, играет важную роль в формировании и жизни болот. Сфагнум беловато-зелёного цвета, так как содержит большое количество воздухоносных клеток, имеет ветвистые стебельки, усаженные мелкими листьями, и не имеет ризоидов. Поглощение воды осуществляется всей поверхностью. Сфагновые мхи растут верхней частью побегов, а нижняя часть отмирает. В результате образуются залежи торфа. Процесс торфообразования происходит благодаря застойному переувлажнению, отсутствию кислорода и созданию мхами кислой среды.
Значение. Мхам принадлежит важная роль в природе: как накопители влаги они участвуют в регулировании водного баланса лесов и соседних территорий. Человеком торф используется в качестве топлива, как термоизолятор, в сельском хозяйстве в качестве удобрения, в химической промышленности для получения парафина, фенола, аммиака, уксусной кислоты, метанола, красителей и других веществ, в медицине при грязелечении, а также может быть использован как бактерицидный перевязочный материал, поскольку обладает антисептическим действием.
10.3.1.2. Отдел Плауновидные
Плауновидные, хвощевидные и папоротниковидные — древние группы высших растений. Они произошли от псилофитов (риниофитов), которые, в свою очередь, произошли от зелёных водорослей и первыми заселили сушу. Их расцвет пришёлся на каменноугольный период, после чего многие виды вымерли.
Плауновидные — это травянистые многолетние растения, встречающиеся в сыроватых хвойных и смешанных лесах. В настоящее время насчитывается около 1 тыс. видов. Они имеют стелющийся стебель с множеством веток, покрытых мелкими тёмно-зелёными листьями, укреплённый в почве с помощью придаточных корней. Верхушечные побеги заканчиваются спороносными колосками.
Из споры образуются мелкие заростки (2-3 мм), которые развиваются под землёй, через 15—20 лет на них образуются архегонии и антеридии. В них формируются многожгутиковые сперматозоиды, которые в присутствии воды оплодотворяют яйцеклетки, и из диплоидной зиготы развивается новое растение. Кроме того, плауновидные могут размножаться вегетативно (частями стебля).
Значение. Плауны растут очень медленно и подлежат охране. Животными не поедаются. Используются в медицине (некоторые содержат яд, сходный по действию с кураре, другие используются как присыпка, третьи — для лечения алкоголизма).
10.3.1.3. Отдел Хвощевидные
Хвощевидные — это многолетние травянистые растения, обитают на влажной кислой почве в сырых лесах, на болотах, влажных полях и лугах. В настоящее время насчитывается всего около 20 видов. Имеют хорошо развитое корневище с клубнями. Побеги состоят из члеников (междоузлий). В клеточных стенках накапливается кремнезём, который выполняет механическую и защитную роль. На верхушках побегов расположены спороносные колоски.
Весной на корневищах отрастают розоватые спороносные побеги со спороносными колосками, на которых образуются гаплоидные споры. Из них вырастают мужские и женские (более крупные) заростки. Оплодотворение осуществляется в жидкой среде. Из диплоидной зиготы развивается спорофит.
Значение. Хвощи несъедобны для животных, являются сорняками пастбищ и полей. Хвощ полевой применяют в медицине как мочегонное средство.
10.3.1.4. Отдел Папоротниковидные
Папоротники — многолетние, чаще травянистые растения лесов умеренной зоны (орляк), водоёмов (сальвиния), или древовидные, лиановые, эпифитные обитатели влажных тропиков. В настоящее время насчитывается около 10 тыс. видов.
Спорофит папоротников разделён на корень, стебель и лист (рис. 10.22). Корни придаточные, отходящие от корневища. Стебли развиты плохо, и листва по массе и размерам преобладает над стеблем. На нижней части листа развиваются спорангии.
Из споры развивается заросток — небольшая многоклеточная пластинка зелёного цвета и с ризоидами (самостоятельное растение). На заростке формируются антеридии (мужские половые органы) и архегонии (женские половые органы). Заростки одних видов двуполые, других — однополые. В антеридиях образуются сперматозоиды, в архегониях — яйцеклетки. Для их слияния необходимо наличие воды. После оплодотворения из зиготы развивается растение папоротника. Таким образом, заросток — половое поколение (гаметофит), а взрослое растение папоротника — бесполое поколение (спорофит). Половое и бесполое поколения разделены. Также папоротникам свойственно и вегетативное размножение (например, отделением корневища).
Значение. Роль древних папоротников, а также хвощей и плаунов состояла в образовании залежей каменного угля и насыщении атмосферы кислородом. Некоторые виды современных папоротников употребляются в пищу, используются в медицине (глистогонные средства) или как декоративные растения.
В таблице 10.16 представлена сравнительная характеристика отделов высших споровых растений.
10.3.2. Семенные растения
Рассмотренные выше споровые растения имеют два общих свойства:
- 1) для осуществления полового процесса им необходима капельно-жидкая влага, что ограничивает их распространение;
- 2) образующиеся споры мелкие, содержат мало питательных веществ и имеют слабую жизнеспособность. Это же относится к развитию из зиготы зародыша споровых растений.
Более прогрессивными с эволюционной точки зрения являются семенные растения. Им для оплодотворения не требуется вода, а семя (единица расселения семенных растений) содержит запас питательных веществ. Семя представляет собой маленький спорофит с корешком, почечкой и зародышевыми листьями — семядолями. В нём содержится запас питательных веществ, необходимый для первоначального этапа развития.
Взрослые семенные растения — спорофиты. Они образуют два типа спор: мужские (микроспоры) и женские (мегаспоры). Микроспоры продуцируются в мужских шишках (у голосеменных) или в пыльниках (у цветковых). Внутри пыльцевого зерна микроспора делится, и возникает мужской гаметофит, в котором образуются мужские гаметы. Мужские гаметы, формирующиеся внутри микроспоры, как правило, лишены жгутиков, не способны активно двигаться и называются спермиями. Мегаспоры образуются в семязачатках женских шишек или завязи. Единственная зрелая женская спора остаётся в семязачатке, здесь из неё развивается женский гаметофит (зародышевый мешок), где и образуется яйцеклетка. Таким образом, гаметофиты у семенных растений крайне редуцированы, весь цикл их развития протекает на спорофите (табл. 10.17).
К семенным растениям относятся голосеменные (размножаются семенами, но не образуют плодов) и покрытосеменные (семена заключены в плоды).
Сравнение высших споровых и семенных растений представлено в таблице 10.18.
10.3.2.1. Отдел Голосеменные
В отделе Голосеменные выделяют 6 классов: Семенные папоротники, Саговниковые, Беннеттитовые, Гнётовые, Гинкговые, Хвойные. Из них Семенные папоротники и Беннеттитовые полностью вымерли. Наиболее широко голосеменные были распространены в конце палеозойской и в мезозойскую эру. Ныне живущих голосеменных около 720 видов. Голосеменные представлены исключительно древесными формами: деревьями, кустарниками, лианами.
И в природе, и в жизни человека второе место после цветковых занимают хвойные. Их насчитывается около 560 видов. К ним относятся сосна, ель, лиственница, пихта, кедр, кипарис, можжевельник и др.
Строение. Хвойные имеют стержневую корневую систему. Часто содержат микоризу. Древесина на 90—95 % образована прочной проводящей тканью. Среди хвойных есть листопадные виды и вечнозелёные. У листопадных видов (лиственница) листья плоские и мягкие. У вечнозелёных (большинство хвойных) листья игольчатой формы и жёсткие. Устьица глубоко погружены в ткань листа, что уменьшает испарение воды. Хвоя содержит витамин С и выделяет фитонциды.
Размножение. Рассмотрим размножение хвойных на примере сосны (рис. 10.23).
Сосна — однодомное (обоеполое растение). На верхушках молодых побегов образуются красноватые женские шишки. Шишка состоит из оси, на которой расположены чешуи, а на каждой чешуе находятся два семязачатка. У основания молодых побегов сосны расположены группы зеленовато-жёлтых мужских шишек. В них формируется пыльца. Каждая пылинка снабжена двумя воздушными мешками. Созревшая пыльца с помощью ветра попадает на семязачатки женских шишек, после чего их чешуи плотно смыкаются и склеиваются смолой. Пылинка остаётся лежать внутри семязачатка до весны следующего года. От опыления до оплодотворения проходит 12—14 месяцев. Пыльца прорастает, из вегетативной клетки развивается пыльцевая трубка, а из генеративной — два спермия. Один сливается с яйцеклеткой, а второй погибает. Из зиготы развивается зародыш с запасом питательных веществ, из покрова семязачатка образуется кожура семени. После созревания семян чешуйки шитики расходятся и семена высыпаются.
Значение. Наиболее широко хвойные распространены в умеренной зоне Северного полушария, где они образуют тайгу. Человек использует хвойные как строительный материал, сырьё для целлюлозно-бумажной промышленности, топливо, как источник получения смол, эфирных масел, лекарственных средств и т.д. Древесина лиственницы отличается устойчивостью к гниению. Секвойя и мамонтово дерево — представители кипарисовых — обладают ценной древесиной («красное дерево»). Некоторые секвойи достигают высоты более 100 м и возраста 3-4 тыс. лет. Представители саговниковых используются человеком в пищу («хлебное дерево»).
10.3.2.2. Отдел Покрытосеменные (Цветковые)
Покрытосеменные — эволюционно наиболее молодая и самая многочисленная группа растений. Отдел включает около 250 тыс. видов. Покрытосеменные произрастают во всех климатических зонах, составляют основную массу растительного вещества биосферы и являются важнейшими производителями (продуцентами) органики на суше.
Доминирующая: роль цветковых обусловлена рядом прогрессивных особенностей:
- Появление цветка — органа, совмещающего функции бесполого размножения (образование спор) и полового (формирование семени).
- Образование в составе цветка завязи, заключающей в себе семязачатки (семяпочки) и предохраняющей их от неблагоприятных воздействий среды.
- Формирование из завязи плода: семена находятся внутри плода, и поэтому защищены (покрыты) околоплодником. Кроме того, плод позволяет использовать различных агентов для распространения семян (насекомых, птиц, летучих мышей, а также потоки воздуха и воды).
- Двойное оплодотворение, в результате которого образуются диплоидный зародыш и триплоидный (а не гаплоидный, как у голосеменных) эндосперм.
- Максимальная редукция гаметофита (рис. 10.24). Мужской гаметофит — пыльцевое зерно — состоит из двух клеток: вегетативной и генеративной, которая делится, образуя два спермия. Женский гаметофит состоит из восьми клеток зародышевого мешка, одна из которых становится яйцеклеткой.
- Размножение и семенами, и вегетативными органами.
- Усложнение и высокая степень дифференциации органов и тканей. В частности, наиболее совершенная проводящая система: ксилема представлена сосудами, а не трахеидами, во флоэме ситовидные трубки имеют членистое строение, появляются клетки-спутники.
- Быстрое протекание процессов роста и развития у однолетних форм.
- Большое разнообразие жизненных форм: деревья, кустарники, кустарнички, полукустарники, многолетние травы, однолетние травы и т.д.
- Могут образовывать сложные многоярусные сообщества благодаря большому разнообразию жизненных форм.
Значение. Практически все культурные растения принадлежат к этому отделу. Древесина покрытосеменных используется в промышленности, строительстве, производстве бумаги, мебели и т.д. Многие цветковые растения используются в медицине.
Систематика. Отдел Покрытосеменные (Цветковые) делят на два класса: Двудольные и Однодольные. Однодольные произошли от двудольных и являются менее многочисленными. Двудольные отличают от однодольных по ряду признаков (табл. 10.19). По каждому из признаков существует множество исключений. Единственный абсолютный признак — строение зародыша.
Классы Цветковых делят на семейства главным образом на основании строения цветка и плода. При этом используют формулу цветка (табл. 10.20).
В таблице 10.21 представлена сравнительная характеристика отделов высших растений.
ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА
Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
10. Царство РАСТЕНИЯ
Просмотров:
74 979
Советы, которые помогут эффективно подготовиться к ЕГЭ по БИОЛОГИИ
1. Познакомься с актуальными демоверсией, спецификацией, кодификатором на официальном сайте, чтобы четко понимать, что тебя ждет и какие требования предъявляются к уровню подготовки.
2. Определись, сколько баллов ты хотел бы получить.
3. Составь расписание своих занятий и старайся максимально его соблюдать. Регулярность занятий очень важна.
4. Используй несколько источников для подготовки: школьные учебники, пособия для поступающих в ВУЗы, видео уроки и т.п.
5. Главное – понимание! Старайся разобраться в теме, а потом можно зазубрить некоторые понятия.
6. Учись внимательно читать и понимать задание.
7. Начинай с легкого и постепенно усложняй материал. Но не бойтесь сложных заданий, если хочешь высокий балл.
8. Постоянно повторяй пройденный материал, решай тесты, задачи и теоретические вопросы.
Повторять рекомендуется сразу в течение 15-20 минут, через 8-9 часов и через 24 часа. Полезно повторять материал за 15-20 минут до сна и утром, на свежую голову.
9. Систематизируй материал, создай целостную и структурированную систему знаний.
10. И не забывай высыпаться, сбалансированно питаться и вести здоровый образ жизни. Это хорошо влияет на память:)
Вопросы:
-
Понятие о движении. Тропизмы, настии.
-
Физиологическая природа движений.
1. Понятие о движении. Тропизмы, настии
Растительный организм обладает
определённой ориентацией всех органов
в пространстве, т. е. движением.
Различают два вида движения – ростовые
и турговые.
Турговые обусловлены неравномерным
содержанием воды с разных сторон клетки,
органа.
Ростовые – воздействием внешних фактов.
Различают два вида ростовых движений:
тропизмы и настии.
Тропизмы
вызваны односторонним движением
фактора.
По природе фактора различают:
1. Геотропизм – движения, вызванные
односторонним действием силы земного
притяжения. Корень изгибается вниз
(положительный геотропизм, а стебель
вверх — отрицательный). Для того чтобы
произошёл геотропический изгиб,
проростки должны быть выдержаны
определённое время в горизонтальном
положении (время презентации).
При пониженных положительных температурах
наблюдается диагеотропизм – образование
стелющихся форм. Геотропическая реакция
меняется в ходе онтогенеза, например,
у цветоножек мака до распускания бутона
характерен положительный геотропизм,
а после распускания – отрицательный.
2. Фототропизм вызывается неравномерным
освещением. Для стебля характерен
положительный фототропизм, корня —
отрицательный. У листьев различают
диафототропизм – расположение их
перпендикулярно к падающему свету при
большой его интенсивности. Для
фототропизма также характерно время
презентации, которое зависит от силы
одностороннего освещения. Направление
фототропизма меняется в зависимости
от онтогенеза, например, у настурции
до цветения для стебля характерен
положительный фототропизм, а после
созревание семян — отрицательный.
1. Хемотропизм – изгибы, вызванным
односторонним действием химических
веществ. Характерны для пыльцевых
трубок, движущихся к завязи, для корня.
2. Гидротропизм – движения корня
вызванные односторонним движением
воды.
3. Аэротропизм – движения корня,
вызванные неравномерным распределением
О2.
4. Тигмотропизм – реакция лазающих
и вьющихся растений на одностороннее
механическое воздействие.
Настии – движения, вызванные
диффузным действием фактора. Они делятся
на два типа:
Эпинастии – изгиб вниз, гипонастии
– изгиб вверх. Характерен для органов,
имеющих дорзовентральное строение
(листья). К эпинастиям относят полегание
хлебов, опускание ветвей, листьев, к
гипонастиям – закрывание цветков.
1. Термонастии – движение
вызванные сменой t: у
тюльпанов, кактусов при повышении t
– цветки раскрываются, при понижении
закрываются.
2. Фотонастии – движения,
вызванные сменой света и темноты,
например, у одуванчика при наступлении
темноты цветки закрываются (гипонастии)
на свету открываются (эпинастии), у
табака – наоборот.
3. Никтинастии – движение цветков
и листьев, связанных с комбинированным
изменением света и t, что
происходит при смене дня ночью. Например,
у клевера, утром листья поднимаются
(эпинастии).
4. Сейсмонастии – движения,
вызванные толчком или прикосновением,
например, у стыдливой мимозы при
прикосновении листья опускаются.
5. Автонастии – самопроизвольные
ритмические движения листьев, не
связанные с каким- либо изменением
внешних условий. Например, листья фасоли
в течение 1 часа листья опускаются и
поднимаются.
термонастии
фотонастии
Физиологическая природа движений
Значение движений. Все движения
приводят к определённой ориентировке
органов в пространстве, что является
лучшим приспособлением к поглощению
света, питательных веществ. Например,
отрицательный фототропизм корня и
положительный стебля помогает растению
выносить листья к свету; положительный
геотропизм корня лучше использовать
питательные вещества. Открывание и
закрывание цветков в определённые
периоды является приспособлением к
лучшему опылению и питанию у насекомоядных
растений.
В основе ростовых движений неравномерный
рост разных сторон органа. Например,
при геотропическом изгибе у стебля
быстрее растёт нижняя, а у корня верхняя
сторона. Эпинастии связаны с разрастанием
морфологически верхней, а гипонастии-
морфологически нижней стороны.
В 1928г. И.Г. Холодный и Ф. Вент выдвинули
гормональную теорию тропизмов. При
нормальном освещении и вертикальном
положении проростка ауксин из верхушки
органа равномерно распределяется в
растении, поэтому рост происходит
равномерно. При одностороннем освещении
ауксин концентрируется на затенённой
стороне, она растёт быстрее. При
горизонтальном положении проростка
ауксин сосредотачивается на нижней
стороне, это приводит к преимущественному
её росту – стебель изгибается вверх;
для корня эти концентрации являются
ингибирующими, поэтому корень растёт
вниз.
Существуют различные гипотезы,
объясняющие первичный механизм
восприятия геотропического раздражения.
Согласно одной из них, под действием
одностороннего влияния силы тяжести
в клетках происходит перемещение более
тяжёлых частиц, главным образом
крахмальных зёрен – амилопластов. Эти
частицы – статолиты скапливаются на
одной стороне, куда притекают ауксины.
Во время голодания крахмальные зёрна
исчезают, их так же нет у мутантов
кукурузы – геотропическая реакция
теряется. У некоторых растений, у которых
крахмальных зёрен нет, а геотропическая
реакция проявляется, роль статолитов
выполняют митохондрии, диктиосомы.
Для восприятия одностороннего освещения
должен существовать пигмент. Таким
пигментов считают, являются флавопротеиды,
т. к. наибольший фототропический эффект
вызывает синяя часть спектра. Одностороннее
восприятие пигментом света вызывает
гиперполяризацию тканей, и как следствие
концентрацию ауксинов на затененной
стороне.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Определение понятия раздражимости
Известно, что окружающая среда оказывает непосредственное воздействие на живые организмы. История развития органического мира показывает, как формировалась система ответных реакций организма на меняющиеся условия среды.
Рефлекс — это система реакций организма на изменения, происходящие с внешней и внутренней средой, при участии ЦНС (центральной нервной системы).
Однако формирование рефлексов произошло позже, поэтому возникает вполне логичный вопрос: как до рефлексов организмы реагировали на среду? Какие у них были для этого механизмы? Для этого нужно обратиться к понятию раздражимости.
Раздражимость — это общебиологическая способность организмов создавать ответ на факторы, которые оказывают воздействие из внешней среды.
Эта способность есть у всех живых структур — начиная с клеток и заканчивая биогеоценозом. Раздражимость — главный признак жизни. При этом клетки и организмы реагируют по-разному:
- клетки — когда концентрация ионов и соединений меняется;
- организмы — на любое воздействие: механическое, химическое, электрическое, радиоактивное и др.
Согласно последним исследованиям, организмы реагируют даже на человеческие эмоции.
Благодаря раздражимости осуществляется регуляция функций организмов и поддержание гомеостаза, то есть — природного равновесия. В структуре есть элемент, который отыгрывает важнейшую роль: это рецепторы.
Рецепторы представляют собой специализированные органы или клетки, которые воспринимают влияние факторов окружающей среды и превращают их в специальные сигналы, после чего передают их другим клеткам или организму.
Раздражимость чаще всего проявляется внешне: в виде движений, таких как сжатие, изменение формы, объема, цвета и др.
Такие двигательные реакции создает как организм, так и отдельные его части.
Варианты движения организмов
Таксисы
Таксисы — это движения отдельного одноклеточного или многоклеточного организма в пространстве с учетом расположения раздражителя, при этом последний имеет конкретную направленность.
Здесь важно направление движения, так как оно лежит в основе деления таксисов на положительные (движение к раздражителю) и отрицательные (движение от раздражителя).
Положительный таксис — движение простейших — амеб, эвглены, инфузорий — к освещенному участку. Свет — источник тепла и пищи.
В зависимости от раздражителя может быть:
- фототаксис. Проявляется в виде реакции на свет;
- хемотаксис. Это реакция на химическое вещество;
- термотаксис. Реакция на определенную температуру.
Активные движения растений — результат раздражимости и сократимости белковых молекул в цитоплазме растительных клеток, которые сочетаются с процессами роста.
Настии
Настии являются движениями органов растений, вызванные действиями раздражителя без определенной направленности.
С учетом характера раздражителя, выделяют:
- гипонастии;
- никтинастии;
- фотонастии;
- сейсмонастии;
- термонастии.
Раскрытие и закрытие цветка — пример фото- и термонастии.
Складывание листьев — пример термонастии (реакция на изменения температуры).
Причинами настий могут быть такие процессы как растягивание органов в результате усиленного роста, изменение внутриклеточного давления в отдельных группах клеток (в ответ на изменение концентрации клеточного сока). В этом случае речь идет о гипонастии.
Тропизмы
Тропизмы являются ростовыми движениями — это ответная реакция на раздражитель с определенной направленностью.
Как и таксисы, тропизмы бывают положительными и отрицательными. Причина тропизмов в том, что клетки в различных сторонах органа растения в ответ на действие фитогормонов делятся неравномерно.
Есть два варианта тропизмов:
- Фототропизм. Когда стебель растения растет в направлении света.
- Геотропизм. Когда кончик корня растет вниз.
Нутации
Нутации — способность растений совершать круговые или маятниковые движения.
Это возможно благодаря изменениям величины тургорного давления и интенсивности роста противоположных частей конкретного органа, которые периодически повторяются.
Пример нутаций — способность усиков и стеблей вьющихся растений находить опорные точки. Так делают тыква, виноград, хмель, горох и др.
Нутации помогают вьющимся, лазающим и цепким растениям занимать благоприятное положение в пространстве.
Преподаватель биологии и химии