Егэ химия металлы повышенный уровень

  • Курс

Меня зовут Быстрицкая Вера Васильевна.
Я репетитор по Химии

[[pictureof]]

Вам нужны консультации по Химии по Skype?
Если да, подайте заявку. Стоимость договорная.
Чтобы закрыть это окно, нажмите «Нет».

  ХИМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ 

По химическим свойствам металлы подразделяют на:

1)Активные (щелочные  и щелчноземельные металлы, Mg, Al, Zn  и др.)

2) Металлы средней активности (Fe, Cr, Mn и др.) ;

3)Малоактивные 

4) Благородные металлы – Au, Pt, Pd и др.

По химическим свойствам металлы подразделяют на:

1)Активные (щелочные  и щелчноземельные металлы, Mg, Al, Zn  и др.)

2) Металлы средней активности (Fe, Cr, Mn и др.) ;

3)Малоактивные 

4) Благородные металлы – Au, Pt, Pd и др.

В реакциях  — только  восстановители. Атомы металлов легко отдают электроны внешнего (а некоторые – и предвнешнего) электронного слоя, превращаясь в положительные ионы.

Возможные степени окисления Ме

Низшая 0,+1,+2,+3

Высшая +4,+5,+6,+7,+8

1.ВЗАИМОДЕЙСТВИЕ С НЕМЕТАЛЛАМИ 

С ВОДОРОДОМ

Реагируют при нагревании металлы IA  и  IIA группы, кроме бериллия — образуются  твёрдые нестойкие  вещества  гидриды. Остальные металлы не реагируют.

2K + H₂ = 2KH (гидрид калия)

Ca + H₂ = CaH₂ (гидрид кальция)

С КИСЛОРОДОМ 

Реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. 

Щелочные металлы при нормальных условиях  образуют  оксиды, пероксиды, надпероксиды  (литий – оксид, натрий – пероксид, калий, цезий, рубидий – надпероксид)

4Li + O2 = 2Li2O (оксид)

2Na + O2 = Na2O2 (пероксид)

K+O2=KO2 (надпероксид)

Остальные металлы главных подрупп  при нормальных условиях образуют оксиды со степенью окисления, равной номеру группы  
2Сa+O2=2СaO

4Al + O2 = 2Al2O3

Металлы побочных подрупп образуют оксиды при нормальных условиях и при нагревании оксиды  разной степени окисления, а  железо железную окалину Fe3O4  (Fe⁺²O∙Fe2⁺³O3)

3Fe + 2O2 = Fe3O4

4Cu + O₂ = 2Cu₂⁺¹O (красный)             2Cu + O₂ = 2Cu⁺²O (чѐрный ); 

 2Zn +  O₂ = ZnO

4Cr + 3О2 = 2Cr2О3 

С ГАЛОГЕНАМИ 

Образуются   галогениды (фториды, хлориды, бромиды, иодиды). 

Щелочные при нормальных условиях с F, Cl , Br  воспламеняются:

2Na + Cl2 = 2NaCl (хлорид)

Щелочноземельные  и алюминий реагируют при нормальных условиях:

Сa+Cl2=СaCl2

2Al+3Cl2 = 2AlCl3

Металлы побочных подгрупп при повышенных температурах

Cu + Cl₂  =  Cu⁺²Cl₂

Zn +  Cl₂ = ZnCl₂

2Fe + ЗС12 = 2Fe⁺³Cl3 хлорид железа (+3)

2Cr + 3Br2 = 2Cr⁺³Br3 

2Cu + I₂ = 2Cu⁺¹I (не бывает йодида меди (+2)!) 

С СЕРОЙ

Реакция идет при нагревании даже с щелочными металлами, исключение: с ртутью при нормальных условиях. Образуются сульфиды.

Реагируют все металлы, кроме золота и платины.

2K + S  = K2S  

Сa+S = СaS 

2Al+3S = Al2S3

Cu + S = Cu⁺²S 

2Cr + 3S = Cr2⁺³S3 

Fe + S = Fe⁺²S

С ФОСФОРОМ  

Реакции  протекают при нагревании: Образуются  фосфиды. 

 3Ca + 2P =Са3P2  

 A1 + P = A1P

Фосфиды неустойчивы, разлагаются водой и кислотами с образованием фосфина.

С  АЗОТОМ 

Реакции протекает при нагревании (исключение: литий с азотом при нормальных условиях).

Образуются  нитриды            

6Li + N2 = 3Li2N (нитрид лития) (н.у.) 

3Mg + N2 = Mg3N2 

2Al + N2 = 2A1N 

2Cr + N2 = 2CrN 

3Fe + N2 = Fe₃⁺²N₂¯³

С УГЛЕРОДОМ  

Реакции протекает при нагревании. Образуются  карбиды  со степенью окисления со степенью окисления углерода от -4 до -1. У щелочных и щелочноземельных металлов -1, у остальных чаще всего -4.       

2Li + 2C =  Li2C2, 

Са + 2С = СаС2

4Al+3C = Al4C3

С  КРЕМНИЕМ

Реакции  протекают при нагревании до высоких температур.  Образуются  силициды.       
                 4Cs + Si  = Cs4Si,

2. ВЗАИМОДЕЙСТВИЕ  МЕТАЛЛОВ С ВОДОЙ

С водой реагируют металлы, стоящие до водорода в электрохимическом ряду напряжений 

           

Щелочные и щелочноземельные металлы реагируют с водой без нагревания , образуя  растворимые гидроксиды( щелочи ) и водород,  алюминий (после разрушения оксидной пленки  — амальгирование), 

магний при нагревании, алюминий после амальгирования (снятия оксидной пленки амальгамой –сплавы ртути с металлами) – образуются  нерастворимые основания и водород.

2Na  + 2HOH =  2NaOH  + H2↑              
Сa  +  2HOH =  Ca(OH)2   + H2↑

2Аl + 6Н2O = 2Аl(ОН)3 + ЗН2↑

Остальные металлы реагируют с водой только в раскаленном состоянии , образуя оксиды (железо – железную окалину) 

Zn + Н2O =  ZnO + H2↑                      
3Fe   +  4HOH  =   Fe3O4  +  4H2↑

2Cr + 3H₂O =  Cr₂O₃ + 3H₂↑

3. ВЗАИМОДЕЙСТВИЕ  МЕТАЛЛОВ С КИСЛОРОДОМ  И ВОДОЙ 

На воздухе железо и хром легко окисляется в присутствии влаги (ржавление):

4Fe + 3O2 + 6H2O = 4Fe(OH)3

4Cr + 3O2 + 6H2O = 4Cr(OH)3

4. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ОКСИДАМИ  

Металлы взаимодействуют с оксидами неметаллов и менее активных металлов.

Металлы (Al, Mg,Са ), восстанавливают  при высокой температуре  неметаллы или  менее активные металлы из их оксидов → неметалл или малоактивный металл и оксид (кальцийтермия, магнийтермия, алюминотермия)

2Al + Cr2O3   =  2Cr + Al2O3

ЗСа + Cr₂O₃ = ЗСаО + 2Cr (800 °C)

8Al+3Fe3O4 = 4Al2O3+9Fe (термит)

2Mg + CО2 = 2MgO + С                    
Mg + N2O = MgO + N2↑

Но реакции могут идти и по другому механизму:
Zn + CО2 = ZnO+ CO                         

3Zn + SО2 = ZnS + 2ZnO  

Металлы  железо и хром реагируют со  оксидами, уменьшая степень окисления

Cr + Cr2⁺³O3  = 3Cr⁺²O

Fe+ Fe2⁺³O3 = 3Fe⁺²O

5. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ПЕРОКСИДАМИ 

Щелочные металлы при взаимодействии с пероксидами и надпероксидами переводят их в оксиды

2Na + Na2O2  = 2Na2O 

3K+  KO2 = 2K2O

6. ВЗАИМОДЕЙСТВИЕ С КИСЛОТАМИ  (исключение HNO3 и H2SO4 (конц)

Металлы, стоящие в электрохимическом ряду напряжений металлов левее водорода, вытесняют его из разбавленных кислот → соль и водород.
Мg + 2НС1 = МgСl2 + Н2↑
Al + 2НС1 =  Al⁺³Сl₃ + Н2↑
Хром и железо проявляют степень +2

С концентрированной серной и азотной любой концентрации реакции идет по другому механизму:

*Пассивация – металлы не реагируют с концентрированной кислотой  без нагревания из-за наличия  плотной оксидной плёнки  (Al,Cr,Fe).

Золото и платина растворяются только в царской водке (один объем концентрированной (63%-ной) азотной кислоты и три объема концентрированной соляной кислоты), с образованием комплексных соединений золота и платины:

Аu + HNО3 + 4НСl = Н[АuСl4] + NO + 2Н2О 

(Тетрахлороаурат(III) водорода (золотохлористоводородная кислота))

ЗРt + 4HNО3 + 18НС1 = ЗН2[РtС16] + 4NО + 8Н2О

(Тетрахлорплатинат(III) водорода (платинохлористоводородная кислота)

7. РЕАКЦИИ С СОЛЯМИ

Активные металлы вытесняют из  солей менее активные.

Восстановление из растворов солей:

CuSO4 + Zn = Zn SO4 + Cu 

FeSO4 + Cu =

Mg + CuCl2(pp) = MgCl2 + Сu 

Восстановление металлов из расплавов их солей

3Na+ AlCl₃ =  3NaCl + Al

TiCl2 + 2Mg  = MgCl2 +Ti

Металлы  групп В реагируют с солями, понижая степень окисления.

2Fe⁺³Cl3 + Fe = 3Fe⁺²Cl2 

8. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ СО ЩЕЛОЧАМИ 

Со щелочами взаимодействуют только те металлы, оксиды и гидроксиды которых обладают амфотерными свойствами ((Zn, Al, Cr(III), Fe(III) и др

РАСПЛАВ → соль металла + водород.   

2NaOH  + Zn → Na2ZnO2 + H2↑ (цинкат натрия)

2Al + 2(NaOH · H2O) = 2NaAlO2 + 3H2

РАСТВОР  → комплексная  соль металла + водород.

2NaOH + Zn0 + 2H2O = Na2[Zn+2(OH)4] + H2↑ (тетрагидроксоцинкат натрия) 

2Al+2NaOH + 6H2O = 2Na[Al(OH)4]+3H2↑ 

1.ВЗАИМОДЕЙСТВИЕ ВОДОРОДА С ОКСИДАМИ 

Восстановливает  оксиды  металлов (неактивных) до простых веществ (водородотермия): 

CuO + H₂ = Cu + H₂O 

2. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ОКСИДАМИ  (оксидами неметаллов и менее активных металлов)

Металлы (Al, Mg,Са ), восстанавливают  при высокой температуре  неметаллы или  менее активные металлы из их оксидов → неметалл или малоактивный металл и оксид (кальцийтермия, магнийтермия, алюминотермия)

2Al + Cr2O3   =  2Cr + Al2O3

ЗСа + Cr₂O₃ = ЗСаО + 2Cr (800 °C)

8Al+3Fe3O4 = 4Al2O3+9Fe (термит)

3.ВЗАИМОДЕЙСТВИЕ  УГЛЕРОДА С ОКСИДАМИ 

Углерод восстанавливает при нагревании металлы из их оксидов(карботермия), в углекислом газе  уменьшает степень окисления

2ZnO + C   = 2Zn + CO 

4С + Fe₃O₄  = 3Fe + 4CO

4.НЕПОЛНОЕ СГОРАНИЕ БЕСКИСЛОРОДНЫХ КИСЛОТ 

Безводные бескислородные кислоты (бинарные соединения) сгорают в атмосфере кислорода

2H2S + O2 = 2S + 2H2O 





7(Б) Тесты ФИПИ 2015 по теме «Физические свойства и строение металлов и неметаллов» блок 1





7(Б) Тесты ФИПИ 2015 по теме «Физические свойства и строение металлов и неметаллов» блок 2





7(Б) Тесты ЕГЭ ФИПИ 2015 к теме «Свойства металлов»

Химические свойства металлов

1. Щелочные (Li-Fr), щелочно-земельные (Ca-Ra) металлы, Mg

1) Реагируют с кислородом (подробнее)

Все Щ металлы, кроме Li, образуют не оксиды, а пероксиды:

2Li + O2 → 2Li2O

2Na + O2 → Na2O2

Оксиды получают взаимодействием пероксидов с металлом:

Na2O2 + 2Na → 2Na2O

2) Реагируют с водородом (подробнее)

3) Реагируют с водой (подробнее)

4) Реагируют с галогенами, серой, азотом, фосфором, углеродом:

3Mg + 2P → Mg3P2 (t)

2Na + Cl2 → 2NaCl

Ca + 2C → CaC2 (t)

5) Реагируют с некоторыми кислотными оксидами:

CO2 + 2Mg → 2MgO + C

SiO2 + 2Mg → 2MgO + Si
SiO2 + 2Ca → 2CaO + Si
SiO2 + 2Ba → 2BaO + Si

6) Магний как восстановитель используется в производстве кремния и некоторых металлов:

2Mg + TiCl4 → 2MgCl2 + Ti (t)

7) Реакции Щ и ЩЗ металлов с растворами солей или кислот не рассматриваются, так как эти металлы очень бурно взаимодействуют с водой, и суммарная реакция изменится.

2. Алюминий

1) Реагирует с кислородом: 4Al + 3O2 → 2Al2O3

2) Не реагирует с водородом (из металлов только Щ и ЩЗ металлы взаимодействуют с водородом)

3) Реагирует с водой, если удалить оксидную пленку:

2Al + 6H2O → 2Al(OH)3 + 3H2

4) Реагирует с щелочами с выделением водорода (также Be и Zn):

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

5) Реагируют с галогенами, серой, азотом, фосфором, углеродом:

2Al + 3Cl2 → 2AlCl3

4Al + 3C → Al4C3

2Al + N2 → 2AlN (t)

6) Используется для восстановления менее активных металлов (алюмотермия):

3FeO + 2Al →  3Fe + Al2O3
Cr2O3 + 2Al → 2Cr + Al2O3

7) Реагирует с кислотами-неокислителями, так как находится до водорода в ряду напряжений, с выделением водорода:

Al + H2SO4 (р) → Al2(SO4)3 + H2

8) Вытесняет менее активные металлы из их солей:

2Al + 3CuSO4 → Al2(SO4)3 + 3Cu

9) На холоде пассивируется концентрированными растворами серной и азотной кислот. При нагревании реагирует без выделения водорода:

Al + 4HNO3(конц.) → Al(NO3)3 + NO + 2H2O (только при нагревании)

8Al + 30HNO3(разб.) → 8Al(NO3)3 + 3NH4NO3 + 9H2O (при любой температуре, возможно образование N2O)

2Al + 6H2SO4(конц.) → Al2(SO4)3 + 3SO2 + 6H2O (только при нагревании)

2Al + 3H2SO4(разб.) → Al2(SO4)3 + 3H2

3. Железо

1) Реагирует с кислородом:

3Fe + 2O2 → Fe3O4 (железная окалина)

В присутствии воды образуется ржавчина:
4Fe + 3O2 + 6H2O  → 4Fe(OH)3

2) Не реагирует с водородом (только Щ и ЩЗ металлы взаимодействуют с водородом)

Fe + H2 → реакция не идет

3) Реагирует с парами воды с образованием оксида:

3Fe + 4H2O → Fe3O4 + 4H2 (t)

4) Не реагирует с щелочами

Fe + NaOH → реакция не идет

5) Реагирует с кислородом, серой, галогенами при нагревании:

2Fe + 3F2 → 2FeF3 (образуется соль Fe+3)

2Fe + 3Cl2 → 2FeCl3 (образуется соль Fe+3)

2Fe + 3Br2 → 2FeBr3 (образуется соль Fe+3)

Fe + I2 → FeI2 (образуется соль Fe+2)

Fe + S → FeS

6) Реагирует с кислотами-неокислителями, так как находится до водорода в ряду напряжений, с выделением водорода:

Fe + H2SO4 (разб.) → FeSO4 + H2 (образуется соль Fe+2)

Fe + 2HCl → FeCl2 + H2

7) Вытесняет менее активные металлы из их солей:

Fe + CuSO4 → FeSO4 + Cu (образуется соль Fe+2)

8) На холодe пассивируется концентрированными растворами серной и азотной кислот (т.е. реакция не протекает). При нагревании реагирует без выделения водорода:

Fe + 6HNO3(конц.) → Fe(NO3)3 + 3NO2 + 3H2O (при нагревании, образуется соль Fe+3)

Fe + 4HNO3(разб.) → Fe(NO3)3 + NO + 2H2O (образуется соль Fe+3)

2Fe + 6H2SO4(конц.) → Fe2(SO4)3 + 3SO2 + 6H2O (при нагревании, образуется соль Fe+3)

9) Соединения Fe+3 реагируют с железом, медью, восстанавливаясь до Fe+2:

2FeCl3 + Fe → 3FeCl2

Fe3O4 + Fe → 4FeO

Fe2O3 + Fe  → 3FeO

4. Хром

1) Реагирует с кислородом:

4Cr + 3O2 → 2Cr2O3

2) Не реагирует с водородом (только Щ и ЩЗ металлы взаимодействуют с водородом)

Cr + H2 → реакция не идет

3) Реагирует с парами воды с образованием оксида:

2Cr + 3H2O → Cr2O3 + 3H2 (t)

4) Не реагирует с щелочами

Cr + NaOH → реакция не идет

5) Реагирует с кислородом, серой, галогенами при нагревании:

2Cr + 3Cl2 → 2CrCl3 (образуется соль Fe+3)

2Cr + 3Br2 → 2CrBr3 (образуется соль Fe+3)

Cr + S → Cr2S3 (образуется соль Fe+3)

6) Реагирует с кислотами-неокислителями, так как находится до водорода в ряду напряжений, с выделением водорода:

Cr + H2SO4 (разб.) → CrSO4 + H2 (образуется соль Cr+2)

Cr + 2HCl → CrCl2 + H2 (образуется соль Cr+2)

7) Пассивируется концентрированными растворами серной и азотной кислот (реакция идут только при нагревании)

Cr + 6HNO3(конц.)  →  Cr(NO3)3 + 3NO2 + 3H2O (t)

Cr + 4HNO3(разб.)  →  Cr(NO3)3 + NO + 2H2O.

5. Медь

1) Реагирует с кислородом:

2Cu + O2 → 2CuO

2) Реагирует с соединениями Cu+2 с образованием промежуточной степени окисления +1:

CuO + Cu → Cu2O

CuCl2 + Cu → 2CuCl

3) Не реагирует с водородом (только Щ и ЩЗ металлы взаимодействуют с водородом)

Cu + H2 → реакция не идет

4) Не реагирует с парами воды (так как находится в ряду напряжений после водорода):

Cu + H2O → реакция не идет

5) Не реагирует с щелочами

Cu + NaOH → реакция не идет

6) Реагирует с кислородом, серой, галогенами при нагревании:

Cu + Cl2 → CuCl2 (образуется соль Cu+2)

Cu + Br2 → CuBr2 (образуется соль Cu+2)

2Cu + I2 → 2CuI (образуется соль Cu+1)

Cu + S → CuS (образуется соль Cu+2)

7) Не реагирует с N2, C, Si.

8) Не реагирует с кислотами-неокислителями, так как находится правее водорода в ряду напряжений:

Cu + H2SO4(р) →  реакция не идет.

9) Реагирует с кислотами-окислителями как слабый восстановитель:

Cu + 4HNO3(конц.) → Cu(NO3)2 + 2NO2 + 2H2O

3Cu + 8HNO3(разб.) → 3Cu(NO3)2 + 2NO + 4H2O

Cu + 2H2SO4(конц.) → CuSO4 + SO2 + 2H2O

7. Цинк

1) Реагирует с кислородом: 2Zn + O2 → 2ZnO

2) Не реагирует с водородом (из металлов только Щ и ЩЗ металлы взаимодействуют с водородом)

3) Реагирует с парами воды, т.е. при сильном нагревании, с образованием оксида:

Zn + H2O → ZnO + H2

4) Реагирует с твердыми щелочами и растворами щелочей с выделением водорода (также Be и Al):

Zn + 2NaOH(тв.) → Na2ZnO2 + H2 (t)

Zn + 2NaOH + 2H2O → Na2[Zn(OH)4] + H2

5) Реагируют с галогенами, серой при нагревании:

Zn + Cl2 → ZnCl2

Zn + S → ZnS

6) Реагирует с кислотами-неокислителями, так как находится до водорода в ряду напряжений, с выделением водорода:

Zn + H2SO4 (разб.) → ZnSO4 + H2

8) Реагирует с кислотами-окислителями:

4Zn + 5H2SO4(конц.) → 4ZnSO4 + H2S + 4H2O

Так как Zn находится примерно в центре ряда напряжений, то в реакциях с азотной кислотой могут образовываться разные продукты:

Zn+4HNO3(конц.) → Zn(NO3)2 + 2NO2 + 2H2O

4Zn + 10HNO3(разб.) → 4Zn(NO3)2 + NH4NO3 + 3H2O.

С развитием производства металлов (простых веществ) и сплавов связано возникновение цивилизации (бронзовый век, железный век).

Начавшаяся примерно $100$ лет назад научно-техническая революция, затронувшая и промышленность, и социальную сферу, также тесно связана с производством металлов. На основе вольфрама, молибдена, титана и других металлов начали создавать коррозионностойкие, сверхтвердые, тугоплавкие сплавы, применение которых сильно расширило возможности машиностроения. В ядерной и космической технике из сплавов вольфрама и рения делают детали, работающие при температурах до $3000°С$; в медицине используют хирургические инструменты из сплавов тантала и платины, уникальной керамики на основе оксидов титана и циркония.

И, конечно же, мы не должны забывать, что в большинстве сплавов используют давно известный металл железо, а основу многих легких сплавов составляют сравнительно «молодые» металлы — алюминий и магний.

Сверхновыми стали композиционные материалы, представляющие, например, полимер или керамику, которые внутри (как бетон железными прутьями) упрочнены металлическими волокнами из вольфрама, молибдена, стали и других металлов и сплавов — все зависит от поставленной цели и необходимых для ее достижения свойств материала.

Вы уже имеете представление о природе химической связи в кристаллах металлов. Напомним на примере одного из них — натрия, как она образуется. На рисунке изображена схема кристаллической решетки натрия. В ней каждый атом натрия окружен восемью соседями. У атома натрия, как и у всех металлов, имеется много свободных валентных орбиталей и мало валентных электронов. Электронная формула атома натрия: $1s^{2}2s^{2}2p^{6}3s^{1}3p^{0}3d^{0}$, где $3s, 3p, 3d$ — валентные орбитали.

Единственный валентный электрон атома натрия $3s^1$ может занимать любую из девяти свободных орбиталей — $3s$ (одна), $3р$ (три) и $3d$ (пять), ведь они не очень отличаются по уровню энергии. При сближении атомов, когда образуется кристаллическая решетка, валентные орбитали соседних атомов перекрываются, благодаря чему электроны свободно перемещаются с одной орбитали на другую, осуществляя связь между всеми атомами кристалла металла.

Такую химическую связь называют металлической. Металлическую связь образуют элементы, атомы которых на внешнем слое имеют мало валентных электронов по сравнению с большим числом внешних энергетически близких орбиталей. Их валентные электроны слабо удерживаются в атоме. Электроны, осуществляющие связь, обобществлены и перемещаются по всей кристаллической решетке в целом нейтрального металла.

Веществам с металлической связью присущи металлические кристаллические решетки, которые обычно изображают схематически так, как показано на рисунке. Катионы и атомы металлов, расположенные в узлах кристаллической решетки, обеспечивают ее стабильность и прочность (обобществленные электроны изображены в виде черных маленьких шариков).

Металлическая связь — это связь в металлах и сплавах между атомионами металлов, расположенными в узлах кристаллической решетки, осуществляемая обобществленными валентными электронами.

Некоторые металлы кристаллизуются в двух или более кристаллических формах. Это свойство веществ — существовать в нескольких кристаллических модификациях — называют полиморфизмом.

Например, железо имеет четыре кристаллических модификации, каждая из которых устойчива в определенном температурном интервале:

  • $α$ — устойчива до $768°С$, ферромагнитная;
  • $β$ — устойчива от $768$ до $910°С$, неферромагнитная, т.е. парамагнитная;
  • $γ$ — устойчива от $910$ до $1390°С$, неферромагнитная, т.е. парамагнитная;
  • $δ$ — устойчива от $1390$ до $1539°С$ ($t°_{пл.} железа), неферромагнитная.

Олово имеет две кристаллические модификации:

  • $α$ — устойчива ниже $13,2°С$ ($ρ=5,75 г/см^3$). Это серое олово. Оно имеет кристаллическую решетку типа алмаза (атомную);
  • $β$ — устойчива выше $13,2°С$ ($ρ=6,55 г/см^3$). Это белое олово.

Белое олово — серебристо-белый очень мягкий металл. При охлаждении ниже $13,2°С$ он рассыпается в серый порошок, т.к. при переходе $β→α$ значительно увеличивается его удельный объем. Это явление получило название «оловянной чумы».

Конечно, особый вид химической связи и тип кристаллической решетки металлов должны определять и объяснять их физические свойства.

Каковы же они? Это металлический блеск, пластичность, высокая электрическая проводимость и теплопроводность, рост электрического сопротивления при повышении температуры, а также такие значимые свойства, как плотность, высокие температуры плавления и кипения, твердость, магнитные свойства.

Давайте попробуем объяснить причины, определяющие основные физические свойства металлов.

Почему металлы пластичны?

Механическое воздействие на кристалл с металлической кристаллической решеткой вызывает смещение слоев ион-атомов друг относительно друга, а так как электроны перемещаются по всему кристаллу, разрыв связей не происходит, поэтому для металлов характерна большая пластичность.

Аналогичное воздействие на твердое вещество с ковалентными связями (атомной кристаллической решеткой) приводит к разрыву ковалентных связей. Разрыв связей в ионной решетке приводит к взаимному отталкиванию одноименно заряженных ионов. По этому вещества с атомными и ионными кристаллическими решетками хрупкие.

Наиболее пластичные металлы — это $Au, Ag, Sn, Pb, Zn$. Они легко вытягиваются в проволоку, поддаются ковке, прессованию, прокатыванию в листы. Например, из золота можно изготовить золотую фольгу толщиной $0,003$ мм, а из $0,5$ г этого металла можно вытянуть нить длиной $1$ км.

Даже ртуть, которая, как вы знаете, при комнатной температуре жидкая, при низких температурах в твердом состоянии становится ковкой, как свинец. Не обладают пластичностью лишь $Bi$ и $Mn$, они хрупкие.

Почему металлы имеют характерный блеск, а также непрозрачны?

Электроны, заполняющие межатомное пространство, отражают световые лучи (а не пропускают, как стекло), причем большинство металлов в равной степени рассеивают все лучи видимой части спектра. Поэтому они имеют серебристо-белый или серый цвет. Стронций, золото и медь в большей степени поглощают короткие волны (близкие к фиолетовому цвету) и отражают длинные волны светового спектра, поэтому имеют светло-желтый, желтый и медный цвета.

Хотя на практике металл не всегда нам кажется светлым телом. Во-первых, его поверхность может окисляться и терять блеск. Поэтому самородная медь выглядит зеленоватым камнем. А во-вторых, и чистый металл может не блестеть. Очень тонкие листы серебра и золота имеют совершенно неожиданный вид — они имеют голубовато-зеленый цвет. А мелкие порошки металлов кажутся темно-серыми, даже черными.

Наибольшую отражательную способность имеют серебро, алюминий, палладий. Их используют при изготовлении зеркал, в том числе и в прожекторах.

Почему металлы имеют высокую электрическую проводимость и теплопроводны?

Хаотически движущиеся электроны в металле под воздействием приложенного электрического напряжения приобретают направленное движение, т. е. проводят электрический ток. При повышении температуры металла возрастают амплитуды колебаний находящихся в узлах кристаллической решетки атомов и ионов. Это затрудняет перемещение электронов, электрическая проводимость металла падает. При низких температурах колебательное движение, наоборот, сильно уменьшается и электрическая проводимость металлов резко возрастает. Вблизи абсолютного нуля сопротивление у металлов практически отсутствует, у большинства металлов появляется сверхпроводимость.

Следует отметить, что неметаллы, обладающие электрической проводимостью (например, графит), при низких температурах, наоборот, не проводят электрический ток из-за отсутствия свободных электронов. И только с повышением температуры и разрушением некоторых ковалентных связей их электрическая проводимость начинает возрастать.

Наибольшую электрическую проводимость имеют серебро, медь, а также золото, алюминий, наименьшую — марганец, свинец, ртуть.

Чаще всего с той же закономерностью, как и электрическая проводимость, изменяется теплопроводность металлов.

Она обусловлена большой подвижностью свободных электронов, которые, сталкиваясь с колеблющимися ионами и атомами, обмениваются с ними энергией. Происходит выравнивание температуры по всему куску металла.

Механическая прочность, плотность, температура плавления у металлов очень сильно отличаются. Причем с увеличением числа электронов, связывающих ион-атомы, и уменьшением межатомного расстояния в кристаллах показатели этих свойств возрастают.

Так, щелочные металлы ($Li, K, Na, Rb, Cs$), атомы которых имеют один валентный электрон, мягкие, с небольшой плотностью (литий — самый легкий металл с $ρ=0,53 г/см^3$) и плавятся при невысоких температурах (например, температура плавления цезия $29°С$). Единственный металл, жидкий при обычных условиях, — ртуть — имеет температуру плавления, равную $–38,9°С$.

Кальций, имеющий два электрона на внешнем энергетическом уровне атомов, гораздо более тверд и плавится при более высокой температуре ($842°С$).

Еще более прочной является кристаллическая решетка, образованная ионами скандия, который имеет три валентных электрона.

Но самые прочные кристаллические решетки, большие плотности и температуры плавления наблюдаются у металлов побочных подгрупп V, VI, VII, VIII групп. Это объясняется тем, что для металлов побочных подгрупп, имеющих неспаренные валентные электроны на d-подуровне, характерно образование очень прочных ковалентных связей между атомами, помимо металлической, осуществляемой электронами внешнего слоя с $s$-орбиталей.

Вспомните, что самый тяжелый металл — это осмий $Os$ с $ρ=22,5 г/см^3$ (компонент сверхтвердых и износостойких сплавов), самый тугоплавкий металл — это вольфрам $W$ с $t_{пл.}=3420°С$ (применяется для изготовления нитей накаливания ламп), самый твердый металл — это хром $Cr$ (царапает стекло). Они входят в состав материалов, из которых изготавливают металлорежущий инструмент, тормозные колодки тяжелых машин и др.

Металлы по-разному взаимодействуют с магнитным полем. Такие металлы, как железо, кобальт, никель и гадолиний выделяются своей способностью сильно намагничиваться. Их называют ферромагнетиками. Большинство металлов (щелочные и щелочноземельные металлы и значительная часть переходных металлов) слабо намагничиваются и не сохраняют это состояние вне магнитного поля — это парамагнетики. Металлы, выталкиваемые магнитным полем, — диамагнетики (медь, серебро, золото, висмут).

Напомним, что при рассмотрении электронного строения металлов мы разделили металлы на металлы главных подгрупп ($s-$ и $р-$элементы) и металлы побочных подгрупп (переходные $d-$ и $f-$элементы).

В технике принято классифицировать металлы по различным физическим свойствам:

а) плотности — легкие ($ρ < 5 г/см^3$) и тяжелые (все остальные);

б) температуре плавления — легкоплавкие и тугоплавкие.

Железо и его сплавы принято считать черными металлами, а все остальные — цветными.

Существуют классификации металлов по химическим свойствам.

Металлы с низкой химической активностью называют благородными (серебро, золото, платина и ее аналоги — осмий, иридий, рутений, палладий, родий).

По близости химических свойств выделяют щелочные (металлы главной подгруппы I группы), щелочноземельные (кальций, стронций, барий, радий), а также редкоземельные металлы (скандий, иттрий, лантан и лантаноиды, актиний и актиноиды).

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ионы, т.е. окисляются. В этом, как вам известно, заключается главное общее свойство и атомов, и простых веществ — металлов.

Металлы в химических реакциях всегда восстановители. Восстановительная способность атомов простых веществ — металлов, образованных химическими элементами одного периода или одной главной подгруппы Периодической системы Д.И. Менделеева, изменяется закономерно.

Электрохимический ряд напряжений металлов

Восстановительную активность металла в химических реакциях, которые протекают в водных растворах, отражает его положение в электрохимическом ряду напряжений металлов.

На основании этого ряда напряжений можно сделать следующие важные заключения о химической активности металлов в реакциях, протекающих в водных растворах при стандартных условиях ($t=25°С, р=1 атм$):

  1. Чем левее стоит металл в этом ряду, тем более сильным восстановителем он является.
  2. Каждый металл способен вытеснять (восстанавливать) из солей в растворе те металлы, которые в ряду напряжений стоят после него (правее).
  3. Металлы, находящиеся в ряду напряжений левее водорода, способны вытеснять его из кислот в растворе.

Восстановительная активность металла, определенная по электрохимическому ряду, не всегда соответствует положению его в Периодической системе. Это объясняется тем, что при определении положения металла в ряду напряжений учитывают не только энергию отрыва электронов от отдельных атомов, но и энергию, затрачиваемую на разрушение кристаллической решетки, а также энергию, выделяющуюся при гидратации ионов.

Металлы, являющиеся самыми сильными восстановителями (щелочные и щелочноземельные), в любых водных растворах взаимодействуют прежде всего с водой.

Например, литий более активен в водных растворах, чем натрий (хотя по положению в Периодической системе $Na$ — более активный металл). Дело в том, что энергия гидратации ионов $Li^+$ значительно больше, чем энергия гидратации $Na^+$, поэтому первый процесс является энергетически более выгодным.

Рассмотрев общие положения, характеризующие восстановительные свойства металлов, перейдем к конкретным химическим реакциям.

Взаимодействие металлов с неметаллами

1. С кислородом большинство металлов образуют оксиды — основные и амфотерные. Кислотные оксиды переходных металлов, например оксид хрома (VI) $CrO_3$ или оксид марганца(VII) $Mn_2O_7$, не образуются при прямом окислении металла кислородом. Их получают косвенным путем.

Щелочные металлы $Na, K$ активно реагируют с кислородом воздуха, образуя пероксиды:

Оксид натрия получают косвенным путем, при прокаливании пероксидов с соответствующими металлами:

Литий и щелочноземельные металлы взаимодействуют с кислородом воздуха, образуя основные оксиды:

Другие металлы, кроме золота и платиновых металлов, которые вообще не окисляются кислородом воздуха, взаимодействуют с ним менее активно или при нагревании:

2. С галогенами металлы образуют соли галогеноводородных кислот, например:

3. С водородом самые активные металлы образуют гидриды — ионные солеподобные вещества, в которых водород имеет степень окисления $–1$, например:

Многие переходные металлы образуют с водородом гидриды особого типа — происходит как бы растворение или внедрение водорода в кристаллическую решетку металлов между атомами и ионами, при этом металл сохраняет свой внешний вид, но увеличивается в объеме. Поглощенный водород находится в металле, по-видимому, в атомарном виде.

Существуют и гидриды металлов промежуточного характера.

4. С серой металлы образуют соли — сульфиды, например:

5. С азотом металлы реагируют несколько труднее, т.к. химическая связь в молекуле азота $N_2$ очень прочна; при этом образуются нитриды. При обычной температуре взаимодействует с азотом только литий:

Взаимодействие металлов со сложными веществами

1. С водой. Щелочные и щелочноземельные металлы при обычных условиях вытесняют водород из воды и образуют растворимые основания — щелочи, например:

Другие металлы, стоящие в ряду напряжений до водорода, тоже могут при определенных условиях вытеснять водород из воды. Но алюминий бурно взаимодействует с водой, только если удалить с его поверхности оксидную пленку:

Магний взаимодействует с водой только при кипячении, при этом также выделяется водород:

Если горящий магний внести в воду, то горение продолжается, т.к. протекает реакция: $2H_{2}+O_{2}=2H_2O$ (говорит водород). Железо взаимодействует с водой только в раскаленном виде:

2. С кислотами в растворе ($HCl, H_2SO_{4(разб.)}, CH_3COOH$ и др., кроме $HNO_3$) взаимодействуют металлы, стоящие в ряду напряжений до водорода. При этом образуются соль и водород.

Например:

$2Al↖{0}+6{H}↖{+1}Cl=2Al↖{+3}Cl_{3}+3{H_2}↖{0}↑,$

$2CH_3COO{H}↖{+1}+Mg↖{0}=Mg↖{+2}(CH_3COO)_2+{H_2}↖{0}↑$

А вот свинец (и некоторые другие металлы), несмотря на его положение в ряду напряжений (слева от водорода), почти не растворяется в разбавленной серной кислоте, т.к. образующийся сульфат свинца $PbSO_4$ нерастворим и создает на поверхности металла защитную пленку.

3. С солями менее активных металлов в растворе. В результате такой реакции образуется соль более активного металла и выделяется менее активный металл в свободном виде.

Например:

$Fe↖{0}+{Cu}↖{+2}SO_4=Fe↖{+2}SO_4+Cu↖{0}$

Нужно помнить, что реакция идет в тех случаях, когда образующаяся соль растворима. Вытеснение металлов из их соединений другими металлами впервые подробно изучил Н.Н. Бекетов — крупный русский физико-химик. Он расположил металлы по химической активности в «вытеснительный ряд», ставший прототипом ряда напряжений металлов.

4. С органическими веществами. Взаимодействие с органическими кислотами аналогично реакциям с минеральными кислотами. Спирты же могут проявлять слабые кислотные свойства при взаимодействии со щелочными металлами:

$2C_2H_5O{H}↖{+1}+2{Na}↖{0}→2C_2H_5O{Na}↖{+1}+{H_2}↖{0}↑$.

Аналогично реагирует и фенол:

$2C_6H_5O{H}↖{+1}+2{Na}↖{0}→2C_6H_5O{Na}↖{+1}+{H_2}↖{0}↑$.

Металлы участвуют в реакциях с галогеналканами, которые используют для получения низших циклоалканов и для синтезов, в ходе которых происходит усложнение углеродного скелета молекулы (реакция А. Вюрца):

${2CH_3Cl}↙{хлорметан}+2Na→{C_2H_6}↙{этан}+2NaCl$

5. Со щелочами в растворе взаимодействуют металлы, гидроксиды которых амфотерны.

Например:

$2Al+2KOH+6{H_2}↖{+1}O=2K[Al↖{+3}(OH)_4]+3{H_2}↖{0}↑$.

6. Металлы могут образовывать друг с другом химические соединения, которые получили общее название интерметаллических соединений. В них чаще всего не проявляются степени окисления атомов, которые характерны для соединений металлов с неметаллами. Например:

$Cu_3Au, LaNi_5, Na_2Sb, Ca_3Sb_2$ и др.

Интерметаллические соединения обычно не имеют постоянного состава, химическая связь в них в основном металлическая. Образование этих соединений более характерно для металлов побочных подгрупп.

Химические свойства щелочных металлов ($Na, K$)

Щелочные металлы — это элементы главной подгруппы I группы Периодической системы. На внешнем энергетическом уровне атомы этих элементов содержат по одному электрону, находящемуся на большом удалении от ядра. Они легко отдают этот электрон, поэтому являются сильными восстановителями. Во всех соединениях щелочные металлы проявляют степень окисления $+1$. Все они типичные металлы, имеют серебристо-белый цвет, мягкие (режутся ножом), легкие и легкоплавкие. Активно взаимодействуют со всеми неметаллами:

Все щелочные металлы при взаимодействии с кислородом (исключение — $Li$) образуют пероксиды. В свободном виде щелочные металлы не встречаются из-за их высокой химической активности.

Оксиды — твердые вещества, имеют основные свойства. Их получают, прокаливая пероксиды с соответствующими металлами:

Гидроксиды $NaOH, KOH$ — твердые белые вещества, гигроскопичны, хорошо растворяются в воде с выделением теплоты, их относят к щелочам:

Соли щелочных металлов почти все растворимы в воде. Важнейшие из них: $Na_2CO_3$ — карбонат натрия; $Na_2CO_3·10H_2O$ — кристаллическая сода; $NaHCO_3$ — гидрокарбонат натрия, пищевая сода; $K_2CO_3$ — карбонат калия, поташ; $Na_2SO_4·10H_2O$ — глауберова соль; $NaCl$ — хлорид натрия, пищевая соль.

Химические свойства щелочноземельных металлов ($Ca, Mg$)

Кальций ($Ca$) является представителем щелочноземельных металлов, как называют элементы главной подгруппы II группы, но не все, а только начиная с кальция и вниз по группе. Это те химические элементы, которые, взаимодействуя с водой, образуют щелочи. Кальций на внеш нем энергетическом уровне содержит два электрона, степень окисления $+2$.

Физические и химические свойства кальция и его соединений представлены в таблице.

Магний ($Mg$) имеет такое же строение атома, как и кальций, степень его окисления также $+2$. Мягкий металл, но его поверхность на воздухе покрывается защитной пленкой, что немного снижает его химическую активность. Его горение сопровождается ослепительной вспышкой. $MgO$ и $Mg(OH)_2$ проявляют основные свойства. Хотя $Mg(OH)_2$ и малорастворим, но окрашивает раствор фенолфталеина в малиновый цвет.

Оксиды $MgO$ — твердые белые тугоплавкие вещества. В технике $CaO$ называют негашеной известью, а $MgO$ — жженой магнезией, их используют в производстве строительных материалов.

Реакция оксида кальция с водой сопровождается выделением теплоты и называется гашением извести, а образующийся $Ca(OH)_2$ — гашеной известью. Прозрачный раствор гидроксида кальция называется известковой водой, а белая взвесь $Ca(OH)_2$ в воде — известковым молоком.

Соли магния и кальция получают взаимодействием их с кислотами.

$CaCO_3$ — карбонат кальция, мел, мрамор, известняк. Применяется в строительстве. $MgCO_3$ — карбонат магния — применяется в металлургии для освобождения от шлаков. $CaSO_4·2H_2O$ — гипс. $MgSO_4$ — сульфат магния — называют горькой, или английской, солью, содержится в морской воде. $BaSO_4$ — сульфат бария — благодаря нерастворимости и способности задерживать рентгеновские лучи применяется в диагностике («баритовая каша») желудочно-кишечного тракта.

На долю кальция приходится $1,5%$ массы тела человека, $98%$ кальция содержится в костях.

Кальций и его соединения.

Кальций Оксид и гидроксид кальция Соли кальция
1. Серебристо-белый металл.
2. Активный металл, окисляется простыми веществами — неметаллами:
$2Ca+O_2=2CaO$
$Ca+Cl_2=CaCl_2$
$Ca+S=CaS$
$Ca+H_2=CaH_2$
3. Вытесняет водород из воды:
$Ca+2H_2O=Ca(OH)_2+H_2↑$
4. Вытесняет металлы из их оксидов (кальциотермия):
$2Ca+ThO_2=Th+2CaO$
Получение
Разложение электрическим током расплава хлорида кальция:
$CaCl_2=Ca+Cl_2↑$
1. Порошки белого цвета.
2. Оксид кальция (негашеная известь) проявляет свойства основного оксида:
а) взаимодействует с водой с образованием основания:
$CaO+H_2O=Ca(OH)_2$
б) взаимодействует с кислотными оксидами:
$CaO+SiO_2=CaSiO_3$
3. Гидроксид кальция проявляет свойства сильного основания:
$Ca(OH)_2=Ca^{2+}+2OH^{–}$
$Ca(OH)*2+CO_2=CaCO_3↓+H_2O$;
$Ca(OH)2+Ca(HCO_3)2=2CaCO_3↓+2H_2O$$
Получение
1. Оксида — обжиг известняка:
$CaCO_3=CaO+CO_2↑$
2. Гидроксида — гашение негашеной извести:
$CaO+H_2O=Ca(OH)2$
1. Образует нерастворимый карбонат:
$Ca^{2+}+CO_3^{2−}=CaCO_3↓$
и растворимый гидрокарбонат:
$CaCO{3(кр)}+CO_2+H_2O=Ca(HCO_3){2(р-р)}$
2. Образует нерастворимый фосфат:
$3Сa{2+}+2PO_4^{3−}=Ca_3(PO_4)2↓$
и растворимый дигидрофосфат:
$Ca_3(PO_4){2(кр)}+4H_3PO_4=3Ca(H_2PO_4)*{2(р-р)}$
3. Гидрокарбонат разлагается при кипячении или испарении раствора:
$Ca(HCO_3)*2=CaCO_3↓+CO_2↑+H_2O$
4. Обожженный природный гипс:
$CaSO_4·2H_2O=CaSO_4·0,5H_2O+1,5H_2O$
затвердевает при взаимодействии с водой, снова образуя кристаллогидрат:
$CaSO_4·0,5H_2O+1,5H_2O=CaSO_4·2H_2O$

Химические свойства алюминия

Алюминий ($Al$) — элемент главной подгруппы III группы Периодической системы. У него на внешнем энергетическом уровне три электрона, которые алюминий легко отдает при химических взаимодействиях. У атомов алюминия восстановительные свойства выражены ярче, чем у бора, т.к. у алюминия имеется промежуточный слой с восемью электронами ($2e↖{-}; 8e↖{-}; 3e↖{-}$), который препятствует притяжению электронов к ядру. Алюминий имеет степень окисления $+3$.

Алюминий — серебристо-белый металл, $t°*{пл}=660°С$. Это самый распространенный металл земной коры, обладает высокой коррозионной стойкостью. Малая плотность алюминия ($2,7 г/{см^3}$) в сочетании с высокой прочностью и пластичностью его сплавов делают алюминий незаменимым в самолетостроении. Высокая электропроводность алюминия (в $1.6$ раза меньше, чем у меди) позволяет заменять медные провода более легкими — алюминиевыми.

Высокая химическая активность алюминия используется в алюминотермии, с помощью которой получают хром, ванадий, титан и другие металлы.

Прочность химической связи в оксиде $Al_2O_3$ обуславливает его механическую прочность, твердость. $Al_2O_3$ — корунд, абразивный материал. Искусственный рубин — $Al_2O_3$ с добавлением оксида хрома. Химические свойства алюминия и его соединений обобщены в таблице.

Алюминий и его соединения.

Алюминий Соединения алюминия
Оксид алюминия Гидроксид алюминия
1. Серебристо-белый легкий металл.
2. Окисляется на воздухе с образованием защитной пленки:
$4Al+3O_2=2Al_2O_3$
3. Вытесняет водород из воды:
$2Al+6H_2O=2Al(OH)_3↓+3H_2↑$
4. Взаимодействует с кислотами:
$2Al^{0}+6H^{+}=2Al^{3+}+3H_2^0{↑}$
5. Взаимодействует с водным раствором щелочи:
$2Al+2H_2O+2NaOH=2NaAlO_2+3H_2{↑}$
6. Вытесняет металлы из их оксидов (алюминотермия):
$8Al+3Fe_3O_4=9Fe+4Al_2O_3+Q$
Получение
Разложение электрическим током расплава оксида алюминия (в криолите):
$2Al_2O_3=4Al+3O_2{↑}–3352 кДж$
1. Очень твердый порошок белого цвета
2. Амфотерный оксид, взаимодействует:
а) с кислотами:
$Al_2O_3+6H^{+}=2Al^{3+}+3H_2O$
б) со щелочами:
$Al_2O_3+2OH^{–}=2AlO_2^{−}+H_2O$
Образуется:
а) при окислении или горении алюминия на воздухе:
$4Al+3O_2=2Al_2O_3$
б) в реакции алюминотермии:
$2Al+Fe_2O_3=Al_2O_3+2Fe$;
в) при термическом разложении гидроксида алюминия:
$2Al(OH)_3=Al_2O_3+3H_2O$
1. Белый нерастворимый в воде порошок.
2. Проявляет амфотерные свойства, взаимодействует:
а) с кислотами:
$Al(OH)_3+3HCl=AlCl_3+3H_2O$
$Al(OH)_3+3H^{+}=Al^{3+}+3H_2O$
б) со щелочами:
$Al(OH)_3+NaOH=NaAlO_2+2H_2O$
$Al(OH)_3+OH^{–}=AlO_2^{−}+2H_2O$
3. Разлагается при нагревании:
$2Al(OH)_3=Al_2O_3+3H_2O$
Образуется при:
а) взаимодействии растворов солей алюминия с растворами щелочей (без избытка):
$Al^{3+}+3OH^{–}=Al(OH)_3↓$
б) взаимодействии алюминатов с кислотами (без избытка):
$AlO_2^{−}+H^{+}+H_2O=Al(OH)*3↓$
Соли алюминия в водных растворах гидролизуются:
$Al^{3+}+H_2O⇄AlOH^{2+}+H^{+}$
$AlOH^{2+}+H_2O⇄Al(OH)2^{+}+H^{+}$
$Al(OH)2^{+}+H_2O⇄Al(OH){3}+H^{+}$

Химические свойства меди

Медь ($Cu$) — элемент побочной подгруппы первой группы. Электронная формула: ($…3d^{10}4s^1$). Десятый d-электрон атома меди подвижный, т. к. переместился с $4s$-подуровня. Медь в соединениях проявляет степени окисления $+1(Cu_2O)$ и $+2(CuO)$.

Медь — мягкий, блестящий металл, имеющий красную окраску, ковкий и обладает хорошими литейными качествами, хороший тепло- и электропроводник. Температура плавления $1083°С$.

Как и другие металлы побочной подгруппы I группы Периодической системы, медь стоит в ряду активности правее водорода и не вытесняет его из кислот, но реагирует с кислотами-окислителями:

$Cu+2H_2SO{4(конц.)}=CuSO_4+SO_2↑+2H_2O$;

$Cu+4HNO*{3(конц.)}=Cu(NO_3)_2+2NO_2↑+2H_2O$.

Под действием щелочей на растворы солей меди выпадает осадок слабого основания голубого цвета — гидроксида меди (II), который при нагревании разлагается на основный оксид $CuO$ черного цвета и воду:

$Cu^{2+}+2OH^{–}=Cu(OH)_2↓; Cu(OH)_2 {→}↖{t°} CuO+H_2O$

Химические свойства цинка

Цинк ($Zn$) — элемент побочной подгруппы II группы. Его электронная формула следующая: ($…3d^{10}4s^2$). Так как в атомах цинка предпоследний $d-$подуровень полностью завершен, то цинк в соединениях проявляет степень окисления $+2$.

Цинк — металл серебристо-белого цвета, практически не изменяющийся на воздухе. Обладает коррозионной стойкостью, что объясняется наличием на его поверхности оксидной пленки.

Цинк — один из активнейших металлов, при повышенной температуре реагирует с простыми веществами:

$Zn+Cl_2→↖{t°}ZnCl_2$,

$2Zn+O_2→↖{t°}2ZnO$,

$Zn+S→↖{t°}ZnS$.

Цинк вытесняет водород из кислот:

$Zn+2Н^{+}=Zn^{2+}+H_2↑$

Гидроксид цинка амфотерен, т. е. проявляет свойства и кислоты, и основания. При постепенном приливании раствора щелочи к раствору соли цинка выпавший вначале осадок растворяется (то же происходит и с алюминием):

$ZnSO_4+2NaOH={Zn(OH)_2}↙{белый}↓+Na_2SO_4$,

$Zn(OH)*2+2NaOH={Na_2[Zn(OH)4]}↙{тетрагидроксоцинкат натрия}$

Химические свойства хрома

На примере хрома ($Cr$) можно показать, что свойства переходных элементов меняются вдоль периода не принципиально: происходит количественное изменение, связанное с изменением числа электронов на валентных орбиталях. Максимальная степень окисления хрома $+6$. Металл в ряду активности стоит левее водорода и вытесняет его из кислот:

$Cr+2H^{+}=Cr^{2+}+H{2}↑$.

При добавлении раствора щелочи к такому раствору образуется осадок $Me(OH)2$, который быстро окисляется кислородом воздуха:

$4Cr(OH)2+O_2+2H_2O=4Cr(OH)3$.

Ему соответствует амфотерный оксид $Cr_2O_3$. Оксид и гидроксид хрома (в высшей степени окисления) проявляют свойства кислотных оксидов и кислот соответственно. Соли хромовой кислоты ($H_2CrO_4$) в кислой среде превращаются в дихроматы — соли дихромовой кислоты ($H_2Cr_2O_7$). Окисление сопровождается изменением окраски, т.к. соли хроматы желтого цвета, а дихроматы — оранжевого.

$2CrO_4^{2-}+H^{+}⇄Cr_2O_7^{2-}+H_2O$

Соединения хрома обладают высокой окислительной способностью.

*

Химические свойства металлов

Характерные химические свойства простых веществ – металлов:

Химические свойства щелочных металлов

Химические свойства щелочноземельных металлов

 Химические свойства магния

 Химические свойства алюминия

Химические свойства меди 

Химические свойства цинка 

Химические свойства хрома 

Химические свойства железа

Admin

Архив автора

Сайт автора

21.09.2021

Материалы по химии

Предыдущая запись

Следующая запись

1 комментарий

Добавить ваш

  1. Ольга

    10.03.2022 в 19:50

    Замечательные подборки материала для подготовки к ЕГЭ Спасибо большое

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Комментарий *

Имя *

Email *

Сайт

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

23.03.2014

Публикуем теоретические и практические задания, которые необходимы при подготовке к ЕГЭ по химии.

Тема: Металлы главных подгрупп I–III групп

Весь материал соответствует кодификатору ЕГЭ по химии. В конце каждого теоретического блока публикуются практические задания с правильными ответами. Вы можете сразу же проверять качество пройденного материала.

Смотреть в PDF:

Или прямо сейчас: Скачайте в pdf файле.

Добавить комментарий

Комментарии без регистрации. Несодержательные сообщения удаляются.

Всего: 125    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

Добавить в вариант

Из предложенного перечня выберите два простых вещества, которые реагируют с концентрированной серной кислотой, но не реагируют с разбавленной серной кислотой.

1)  кислород

2)  ртуть

3)  цинк

4)  железо

5)  медь

Запишите в поле ответа номера выбранных веществ.

Источник: РЕШУ ЕГЭ


Из предложенного перечня простых веществ выберите два, которые реагируют с разбавленной соляной кислотой при обычных условиях.

1)  кремний

2)  сера

3)  магний

4)  медь

5)  железо

Запишите в поле ответа номера выбранных веществ.


Из предложенного списка простых веществ выберите два, которые реагируют с разбавленными растворами щелочей при обычных условиях.

1)  кислород

2)  магний

3)  хлор

4)  алюминий

5)  серебро

Запишите в поле ответа номера выбранных веществ.


Какие простые вещества растворимы в соляной кислоте?

1)  свинец

2)  марганец

3)  сера

4)  водород

5)  цинк

Запишите номера выбранных ответов в порядке возрастания.


Из предложенного перечня выберите два простых вещества, которые растворяются в разбавленной серной кислоте, но не растворяются в щелочах. Запишите номера выбранных ответов в порядке возрастания.

1)  Zn

2)  P$

3)  Fe

4)  S$

5)  Mn


Из предложенного перечня выберите два вещества, которые реагируют с водой только при высокой температуре.

1)  К

2)  Fe

3)  Zn

4)  Ag

5)  Sr

Запишите в поле ответа номера выбранных веществ.

Источник: РЕШУ ЕГЭ


Из предложенного перечня выберите две пары веществ, в каждой из которых между веществами протекает химическая реакция.

1)  Na и H$_2$O

2)  Сu и ZnCl$_2$

3)  Fe и Al левая круглая скобка NO$_3$ правая круглая скобка $_3$

4)  Zn и CuSO$_4$

5)  Ag и FeSO$_4$

Запишите в поле ответа номера выбранных пар веществ.

Источник: РЕШУ ЕГЭ


Из предложенного перечня выберите два элемента, которые реагируют с водой только при нагревании.

1)  серебро

2)  медь

3)  цинк

4)  золото

5)  железо

Запишите в поле ответа номера выбранных веществ.

Источник: РЕШУ ЕГЭ


Из предложенного перечня выберите два вещества, которые с щелочами не взаимодействуют.

1)  алюминий

2)  натрий

3)  бром

4)  сера

5)  магний

Запишите в поле ответа номера выбранных веществ.

Источник: РЕШУ ЕГЭ


Из предложенного перечня веществ выберите два вещества, которые с щелочами не взаимодействуют.

1)  алюминий

2)  натрий

3)  бром

4)  сера

5)  магний

Запишите в поле ответа номера выбранных веществ.

Источник: РЕШУ ЕГЭ


Из предложенного перечня выберите два вещества, которые реагируют с водой только при высокой температуре.

1)  K$

2)  Fe

3)  Mn

4)  Ag

5)  Sr

Запишите в поле ответа номера выбранных веществ.

Источник: РЕШУ ЕГЭ


Из предложенного перечня выберите две пары веществ, в каждой из которых при взаимодействии водород не выделяется.

1)  Na и HNO_3

2)  K$ и H$_2$SO_4

3)  Al и HNO_3

4)  Al и NaOH

5)  Ba и HCl

Запишите в поле ответа номера выбранных пар веществ.

Источник: РЕШУ ЕГЭ


Из предложенного перечня выберите две пары веществ, в каждой из которых протекает химическая реакция.

1)  Ag и K$_2$SO_4

2)  Ca и H$_2$O

3)  Cu и ZnCl_2

4)  Ni и Al левая круглая скобка NO$_3$ правая круглая скобка _3

5)  Zn и FeSO_4

Запишите в поле ответа номера выбранных пар веществ.

Источник: РЕШУ ЕГЭ


Из предложенного перечня выберите два вещества, которые реагируют с водой только при нагревании.

1)  железо

2)  платина

3)  марганец

4)  медь

5)  золото

Запишите в поле ответа номера выбранных веществ.

Источник: РЕШУ ЕГЭ


Из предложенного списка выберите два вещества, разбавленные растворы которых реагируют с медью при обычных условиях.

1)  хлороводород

2)  нитрат серебра

3)  хлорид цинка

4)  гидроксид калия

5)  хлорид железа (III)

Запишите в поле ответа номера выбранных веществ.


Верны ли следующие суждения о меди?

А.  Для меди характерны степени окисления +1 и +2.

Б.  Медь вытесняет железо из раствора хлорида железа (II).

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Верны ли следующие суждения о меди?

А.  Для меди характерны степени окисления +1 и +2.

Б, Медь вытесняет цинк из раствора сульфата цинка.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Водород не выделяется при взаимодействии кальция с раствором

1)  HNO3

2)  H2SO4

3)  HCl

4)  HCOOH


Как хлороводородная кислота, так и гидроксид натрия реагируют с

1)  фосфором

2)  серой

3)  алюминием

4)  медью

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Урал. Вариант 2


Из предложенного перечня выберите две пары веществ, которые взаимодействуют с водой при обычной температуре.

1)  кислород и сера

2)  фтор и калий

3)  кремний и кальций

4)  железо и медь

5)  натрий и барий

Запишите в поле ответа номера выбранных пар веществ.

Источник: РЕШУ ЕГЭ

Всего: 125    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

ЕГЭ по химии

Материал по химии

  • Какие реакции нужно знать, чтобы решить ЕГЭ по химии?
  • 1) Взаимодействие металлов с кислородом
  • 2) Взаимодействие металлов с водой
  • 3) Амфотерные металлы
  • 4) Амфотерные оксиды и гидроксиды
  • 5) Комплексные соли
  • 6) Амфотерные соли
  • 7) Углерод на ЕГЭ
  • 8) Азот на ЕГЭ
  • 9) Фосфор на ЕГЭ
  • 10) Сера на ЕГЭ
  • 11) Замещение неметаллов
  • 12) Взаимодействие неметаллов с другими неметаллами
  • 13) Медь и её соединения
  • 14) Серебро и его соединения
  • 15) Хром и его соединения
  • 16) Железо и его соединения
  • 17) Соединения марганца
  • 18) Неметаллы с щелочами
  • 19) Кислотные оксиды с щелочами
  • 20) Гидриды, фосфиды, нитриды, сульфиды, карбиды
  • 21) Гидролиз бинарных соединений с ковалентной полярной связью
  • 22) Взаимный гидролиз

В данном материале мы рассмотрим только те реакции неорганической химии, что выходят за пределы свойств классов (солей, кислот, оксидов, оснований) и часто встречаются в 8 задании. В материале Вы познакомитесь с самыми популярными реакциями, которые встречаются на экзамене.

Какие реакции нужно знать, чтобы решить ЕГЭ по химии?

1) Взаимодействие металлов с кислородом

  • Натрий, как и другие щелочные металлы (кроме лития), а также барий, при взаимодействии с кислородом образуют пероксиды или надпероксиды:

2Na + O2 = Na2O2

Причем, для натрия более характерен пероксид, а для калия – надпероксид:

K + O2 = KO2

  • Пероксиды реагируют с холодной и горячей водой по-разному: с холодной водой происходит реакция обмена:

Na2O2 + 2H2O = 2NaOH + H2O2

В горячей воде происходит окислительно-восстановительная реакция:
2Na2O2 + H2O = 4NaOH + O2

2) Взаимодействие металлов с водой

Основные продукты при взаимодействии металлов с водой можно представить в виде следующей схемы:

Задание 8 ЕГЭ по химии

От активности металла зависит продукт реакции

  • Активные металлы, такие как натрий, калий, кальций, легко реагируют с водой, вытесняя водород. Реакции относятся к экзотермическим (проходят с выделением большого количества тепла), натрий и калий так активно реагируют с водой, что при контакте происходит их возгорание.

2Na + 2H2O = 2NaOH + H2

  • Магний и алюминий тоже образуют гидроксиды, но для реакции необходимо нагревание. Алюминий берут в виде амальгамы.

Mg + 2H2O = Mg(OH)2 + H2

  • Металлы средней активности требуют нагревания для взаимодействия с водой, при этом образуется оксид, а не гидроксид:

Zn + H2O = ZnO + H2

  • Железо при взаимодействии с водой образует окалину (смесь оксида железа II и оксида железа III):

3Fe + 4H2O = Fe3O4 + 4H2

  • На влажном воздухе железо превращается в бурый гидроксид железа III:

2Fe + 3H2O + 3O2 = 2Fe(OH)3

Задание в формате ЕГЭ с ответом:

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. K + H2O →
  2. K2O + H2O →
  3. K + O2
  4. K2O2 + H2Oхолод. →
  1. KOH
  2. K2O
  3. KOH + H2O2
  4. KOH + H2
  5. KO2

Пример задания из КИМ ЕГЭ:

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. Ba + O2
  2. BaO + H2O →
  3. Ba + H2O →
  4. BaO2 + H2O (горяч.) →
  1. Ba(OH) 2 + O2
  2. BaO2
  3. Ba(OH) 2
  4. BaO
  5. Ba(OH) 2 + H2

От активности металла зависит продукт реакции

3) Амфотерные металлы

Алюминий, цинк и бериллий отличаются от других металлов тем, что могут вступать во взаимодействие с концентрированными растворами щелочей, понятие «амфотерные металлы» использовано для облегчения поиска, такое понятие не совсем верно.

2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2

Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2

Be + 2NaOH + 2H2O = Na2[Be(OH)4] + H2

4) Амфотерные оксиды и гидроксиды

Амфотерные оксиды и гидроксиды реагируют с концентрированными растворами щелочей, причем продукт зависит от агрегатного состояния исходной щелочи: если она твердая, то применяют сплавление и образуется средняя соль, если же щелочь дана в растворенном виде, то образуется комплексная соль. Эти различия очень часто встречаются в задании 8 на ЕГЭ по химии!

  • При сплавлении:

Al2O3 + 2NaOH = 2NaAlO2 + H2O↑

Al(OH)3 + NaOH = NaAlO2 + 2H2O↑

  • При растворении в концентрированной щелочи:

BeO + 2KOH + H2O = K2[Be(OH)4]

Be(OH)2 + 2KOH = K2[Be(OH)4]

Можно брать любую щелочь и любой амфотерный оксид или гидроксид.

  • Амфотерные оксиды, при сплавлении с солями, вытесняют летучие кислотные оксиды:

Na2CO3 + Al2O3 = 2NaAlO2 + CO2

K2SO3 + ZnO = K2ZnO2 + SO2

Задание по образцу ФИПИ:

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. Be + KOH р-р →
  2. BeO + KOH р-р →
  3. BeO + KOH тв. →
  4. Be(OH) 2 + KOH тв. →
  1. K2 [Be(OH) 4] + H2O
  2. K2 [Be(OH) 4] + H2
  3. K2O + Be(OH) 2
  4. K2 [Be(OH) 4]
  5. K2BeO2 + H2O

5) Комплексные соли

  • Комплексные соли разлагаются при нагревании с потерей воды:

Na[Al(OH)4] = NaAlO2 + 2H2O

K2[Zn(OH)4] = K2ZnO2 + 2H2O

  • Комплексные соли реагируют с сильными кислотами в двух вариантах (при избытке и при недостатке кислоты):

Na[Al(OH)4] + HCl = NaCl + H2O + Al(OH)3↓ (при недостатке кислоты)

Na[Al(OH)4] + 4HCl = NaCl + AlCl3 + 4H2O (при избытке кислоты)

  • Комплексные соли реагируют со слабыми кислотами и летучими кислотными оксидами, получаемые сульфиды, карбонаты, сульфиты алюминия неустойчивы, поэтому вместо них записывают гидроксид амфотерного металла:

2Na[Al(OH)4] + H2S = Na2S + 2Al(OH)3 + 2H2O (при недостатке сероводородной кислоты)

Na[Al(OH)4] + H2S = NaHS + Al(OH)3 + H2O (при избытке сероводородной кислоты)

2Na[Al(OH)4] + CO2 = Na2CO3 + 2Al(OH)3 + H2O (при недостатке углекислого газа)

Na[Al(OH)4] + CO2 = NaHCO3 + Al(OH)3 (в условиях избытка углекислого газа)

Попробуйте решить задание ЕГЭ:

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. Na2 [Zn(OH) 4] нагревание →
  2. Na2 [Zn(OH) 4] + H2S изб. →
  3. Na2 [Zn(OH) 4] + H2S нед. →
  4. NaOH тв. + Zn(OH) 2
  1. NaHS + ZnS + H2O
  2. Na2S + Zn(OH) 2 + H2O
  3. Na2ZnO2 + H2O
  4. Na2S + Zn + H2O
  5. Na2ZnO2 + H2

6) Амфотерные соли

Термин «амфотерные соли» некорректен, однако за последний месяц было более четырех тысяч запросов с таким сочетанием слов, под амфотерными солями школьник понимает соли, в анионе которого стоит амфотерный металл, а также комплексные соли, описанные выше. На самом деле, соли в которых амфотерный металл принадлежит аниону следует относить к самым обычным средним солям. Рассмотрим свойства некоторых из них, например, цинката натрия (Na2ZnO2) и алюмината калия (KAlO2).

  • Реагируют с сильными кислотами:

Na2ZnO2 + 4HCl = 2NaCl + ZnCl2 + 2H2O

2KAlO2 + 4H2SO4 = K2SO4 + Al2(SO4)3 + 4H2O

Б) Растворяются в воде с образованием соответствующей комплексной соли:

KAlO2 + 2H2O = K[Al(OH)4]

  • Также под амфотерными солями школьники подразумевают соли, содержащие в катионе металл в третьей валентности (что тоже является неверным, это средние соли) или цинк и бериллий, такие соли могут по-разному реагировать с растворами щелочей, например:

AlCl3 + 3NaOH = 3NaCl + Al(OH)3 (недостаток щелочи, разбавленный раствор щелочи)

AlCl3 + 4NaOH = NaCl + Na[Al(OH)4] (избыток щелочи, концентрированный раствор щелочи)

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. Na2BeO2 + H2SO4
  2. Na2 [Be(OH) 4] + H2SO4 изб. →
  3. Na2 [Be(OH) 4] + H2SO4 нед. →
  4. Na2BeO2 + H2O →
  1. Na2SO4 + BeSO4 + H2O
  2. Na2SO4 + Be(OH) 2
  3. Na2SO4 + Be(OH) 2 + H2O
  4. Na2 [Be(OH) 4]
  5. NaOH + BeSO4 + H2O

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. AlCl3 + KOH разб. →
  2. AlCl3 + K2CO3 р-р →
  3. AlCl3 + KOH конц. →
  4. Al2O3 + K2CO3 тв. →
  1. Al(OH) 3 + KCl
  2. KCl + KAlO2 + H2O
  3. KAlO2 + CO2
  4. K[Al(OH) 4] + KCl
  5. Al(OH) 3 + KCl + CO2

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. Ba(OH) 2 нед. + AlCl3
  2. Ba(OH) 2 изб. + AlCl3
  3. Ba(AlO2)2 + HCl →
  4. Ba[Al(OH) 4]2 + HCl изб. →
  1. Ba(OH) 2 + AlCl3 + H2O
  2. BaCl2 + Ba[Al(OH) 4]2
  3. BaCl2 + AlCl3 + H2O
  4. BaCl2 + Al(OH) 3 + H2O
  5. BaCl2 + Al(OH) 3

7) Углерод на ЕГЭ

В задании 8 часто встречаются гидрокарбонаты, рассмотрим их важнейшие свойства на примере гидрокарбоната кальция.

Гидрокарбонаты, как и другие кислые соли, при взаимодействии с щелочами, оксидами, солями, кислотами и при нагревании часто превращаются в средние соли.

  1. Разложение при нагревании:

Ca(HCO3)2 → CaCO3 + CO2 + H2O

  1. Взаимодействие с щелочами:

Ca(HCO3)2 + Ca(OH)2 → 2CaCO3 + 2H2O

Ca(HCO3)2 + 2NaOH → CaCO3 + Na2CO3 + 2H2O

  1. Взаимодействие с кислотами:

Ca(HCO3)2 + 2HCl → CaCl2 + 2CO2 + 2H2O

  • Реакция с карбонатами. Эти реакции идут с образованием кислых солей, необходимый для их образования водород поступает из воды, поэтому составители используют такие обозначения как CO2 р-р или CaCO3 влажн., реакция идет по следующей схеме:

CaCO3 + CO2 + H2O → Ca(HCO3)2

  • Углекислый газ

Восстановление углерода активными металлами и углеродом:

CO2 + 2Mg → 2MgO + C

CO2 + C → 2CO

  • Реакции с монооксидом углерода:
  1. CO или угарный газ – хороший восстановитель, реагирует с окислителями:

CO + CuO = CO2 + Cu

CO + Cl2 = COCl2

CO + Br2 = COBr2

2CO + O2 = 2CO2

  1. Монооксид углерода проявляет и окислительные свойства:

СO + H2 = CH3OH

  1. Вступает в реакции без изменения степени окисления:

CO + NaOHтв. = HCOONa (при сплавлении)

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. KHCO3 + Ca(OH) 2
  2. Mg(HCO3)2 + H2CrO4
  3. MgCO3 + H2CrO4
  4. Ca(HCO3)2 + KOH →
  1. Cr2O3 + MgCO3 + H2O
  2. KOH + Ca(HCO3)2
  3. CaCO3 + K2CO3 + H2O
  4. MgCrO4 + H2O + CO2
  5. CaO + K2CO3 + H2O

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. Mg + CO2
  2. MgO + CO2
  3. Mg(HCO3)2 + NaOH →
  4. MgCl2 + Na2CO3
  1. MgO + C
  2. MgCO3
  3. Mg + CO
  4. MgCO3 + Na2CO3 + H2O
  5. MgCO3 + NaCl

8) Азот на ЕГЭ

Очень популярной в заданиях ЕГЭ по химии является азотная кислота, в отличие от обычных кислот, в качестве окислителя выступает не протон водорода, а азот в высшей степени окисления.

В общем, схему реакции кислоты с металлами можно представить в следующем виде:

HNO3 + Me → Me+x(NO3)x + H2O + особый продукт

Особые продукты зависят от характера металла, приведем из в виде таблицы:

Таблица – свойства азотной кислоты

Реагент

HNO3 концентрированная

HNO3

разбавленная

Активные металлы (металлы IA и IIА-группы в таблице Менделеева)

N2O

(редко NO)

NH4NO3

(редко N2 или NH3)

Неактивные металлы

Cu, Ag, Hg

NO2

NO

Cr, Al, Fe

На холоде реакция не идёт в следствие пассивации,

 При нагревании образуется NO2, а металл приобретает степень окисления +3

NO

(редко N2, N2O)

Металлы средней активности (все остальные металлы, например, Zn, Ni, Co)

NO2

NO

(редко N2, N2O)

Au, Pt

Реакция не идет

Реакция не идет

  • Примеры реакций металлов с азотной кислотой:

4HNO3 разб. + Al = Al(NO3)3 + NO + 2H2O (при любой температуре)

6HNO3 конц. + Al = Al(NO3)3 + 3NO2 + 3H2O (реакция идет только при нагревании)

10HNO3 разб. + 4Mg = 4Mg(NO3)2 + NH4NO3 + 3H2O

10HNO3 конц. + 4Mg = 4Mg(NO3)2 + N2O + 5H2O

  • C другими восстановителями азотные кислоты ведут себя аналогичным образом: у концентрированной продуктом является NO2, а у разбавленной – NO:

FeO + 4HNO3 конц. = Fe(NO3)3 + NO2 + 2H2O

3FeO + 10HNO3 разб. = 3Fe(NO3)3 + NO + 5H2O

  • Азотная кислота реагирует и с неметаллами, например, с серой и углеродом:

6HNO3 конц. + S = H2SO4 + 6NO2 + 2H2O

4HNO3 конц. + С = CO2 + 4NO2 + 2H2O

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. CuO + HNO3 конц. →
  2. CuO + HNO3 разб. →
  3. Cu + HNO3 конц. →
  4. Cu + HNO3 разб. →
  1. Cu(NO3)2 + H2O + NO2
  2. CuO + NO2 + O2
  3. Cu(NO3)2 + H2O
  4. Cu(NO3)2 + H2O + NO
  5. CuNO3 + H2O + NO

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. FeO + HNO3 конц. →
  2. Fe + HNO3 конц. tºC →
  3. Fe(NO3)2 + HNO3 конц. →
  4. FeO + HNO3 разб. →
  1. Fe(NO3)2 + H2O + NO2
  2. Fe(NO3)3 + H2O + NO2
  3. Fe(NO3)2 + H2O + NO
  4. Fe(NO3)3 + H2O + NO
  5. Fe(NO3)2 + H2O

9) Фосфор на ЕГЭ

  • Фосфор выступает в роли окислителя и восстановителя в реакции с щелочами:

4P + 3NaOH + 3H2O → 3NaH2PO2 + PH3

Это одна из самых популярных окислительно-восстановительных реакций с фосфором на ЕГЭ по химии.

  • оксид фосфора III реагирует с холодными растворами щелочей и водой без изменения степени окисления:

P2O3 + 2KOH + H2O → 2KH2PO3

P2O3 + 3H2O → 2H3PO3 (или HPO2)

  • Соединения фосфора III – хорошие восстановители, стремятся превратиться в соединения фосфора V:

P2O3 + окислитель → PO43‒ + продукты восстановления

P2O3 + 4KMnO4 + 10KOH → 2K3PO4 + 4K2MnO4 + 5H2O

P2O3 + 4HNO3 + H2O → 2H3PO4 + 4NO2

  • Оксид фосфора V реагирует с водой, образуя ряд кислот:

P2O5 + H2O → 2HPO3 – метафосфорная (в сильном недостатке воды)

P2O5 + 2H2O → H4P2O7 – пирофосфорная (в небольшом недостатке воды)

P2O5 + 3H2O → 2H3PO4 – ортофосфорная (в избытке воды)

  • Фосфаты могут образовывать кислые соли, при взаимодействии с фосфорной кислотой:

2K3PO4 + H3PO4 → 3K2HPO4

K3PO4 + 2H3PO4(большой избыток) → 3KH2PO4

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. NaH2PO4 + NaOH нед. →
  2. NaH2PO4 + NaOH изб. →
  3. NaH2PO4 изб. + NaOH →
  4. NaH2PO4 нед. + NaOH →
  1. Na3PO4 + H2O
  2. NaH2PO3 + H2O
  3. Na3PO4 + P2O5
  4. NaH2PO2 + H2O
  5. Na2HPO4 + H2O

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. P2O5 + H2O нед. →
  2. P2O3 + KOH →
  3. P + KOH →
  4. P2O5 нед. + H2O →
  1. K2HPO3 + H2O
  2. KH2PO2 + PH3
  3. HPO3
  4. H3PO4
  5. HPO2

10) Сера на ЕГЭ

Таблица ‒ Серная кислота

Свойства

Разбавленная H2SO4

Концентрированная H2SO4

Окислительные свойства

Окислитель за счет протона водорода

Окислитель за счет серы

Активные металлы

2Na + H2SO4 = Na2SO4 + H2

8Na + 5H2SO4 = 4Na2SO4 + 4H2O + H2S↑

Металлы средней активности

Zn + H2SO4 = ZnSO4 + H2

3Zn + 4H2SO4 = 3ZnSO4 + 4H2O + S↓

(в зависимости от концентрации кислоты может выделиться SO2 или H2S)

Al, Cr, Fe

Как с другими металлами до водорода:

Fe + H2SO4 = FeSO4 + H2

На холоде реакция не идет (пассивация), при нагревании:

2Fe + 6H2SO4 = Fe2(SO4)3 + 6H2O + 3SO2

Металлы средней активности

Реакция не идет, так как эти металлы не могут вытеснить водород

Cu + 2H2SO4 = CuSO4 + 2H2O + SO2

  • Обменная реакция с концентрированной серной кислотой:

NaCl + H2SO4 конц. = NaHSO4 + HCl↑ (при сильном нагревании)

Остальные обменные реакции стандартны и в этом материале рассмотрены не будут.

  • Сероводород:

SO2 + 2H2S = 3S↓ + 2H2O

2H2S + 3O2 = 2H2O + 2SO2 (кислород в избытке)

2H2S + O2 = 2H2O + 2S↓ (кислород в недостатке)

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. KCl тв. + H2SO4 конц. →
  2. KI + H2SO4 конц. →
  3. Fe + H2SO4 конц. tºC →
  4. FeO + H2SO4 конц. →
  1. Cl2 + K2SO4 + H2O
  2. KHSO4 + HI
  3. KHSO4 + HCl
  4. I2 + K2SO4 + H2S
  5. Fe2 (SO4)2 + H2O + SO2
  6. FeSO4 + H2O

11) Замещение неметаллов

Часто в задании 8 ЕГЭ по химии встречается замещение брома на хлор, или йода на хлор или бром. Галогены могут вытеснять друг друга и другие неметаллы из соединений. Чтобы понимать, какие неметаллы  могут вытеснить другие неметаллы, нужно помнить о том, что в ПС Д.И. Менделеева элементы стоят таким образом, что чем правее и выше стоит элемент, тем сильнее проявляются его неметаллические свойства, и тем выше его электроотрицательность. Более электроотрицательные неметаллы могут вытеснять менее электроотрицательные. Так, хлор и бром стоят выше в таблице Менделеева, чем йод, поэтому могут вытеснить его из соединений:

2NaI + Br2 = 2NaBr + I2

2KI + Cl2 = 2KCl + I2

Хлор может вытеснить бром:

2NaBr + Cl2 = 2NaCl + Br2

Йод не может вытеснить другие галогены, так как расположен в ПС ниже хлора, брома и фтора, но йод может вытеснить те элементы-неметаллы, что стоят левее в Периодической системе, например, серу:

H2S + I2 = 2HI + S

Можно использовать ряд электроотрицательности неметаллов, на реальном ЕГЭ его не будет, легче запомнить Периодический закон, тем более что эти знания также нужны для выполнения задания 2 ЕГЭ по химии.

Вытеснение неметаллов

12) Взаимодействие неметаллов с другими неметаллами

Более электроотрицательные неметаллы могут окислить менее электроотрицательные неметаллы. То есть те элементы, которые стоят в ПС выше и правее отнимают электроны у тех неметаллов, которые стоят ниже и левее.

Например, хлор, бром и фтор могут окислить йод, серу, фосфор (наиболее популярные на ЕГЭ реакции). В таблице представлены наиболее популярные продукты:

Таблица – взаимодействие неметаллов

Восстановители

Окислители

F2

Cl2

Br2

I2

O2

S

I2

IF7

IF5

ICl5

ICl3

ICl

IBr5

IBr3

IBr

S

SF6

SCl4

SBr4

SO2

P

PF5

PCl5

PCl3

PBr5

PBr3

PI3

P2O3

P2O5

P2S3

P2S5

Si

SiF4

SiCl4

SiBr4

SiI4

SiO2

SiS2

H2

HF

HCl

HBr

HI

H2O

H2S

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. S + O2
  2. SO2 + O2
  3. H2S + SO2
  4. S + P →
  1. S + H2O
  2. SO2
  3. P2S3
  4. SO3
  5. S3P2

13) Медь и её соединения

2CuCl2 + 4KI = 2CuI↓ + I2 + 4KCl

Cu(OH)2 + 4NH3 = [Cu(NH3)4](OH)2 – темно-синий комплекс

Cu2O + 4NH3 + H2O = 2[Cu(NH3)2]OH – прозрачный раствор

3CuO + 2NH3 = 3Cu + N2 + 3H2O

14) Серебро и его соединения

AgCl + 2NH3 = [Ag(NH3)2]Cl

8AgNO3 + PH3 + 4H2O = H3PO4 + 8Ag + 8HNO3

15) Хром и его соединения

  • Соединения хрома II – хорошие восстановители, при взаимодействии с окислителями превращаются в соединения хрома III

4CrO + O2 = 2Cr2O3

CrO + 4HNO3 = Cr(NO3)3 + 2H2O + NO2

  • соединения хрома III проявляют как окислительные, так и восстановительные свойства:

2Na3[Cr(OH)6] + 3Br2 + 4NaOH = 6NaBr + 8H2O + 2Na2CrO4 (хром в степени окисления +3 является восстановителем)

2CrCl3 + H2 = 2CrCl2 + 2HCl (хром в степени окисления +3 является восстановителем)

  • Дихроматы – соли, окрашивающие растворы в оранжевый цвет и хроматы – соли желтого цвета устойчивы в разных средах: в кислой среде устойчивы оранжевые дихроматы, а в щелочной – желтые хроматы. В зависимости от среды, они могут взаимно превращаться:

Хромат превращается в дихромат в кислой среде, раствор меняет цвет с желтого на оранжевый.

2Na2CrO4 + H2SO4 = Na2Cr2O7  + Na2SO4 + H2O

Дихромат превращается в хромат в щелочной среде, раствор меняет цвет с оранжевого на желтый.

K2Cr2O7 + 2KOH = 2K2CrO4 + H2O

В ЕГЭ по химии стали уже традиционными задания с соединениями хрома, особенно с дихроматами, в основном встречается их окислительно-восстановительные свойства:

Окислительные свойства дихромата калия

16) Железо и его соединения

  • Железо реагирует с концентрированной азотной и серной кислотой только при нагревании, с разбавленными кислотами реагирует при нормальных условиях, например:

Fe + 6HNO3 конц = Fe(NO3)3 + 3NO2 + 3H2O (при нагревании)

  • Взаимодействие железа с галогенами и галогенводородами:

Таблица – Железо с галогенами и галогеноводородами

С галогенами

С галогенводородом

2Fe + 3Cl2 = 2FeCl3

Fe + 2HCl = FeCl2 + H2

2Fe + 3Br2 = 2FeBr3

Fe + 2HBr = FeBr2 + H2

Fe + I2 = FeI2

Fe + 2HI = FeI2 + H2

  • Соединения двухвалентного железа – хорошие восстановители, с окислителями превращаются в соединения трехвалентного железа:

FeO + 4HNO3 конц = Fe(NO3)3 + NO2 + 2H2O

2FeCl2 + Cl2 = 2FeCl3

4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3

  • Железная окалина – двойной оксид Fe3O4 или FeO·Fe2O3, проявляет как окислительные (за счет оксида железа III), так и восстановительные (за счет железа II) свойства, а также растворяется в кислотах, образуя две соли (железа II и железа III)

Fe3O4 + 4H2SO4 разб. = FeSO4 + Fe2(SO4)3 + 4H2O (оксиды железа растворились в разбавленной серной кислоте без изменения степени окисления)

Fe3O4 + 8KI + 4H2SO4 = 3FeI2 + 4K2SO4 + I2 + 4H2O (железная окалина проявляет окислительные свойства за счет наличия железа III)

Fe3O4 + 10HNO3конц = 3Fe(NO3)3 + NO2 + 5H2O (железная окалина проявляет восстановительные свойства за счет железа II)

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. Fe + I2
  2. Fe + Cl2
  3. Fe + HCl →
  4. Fe + O2
  1. FeI3
  2. FeCl2
  3. FeI2
  4. FeCl3
  5. FeO
  6. Fe3O4

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. Fe + CuSO4
  2. Fe + H2SO4 р-р →
  3. Fe + H2SO4 конц. tºC →
  4. Fe + H2O + O2
  1. FeSO4 + Cu
  2. FeSO4 + H2
  3. Fe2(SO4)3 + Cu
  4. Fe2 (SO4)3 + H2
  5. Fe2(SO4)3 + SO2 + H2O
  6. Fe(OH) 3

17) Соединения марганца

  • Марганец в степени окисления +7 проявляет окислительные свойства. Продукты его восстановления зависят от среды:

Перманганат в разных средах

Примеры реакция перманганата калия:

2KMnO4 + 5Na2SO3 + 3H2SO4 = 2MnSO4 + 5Na2SO4 + K2SO4 + 3H2O

2KMnO4 + 6KI + 4H2O = 2MnO2 + 3I2 + 8KOH

2KMnO4 + SO2 + 4KOH = K2SO4 + 2K2MnO4 + 2H2O

  • Марганец в степени окисления +4 проявляет как окислительные. Так и восстановительные свойства.

Окислительные свойства чаще проявляет в кислой среде, восстанавливаясь до катиона +2.

Окислительные свойства оксида марганца 4

MnO2 + 4HCl = MnCl2 + Cl2 + 2H2O

MnO2 + 2KI + 2H2SO4 = MnSO4 + I2 + K2SO4 + 2H2O

MnO2 + H2O2 + H2SO4 → O2 + MnSO4 + 2H2O

В) Марганец в степени окисления +4 проявляет и восстановительные свойства, окисляясь до +6 в щелочной среде, и до +7 в кислой:

Восстановительные свойства оксида марганца 4

MnO2 + Br2 + 4KOH = K2MnO4 + 2KBr + 2H2O

  • Соединения марганца II, например, MnSO4 проявляет как окислительные, так и восстановительные свойства.

Окислительные свойства проявляет в реакциях с более активными металлами, например, с алюминием:

3MnSO4 + 2Al = 3Mn + Al2(SO4)3

Восстановительные свойства проявляет при взаимодействии с типичными окислителями.

Марганец 2 восстановитель

2MnSO4 + 5PbO2 + 3H2SO4 = 2HMnO4 + 5PbSO4 + 2H2O

3MnSO4 + 2KMnO4 + 2H2O = 5MnO2 + K2SO4 + 2H2SO4

3MnSO4 + 2KClO3 + 12KOH = 3K2MnO4 + 2KCl + 3K2SO4 + 6H2O

18) Неметаллы с щелочами

  • Галогены с щелочами:

Хлор, бром и йод реагируют с щелочами при разных условиях. На холоде окисления галогена происходит чаще до степени окисления +1 (восстановление в любых условиях происходит до степени окисления ‒1). Описать данную реакцию можно уравнением:

Г2 + 2NaOH = NaГ + NaГO + H2O (вместо гидроксида натрия можно взять любую щелочь, содержащую одновалентный металл: K, Cs, Rb)

2 + 2Ca(OH)2 = CaГ2 + Ca(ГO)2 + 2H2O (вместо гидроксида кальция можно брать гидроксид бария и стронция).

Где Г = I, Cl, Br

Например:

Cl2 + 2NaOH = NaCl + NaClO + H2O

2Cl2 + 2Ca(OH)2 = CaCl2 + Ca(ClO)2 + 2H2O

При нагревании окисление галогена часто проходит до степени окисления +5:

2 + 6NaOH = 5NaГ + NaГO3 + 3H2O

2 + 6Ca(OH)2 = 5CaГ2 + Ca(ГO3)2 + 6H2O

Например:

3Cl2 + 6NaOH = 5NaCl + NaClO3 + 3H2O

6Cl2 + 6Ca(OH)2 = 5CaCl2 + Ca(ClO3)2 + 6H2O

Обращайте внимание на температуру, от Вашей внимательности зависят Ваши баллы на ЕГЭ по химии!

  • Сера, селен и теллур тоже реагируют с щелочами по одной схеме:

3Э + 6NaOH = 2Na2Э + Na2ЭO3 + 3H2O

3Э + 3Ca(OH)2 = 2CaЭ + CaЭO3 + 3H2O

Например:

3S + 6NaOH = 2Na2S + Na2SO3 + 3H2O

3S + 3Ca(OH)2 = 2CaS + CaSO3 + 3H2O

  • Фосфор с щелочами:

4P + 3NaOH + 3H2O = 3NaH2PO2 + PH3

  • Кремний с щелочами:

Si + 2NaOH + H2O = Na2SiO3 + 2H2

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. S + NaOH →
  2. SO2 + NaOH →
  3. SO3 + NaOH →
  4. H2S + NaOH →
  1. NaHS + S + H2O
  2. Na2SO4 + H2O
  3. Na2S + Na2SO3 + H2O
  4. Na2SO3 + H2O
  5. Na2S + H2O

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. P + NaOH →
  2. P2O3 + NaOH →
  3. P2O5 + NaOH изб. →
  4. P2O5 + NaOH нед. →
  1. NaH2PO2
  2. NaH2PO3
  3. Na3P
  4. Na3PO4
  5. NaH2PO4

19) Кислотные оксиды с щелочами

Кислотные оксиды реагируют с щелочами, образуя соль и воду, к нестандартным реакциям относят взаимодействие диоксида азота с щелочами, продукты которого зависят от наличия в среде кислорода:

2NO2 + 2NaOH = NaNO2 + NaNO3 + H2O

4NO2 + 4NaOH + O2 = 4NaNO3 + 2H2O

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. NaOH + Cl2O →
  2. NaOH + NO2 + O2
  3. NaOH + Cl2O3
  4. NaOH + HNO3
  1. NaClO + H2O
  2. NaCl + HCl
  3. NaClO2 + H2O
  4. NaNO3 + H2O
  5. NaNO2 + NaNO3 + H2O

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. NaOH + SO2
  2. NaOH + SO3
  3. NaOH + NO2
  4. NaOH + P2O5
  1. NaNO3 + NaNO2 + H2O
  2. Na2SO4 + H2O
  3. NaNO2 + H2O
  4. NaH2PO4
  5. NaH2PO3
  6. Na2SO3 + H2O

20) Гидриды, фосфиды, нитриды, сульфиды, карбиды

Многие неметаллы реагируют с активными металлами, образуя соли или солеподобные вещества, легко гидролизующиеся в воде или кислотах.

Для начала рассмотрим схемы образования этих веществ. В них неметалл часто проявляет низшую степень окисления (значение низшей степени окисления легко определяется по номеру группы: для этого от номера группы нужно отнять 8, например, для азота это будет 5 ‒ 8 = ‒3)

Таблица – Степени окисления, которые принимают неметаллы при взаимодействии с активными металлами:

С

Si

N и P

S, Se, Te

F, Cl, Br, I

‒4

(с Na, K, Al)

‒1

(с Ca, Mg)

‒4

‒3

‒2

‒1

Карбиды

Силициды

Нитриды и фосфиды

Сульфиды, селениды, теллуриды

Фториды, хлориды, бромиды, йодиды

Степени окисления активных металлов равны номеру группы, в которой они стоят в ПС.

4Na + C = Na4C

4Al + 3C = Al4C3

Ca + 2C = CaC2

4K + Si = K4Si

3Ca + N2 = Ca3N2

3K + P = K3P

2Al + 3S = Al2S3

Ba + Cl2 = BaCl2

Практически все эти вещества, за исключением некоторых сульфидов и галогенидов (хлоридов, бромидов, йодидов, фторидов) неустойчивы в растворах и подвергаются мгновенному гидролизу, который стоит рассматривать как обычную обменную реакцию с водой:

K3P + 3HOH = 3KOH + PH3

Na4Si + 4HOH = 4NaOH + SiH4

Ca3N2 + 6HOH = 3Ca(OH)2 + 2NH3

Продукт гидролиза карбидов зависит от степени окисления углерода в исходном веществе: если она равна ‒1, то образуется ацетилен (C2H2), а если ‒4, то метан (CH4).

Al4C3 + 12HOH = 4Al(OH)3 + 3CH4

CaC2 + 2HOH = Ca(OH)2 + C2H2

Так же происходит их кислотный гидролиз:

Al4C3 + 12HCl = 4AlCl3 + 3CH4

Ba3P2 + 3H2SO4 = 3BaSO4 + 2PH3

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. MgC2 + H2O →
  2. Na4C + H2O →
  3. Mg3P2 + H2O →
  4. Na3P + H2O →
  1. NaOH + C2H2
  2. Mg(OH) 2 + CH4
  3. Mg(OH) 2 + PH3
  4. NaOH + CH4
  5. Mg(OH) 2 + C2H2
  6. NaOH + PH3

21) Гидролиз бинарных соединений с ковалентной полярной связью

При гидролизе бинарных соединений неметаллов важно помнить, что степень окисления неметаллов не изменяется, из неметалла с положительной степенью окисления образуется кислотный гидроксид (кислородсодержащая кислота), из отрицательно заряженного неметалла образуется бескислородная кислота:

PCl5 + 4H2O = H3PO4 + 5HCl

SF6 + 4H2O = H2SO4 + 6HF

ICl3 + 2H2O = HIO2 + 3HCl

Для образования гидроксидов неметаллов можно воспользоваться следующей таблицей:

Степень окисления неметалла

Э+1

Э+3

Э+4

Э+5

Э+6

Э+7

Соответствующая кислота (кислотный гидроксид)

НЭО

HЭO2

Или

H3ЭO3

H2ЭO3

HЭO3

Или

H3ЭO4

H2ЭO4

HЭO4

Примеры

HClO

HClO2

H3PO3

H2SO3

HIO3

H3PO4

H2SO4

HClO4

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. ICl + H2O →
  2. ICl3 + H2O →
  3. ICl5 + H2O →
  4. ICl7 + H2O →
  1. HClO3 + HI
  2. HIO + HCl
  3. HIO4 + HCl
  4. HIO2 + HCl
  5. HIO3 + HCl

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. PCl3 + H2O →
  2. SCl4 + H2O →
  3. SiCl4 + H2O →
  4. PCl5 + H2O →
  1. H2SO4 + HCl
  2. H2SiO3 + HCl
  3. H3PO3 + HCl
  4. SO2 + HCl
  5. HPO3 + HCl

22) Взаимный гидролиз

При взаимодействии некоторых солей могут образоваться новые соли, неустойчивые в растворах, в таких случаях в таблице растворимости на пересечении катиона и аниона мы видим прочерк (не существует или необратимо разлагается водой), например, сульфид алюминия:

Взаимный гидролиз

Сульфид алюминия образуется в реакциях между растворимыми сульфидами и солями алюминия:

3Na2S + 2AlCl3 = 6NaCl + Al2S3

Но данная запись неверна, так как сульфида алюминия не существует в растворах, записываем уравнение гидролиза этой соли:

Al2S3 + 6HOH = 2Al(OH)3↓ + 3H2S↑

Объединим первое уравнение со вторым(левую часть первого уравнение соединяем с левой частью второго уравнения, а правую с правой, все коэффициенты сохраняем):

3Na2S + 2AlCl3 + Al2S3 + 6H2O = 6NaCl + Al2S3 + 2Al(OH)3↓ + 3H2S↑

Сокращаем сульфид алюминия, так как он есть и в правой части реакции, и в левой:

3Na2S + 2AlCl3 + 6H2O = 6NaCl + 2Al(OH)3↓ + 3H2S↑ — так выглядит реакция взаимодействия растворов сульфида натрия и хлорида алюминия.

Рассмотрим еще один пример — взаимодействие карбоната калия и нитрата железа III:

3K2CO3 + 2Fe(NO3)3 = Fe2(CO3)3 + 6KNO3

Образовавшийся карбонат железа III разлагается в воде:

Взаимный гидролиз при образовании солей

Fe2(CO3)3 + 3H2O = 2Fe(OH)3↓ + 3CO2

Соединяем два уравнения:

3K2CO3 + 2Fe(NO3)3 + Fe2(CO3)3 + 3H2O = Fe2(CO3)3 + 6KNO3 + 2Fe(OH)3↓ + 3CO2

Сокращаем карбонат железа III с обеих сторон:

3K2CO3 + 2Fe(NO3)3 + 3H2O = 6KNO3 + 2Fe(OH)3↓ + 3CO2

Взаимный гидролиз попался мне на реальном досрочном ЕГЭ по химии 2022 во второй части!

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. CrCl3 + NaOH изб. →
  2. CrCl3 + NaOH нед. →
  3. CrCl3 + Na2S р-р →
  4. Cr2O3 + Na2SO3
  1. Cr(OH) 3 + NaCl + SO2
  2. NaCl + Cr(OH) 3
  3. Cr(OH) 3 + NaCl + H2S
  4. NaCrO2 + SO2
  5. Na3 [Cr(OH) 6] + NaCl

Установите соответствие между реагирующими веществами и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. AlCl3 + K2CO3 р-р →
  2. AlCl3 + KOH изб. →
  3. AlCl3 + KOH нед. →
  4. Al2O3 + K2CO3
  1. KCl + K[Al(OH) 4]
  2. Al(OH) 3 + KCl + CO2
  3. Al2 (CO3)3 + KCl
  4. KAlO2 + CO2
  5. Al(OH) 3 + KCl

Понравилась статья? Поделить с друзьями:
  • Егэ химия медведев 2023 14 вариантов
  • Егэ химия максимум первичных баллов
  • Егэ химия легкий вариант
  • Егэ химия конспекты по заданиям
  • Егэ химия кимы 2013 года