Для какого наименьшего целого неотрицательного числа A выражение
(5x + 3y ≠ 60) ∨ ((A > x) ∧ (A > y))
тождественно истинно при любых целых неотрицательных x и y?
Спрятать решение
Решение.
Решим задачу графически. Условие (5x + 3y ≠ 60) задаёт множество, отмеченное на рисунке закрашенной областью. Чтобы исходное выражение было тождественно истинно для любых целых и неотрицательных x и y, прямые x < A и y < A должны образовывать прямой угол на прямой x = y, вершина которого лежит таким образом, чтобы прямая была ниже и левее. Следовательно, они должны образовывать прямой угол, пересекаясь в точке (21, 21). Таким образом, наименьшее значение A равняется 21.
Ответ: 21.
Приведём другое решение на языке Python.
for a in range(0, 300):
k = 0
for x in range(0, 300):
for y in range(0, 300):
if (5*x + 3*y != 60) or ((a > x) and (a > y)):
k += 1
if k == 90_000:
print(a)
break
Задание 1 № 19052
На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).
П1 | П2 | П3 | П4 | П5 | П6 | П7 | |
П1 | 9 | 7 | |||||
П2 | 5 | 11 | |||||
П3 | 12 | ||||||
П4 | 9 | 5 | 4 | 13 | 15 | ||
П5 | 4 | 10 | 8 | ||||
П6 | 11 | 12 | 13 | 10 | |||
П7 | 7 | 15 | 8 |
Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова протяжённость дороги из пункта Д в пункт Е. В ответе запишите целое число — так, как оно указано в таблице.
2. Задание 2 № 18483
Логическая функция F задаётся выражением ((y → w) ≡ (x → ¬z)) ∧ (x ∨ w).
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.
Переменная 1 | Переменная 2 | Переменная 3 | Переменная 4 | Функция |
---|---|---|---|---|
??? | ??? | ??? | ??? | F |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 1 |
0 | 0 | 1 |
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Переменная 1 | Переменная 1 | Функция |
---|---|---|
??? | ??? | F |
0 | 1 | 0 |
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
3. Задание 3 № 37492
В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.
3.xlsx
Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
ID операции | Дата | ID магазина | Артикул | Тип операции | Количество упаковок, шт. |
Цена, руб./шт. |
Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.
Артикул | Отдел | Наименование | Ед. изм. | Количество в упаковке |
Поставщик |
Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.
На рисунке приведена схема указанной базы данных.
Используя информацию из приведённой базы данных, определите, сколько рублей потребовалось магазинам Первомайского района для закупки яиц диетических за период с 1 по 10 июня включительно.
В ответе запишите только число.
4. Задание 4 № 18074
Для кодирования некоторой последовательности, состоящей из букв К, Л, М, Н, П, Р решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв К, Л, М, Н использовали соответственно кодовые слова 00, 01, 100, 110. Укажите кратчайшее возможное кодовое слово для буквы П, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.
Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.
5. Задание 5 № 18075
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1) Строится двоичная запись числа N.
2) К этой записи дописываются справа ещё два разряда по следующему правилу:
а) находится остаток от деления на 2 суммы двоичных разрядов N, полученный результат дописывается в конец двоичной последовательности N.
б) пункт а повторяется для вновь полученной последовательности.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число R, которое превышает 123 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе.
6. Задание 6 № 8096
Запишите число, которое будет напечатано в результате выполнения программы. Для Вашего удобства программа представлена на пяти языках программирования.
Бейсик | Python |
---|---|
DIM S, N AS INTEGER S = 301 N = 0 WHILE S > 0 S = S — 10 N = N + 2 WEND PRINT N |
s = 301 n = 0 while s > 0: s = s — 10 n = n + 2 print(n) |
Паскаль | Алгоритмический язык |
var s, n: integer; begin s := 301; n := 0; while s > 0 do begin s := s — 10; n := n + 2; end; writeln(n) end. |
алг нач цел n, s s := 301 n := 0 нц пока s > 0 s := s — 10 n := n + 2 кц вывод n кон |
Си++ | |
#include <iostream> using namespace std; int main() { int s = 301, n = 0; while (s > 0) { s = s — 10; n = n + 2; } cout << n << endl; return 0; } |
7. Задание 7 № 2440
Сколько секунд потребуется модему, передающему сообщения со скоростью 19200 бит/с, чтобы передать цветное растровое изображение размером пикселей, при условии, что цвет каждого пикселя кодируется 24 битами?
8. Задание 8 № 9194
Сколько слов длины 6, начинающихся и заканчивающихся согласной буквой, можно составить из букв Г, О, Д? Каждая буква может входить в слово несколько раз. Слова не обязательно должны быть осмысленными словами русского языка.
9. Задание 9 № 27518
Откройте файл электронной таблицы, содержащей вещественные числа — результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев.
Задание 9
Найдите разность между минимальным значением температуры и её средним арифметическим значением. Ответ округлите до целого числа.
10. Задание 10 № 27581
С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «день» или «День» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «день», такие как «полдень», «дни» и т. д., учитывать не следует. В ответе укажите только число.
Задание 10
11. Задание 11 № 5996
В велокроссе участвуют 359 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Какой объём памяти будет использован устройством, когда промежуточный финиш прошли 168 велосипедистов? (Ответ дайте в байтах.)
12. Задание 12 № 15951
Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды
заменить (111, 27)
преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 98 единиц?
НАЧАЛО
ПОКА нашлось (1111)
заменить (1111, 22)
заменить (222, 1)
КОНЕЦ ПОКА
КОНЕЦ
13. Задание 13 № 29200
На рисунке — схема дорог, связывающих пункты А, Б, В, Г, Д, Е, Ж, И, К, Л, М, Н, П. По каждой дороге можно передвигаться только в направлении, указанном стрелкой. Укажите в ответе длину самого длинного пути из пункта А в пункт П. Длиной пути считается количество дорог, составляющих путь.
14. Задание 14 № 5363
Укажите наименьшее основание системы счисления, в которой запись десятичного числа 30 имеет ровно три значащих разряда.
15. Задание 15 № 17382
Для какого наименьшего целого неотрицательного числа A выражение
(5x + 3y ≠ 60) ∨ ((A > x) ∧ (A > y))
тождественно истинно при любых целых неотрицательных x и y?
16. Задание 16 № 6779
Алгоритм вычисления значений функций F(n) и G(n), где n — натуральное число, задан следующими соотношениями:
F(1) = 1; G(1) = 1;
F(n) = F(n – 1) – G(n – 1), G(n) = F(n–1) + G(n – 1), при n ≥ 2
Чему равно значение величины F(5)/G(5)? В ответе запишите только натуральное число.
17. Задание 17 № 39764
Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём тройкой три идущих подряд элемента последовательности. Определите количество троек чисел таких, которые могут являться сторонами прямоугольного треугольника. В ответе запишите два числа: сначала количество найденных троек, а затем — максимальную сумму элементов таких троек. Если таких троек не найдётся — следует вывести 0 0.
Задание 17
Ответ:
18. Задание 18 № 27677
Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
19. Задание 19 № 33098
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 45. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 45 или больше камней.
В начальный момент в первой куче было 4 камня, во второй куче — S камней; 1 ≤ S ≤ 40.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна
20. Задание 20 № 33099
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 45. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 45 или больше камней.
В начальный момент в первой куче было 4 камня, во второй куче — S камней; 1 ≤ S ≤ 40.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.
21. Задание 21 № 33100
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 45. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 45 или больше камней.
В начальный момент в первой куче было 4 камня, во второй куче — S камней; 1 ≤ S ≤ 40.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.
Найдите минимальное значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
22. Задание 22 № 7931
Ниже на пяти языках записан алгоритм. Получив на вход число x, этот алгоритм печатает два числа a и b. Укажите наименьшее из таких чисел x, при вводе которого алгоритм печатает сначала 2, а потом 7.
Бейсик | Python |
---|---|
DIM X, A, B AS INTEGER INPUT X A = 0: B = 1 WHILE X > 0 A = A+1 B = B * (X MOD 100) X = X100 WEND PRINT A PRINT B |
x = int(input()) a, b = 0, 1 while x > 0: a = a + 1 b = b * (x%100) x = x//100 print(a) print(b) |
Паскаль | Алгоритмический язык |
var x, a, b: integer; begin readln(x); a := 0; b := 1; while x > 0 do begin a := a+1; b := b*(x mod 100); x := x div 100; end; writeln(a); write(b); end. |
алг нач цел x, a, b ввод x a:=0; b:=1 нц пока x > 0 a := a+1 b := b*mod(x,100) x := div(x,100) кц вывод a, нс, b кон |
Си++ | |
#include <iostream> using namespace std; int main() { int x, a, b; cin >> x; a = 0; b = 1; while (x > 0) { a = a+1; b = b * (x%100); x = x/100; } cout << a << endl << b endl; } |
23. Задание 23 № 18828
Исполнитель Вычислитель преобразует число на экране.
У исполнителя есть три команды, которым присвоены номера:
1. Прибавить 1
2. Прибавить 3
3. Умножить на 3
Первая команда увеличивает число на экране на 1, вторая увеличивает его на 3, третья умножает его на 3.
Программа для исполнителя Вычислитель — это последовательность команд.
Сколько существует программ, которые преобразуют исходное число 4 в число 23 и при этом траектория вычислений содержит числа 10 и 17?
Траектория вычислений программы — это последовательность результатов выполнения всех команд программы. Например, для программы 132 при исходном числе 7 траектория будет состоять из чисел 8, 24, 27.
24. Задание 24 № 27694
Текстовый файл состоит не более чем из 106 символов A, B и C. Определите максимальную длину цепочки вида ABABAB… (составленной из фрагментов AB, последний фрагмент может быть неполным).
Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.
Задание 24
25. Задание 25 № 27857
Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [84052; 84130], число, имеющее максимальное количество различных натуральных делителей, если таких чисел несколько — найдите минимальное из них. Выведите на экран количество делителей такого числа и само число.
Например, в диапазоне [2; 48] максимальное количество различных натуральных делителей имеет число 48, поэтому для этого диапазона вывод на экране должна содержать следующие значения:
10 48
Ответ:
26. Задание 26 № 27881
Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.
По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.
Входные данные.
Задание 26
В первой строке входного файла находятся два числа: S — размер свободного места на диске (натуральное число, не превышающее 10 000) и N — количество пользователей (натуральное число, не превышающее 5000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.
Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.
Пример входного файла:
100 4
80
30
50
40
При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера:
2 50
Ответ:
27. Задание 27 № 28133
На вход программы поступает последовательность из N целых положительных чисел. Рассматриваются все пары различных элементов последовательности (элементы пары не обязаны стоять в последовательности рядом), такие что ai > aj при i < j ≤ N. Среди пар, удовлетворяющих этому условию, необходимо найти и вывести пару с максимальной суммой элементов, которая делится на 120. Если среди найденных пар максимальную сумму имеют несколько, то можно напечатать любую из них. Если пар заданным условием нет, то программа должна вывести 00.
Входные данные.
Файл A
Файл B
В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10000.
В качестве результата программа должна напечатать элементы искомой пары. Если таких пар несколько, можно вывести любую из них.
Пример организации исходных данных во входном файле:
7
1
119
2
118
3
237
123
Пример выходных данных для приведённого выше примера входных данных:
237 123
В ответе укажите четыре числа: сначала значение искомой суммы для файла А (два числа через пробел), затем для файла B (два числа через пробел).
Ответ:
Пояснение. Из 7 чисел можно составить 14 пар. В данном случае условиям удовлетворяет пара: 237 и 123. Сумма 360 делится на 120, ai > aj, а i < j. У всех остальных пар как минимум одно из этих условий не выполняется.
Просмотр содержимого документа
«2022 ЕГЭ Май Информатика Вариант 7»
В решение заданий демо-версии используется язык программирования Python.
Задание 1. Анализ информационных моделей На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта D в пункт В и из пункта F в пункт A. В ответе запишите целое число. |
На графе расставим веса вершин. Далее 2 и 7 вершины ведут нас к 5, значит А это 5, оставшаяся «тройка» это вершина Е под номером 6. Сумма дорог BD + AF = 53 + 5 = 58
Ответ: 58 |
||||||||||||||||||
Задание 2. Построение таблиц истинности логических выражений Миша заполнял таблицу истинности логической функции F F= ¬(y → x) v (z→ w) v ¬z , но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z. Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z. В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно. Пример. Функция задана выражением ¬x v y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид. В этом случае первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе следует написать yx. |
¬(y → x) v (z→ w) v ¬z=0. Следовательно y → x =1, z→ w=0, z=1. Значит третий столбец z. z→ w=0, значит w=0, и это может быть только 4 столбец. y → x =1, следовательно из второй строки мы видим, что первый столбец может быть только у, а второй х.
Решение на Python
Ответ: YXZW |
||||||||||||||||||
Задание 3. Базы данных. Файловая система В прикрепленном файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в На рисунке приведена схема указанной базы данных. Используя информацию из приведённой базы данных, определите общий вес |
На третьем листе книги применим фильтр по району и получим ID четырех магазинов. На втором листе применим фильтр по товару и получим ID товара. На первом листе применим фильтры по ID товара и ID магазинов и типу операции. Все даты попадают в интервал от 1 до 8 июня. Получим: Поступило в продажу 710 упаковок. В упаковке 0,5 кг. Получим 355 кг. Ответ: 355 |
||||||||||||||||||
Задание 4. Кодирование и декодирование информации По каналу связи передаются сообщения, содержащие только буквы из набора: А, З, К, Н, Ч. Для передачи используется двоичный код,удовлетворяющий прямому условию Фано, согласно которому никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: Н – 1111, З – 110. Для трёх оставшихся букв А, К и Ч кодовые слова неизвестны. Какое количество двоичных знаков потребуется для кодирования слова КАЗАЧКА, если известно, что оно закодировано минимально возможным количеством двоичных знаков? |
Ответ: 14 |
||||||||||||||||||
Задание 5. Анализ и построение алгоритмов для исполнителей На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему 1. Строится двоичная запись числа N. Полученная таким образом запись является двоичной записью искомого числа R.Например, для исходного числа 610 = 1102 результатом является число |
Минимальное R, большее 40, это 41.
ИЛИ программное решение
Ответ: 16
|
||||||||||||||||||
Задание 6. Определение результатов работы простейших алгоритмов Исполнитель Черепаха действует на плоскости с декартовой системой координат. Черепахе был дан для исполнения следующий алгоритм: Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 5 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n– целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n– целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m– целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Определите, сколько точек с целочисленными координатами будут находиться внутри пересечения фигур, ограниченных заданными алгоритмом линиями, включая точки на границах этого пересечения. |
Сначала нужно построить фигуру.
Далее мы находим уравнения прямых, которыми ограничена фигура и решаем ИЛИ Ответ: 1 задание — 38, 2 задание — 128 |
||||||||||||||||||
Задание 7. Кодирование и декодирование информации. Передача информации Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 28 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован с разрешением в 3,5 раза выше и частотой дискретизации в 2 раза меньше, чем в первый раз. Сжатие данных не производилось. Укажите размер полученного при повторной записи файла в Мбайт. В ответе запишите только целое число, единицу измерения писать не нужно. |
I = ν ⋅ i ⋅ t ⋅ k, где ν — частота дискретизации (Гц), i — разрешение (бит), t — время (с), k — количество дорожек (1 -моно, 2- стерео, 4 — квадро) I1 = ν ⋅ i ⋅ t I2 = 3,5 · 28 = 98 Ответ: 98 |
||||||||||||||||||
Задание 8. Перебор слов и системы счисления Определите количество пятизначных чисел, записанных в восьмеричной системе счисления, в записи которых только одна цифра 6, при этом никакая нечётная цифра не стоит рядом с цифрой 6. |
* * * * * — пятизначное число. 6 * * * * — вариантов 3 ⋅ 7 ⋅ 7 ⋅ 7 = 1029 Ответ: 2961 |
||||||||||||||||||
Задание 9. Работа с таблицами Файл с данными Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия: |
Для решения этой задачи понадобится 10 вспомогательных столбцов. Сначала мы посчитаем количество повторяющихся чисел в каждой строке. Затем сумму каждой строки диапазона H:M. Если повторений нет, то эта сумма равна 6. Далее мы найдем среднее арифметическое неповторяющихся значений. Затем найдем сумму повторяющихся значений. Затем проверим соблюдение двух условий. И подсчитаем количество строк, в которых соблюдаются оба условия. Ответ: 2241 |
||||||||||||||||||
Задание 10. Поиск символов в текстовом редакторе Файл с данными Текст произведения Льва Николаевича Толстого «Севастопольские рассказы» представлен в виде файлов различных форматов. Откройте один из файлов и определите, сколько раз встречается в тексте отдельное слово «теперь» со строчной буквы. Другие формы этого слова учитывать не следует. |
В текстовом редакторе используем инструмент найти (по умолчанию он не учитывает регистр, в расширенном поиске есть кнопка больше, где можно проверить настройки). Ищем слово целиком. Ставим галочку учитывать регистр. Слово теперь со строчной буквы встречается 45 раз. Ответ: 45 |
||||||||||||||||||
Задание 11. Вычисление количества информации При регистрации в компьютерной системе каждому объекту присваивается идентификатор, состоящий из 250 символов и содержащий только десятичные цифры и символы из 1650-символьного специального алфавита. В базе данных для хранения каждого идентификатора отведено одинаковое и минимально возможное целое число байт. При этом используется посимвольное кодирование идентификаторов, все символы кодируются одинаковым и минимально возможным количеством бит. Определите объём памяти (в Кбайт), необходимый для хранения 65 536 идентификаторов. В ответе запишите только целое число – количество Кбайт. |
I = K · i, N = 2 i ID : ****….**** – всего 250 различных символов в наборе N = 10 + 1650 = 1660, 1024<1660<2048, 2048 = 211, значит для кодирования одного символа нужно 11 бит. IID = 250 · 11 = 2750 бит = 343,75 байт ≈ 344 байт – отводится на идентификатор целое число байт I65536 = 65536 ⋅ 344 = 22544384 байта = 22016 Кбайт– всего Ответ: 22016 |
||||||||||||||||||
Задание 12. Выполнение алгоритмов для исполнителей Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр. А) заменить (v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Б) нашлось (v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется. Цикл выполняется, пока условие истинно. В конструкции ЕСЛИ условие выполняется команда 1 (если условие истинно). В конструкции ЕСЛИ условие выполняется команда 1 (если условие истинно) или команда 2 (если условие ложно). Дана программа для Редактора: |
def pr(n): #функция определяет простое ли число for n in range(100): #перебираем n if ‘>2’ in s: if ‘>0’ in s: sum_s = 0 Ответ: 5 |
||||||||||||||||||
Задание 13. Поиск путей в графе На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. |
Начнем подсчет из вершины Е налево через В и возвращаемся в Е через Л.
Ответ: 21 |
||||||||||||||||||
Задание 14. Кодирование чисел. Системы счисления Операнды арифметического выражения записаны в системе счисления с основанием 15. |
for x in range(15): if n%14 == 0: Ответ: 8767 |
||||||||||||||||||
Задание 15. Преобразование логических выражений На числовой прямой даны два отрезка: D = [17; 58] и C = [29; 80]. Укажите наименьшую возможную длину такого отрезка A, для которого логическое выражение |
def deli(n,m): for A in range(1,1000): if Ok: Ответ: 94 |
||||||||||||||||||
Задание 16. Рекурсивные алгоритмы Алгоритм вычисления значения функции F(n), где n – натуральное число, |
F(2023) = 2023! = 2023 ⋅ 2022! F(2023)/F(2020) = (2023 ⋅ 2022 ⋅ 2021 ⋅ 2020!)/2020! = 2023 ⋅ 2022 ⋅ 2021 = = 8266912626 Ответ: 8266912626 |
||||||||||||||||||
Задание 17. Проверка на делимость Файл с данными В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –10 000 до 10 000 включительно. Определите количество пар последовательности, в которых |
f= open(’17.txt’) k = 0 for i in p: for i in range(1,len(p)): #Осторожно, скобки! print(k,PP) Ответ: 180 190360573 |
||||||||||||||||||
Задание 18. Робот-сборщик монет Файл с данными Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота. Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную. Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.Пример входных данных:
Для указанных входных данных ответом должна быть пара чисел 41 и 22. |
Сначала скопируем таблицу рядом, начиная со столбца АА, можно уменьшить ширину столбца до 4-5. Ячейка АА1=А1. Ячейка АВ1 = АА1+В1, протягиваем ее до АТ1. Ячейка АА2 = АА1 + А2, протягиваем ее до АА20. Далее ячейка АВ2 = В2+МАКС(АА2;АВ1), протягиваем ее на весь оставшийся диапазон, копируем только значения, не трогая стен.
Справа от стен формулы повторяют крайний левый рял, столбец АА, снизу от стен формулы копируют верхнюю строку 1. Далее делаем замену всех формул МАКС на МИН. Ответ: 1099 1026 |
||||||||||||||||||
Задание 19. Выигрышная стратегия. Задание 1 Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 129. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу из 129 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 128. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. |
При значениях S < 64 у Пети есть возможность сделать такой ход, что Ваня не сможет выиграть своим первым ходом. При значении S = 64 Петя своим первым ходом может получить 65 или 128 камней в куче. Во всех случаях Ваня увеличивает количество камней в куче в два раза и выигрывает своим первым ходом. Ответ: 64 |
||||||||||||||||||
Задание 20. Выигрышная стратегия. Задание 2 Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причем одновременно выполняются два условия:
Найденные значения запишите в порядке возрастания. |
Значение S должно быть меньше 64, поскольку иначе Ваня сможет выиграть своим первым ходом.
Ответ: 32 63 |
||||||||||||||||||
Задание 21. Выигрышная стратегия. Задание 3 Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:
Если найдено несколько значений S, в ответе запишите минимальное из них. |
Ответ: 62 |
||||||||||||||||||
Задание 22. Многопроцессорные системы В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно. Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно. |
В независимых процессах время считается от 0,
Ответ: 17 |
||||||||||||||||||
Задание 23. Анализ программы с циклами и условными операторами Исполнитель преобразует число на экране. |
def f(x, y): print (f(1,10) * f(10, 35)) Ответ: 98 |
||||||||||||||||||
Задание 24. Анализ программы с циклами и условными операторами Файл с данными Текстовый файл состоит из символов A, C, D, F и O. Определите максимальное количество идущих подряд пар символов вида согласная + гласная |
f=open(’24.txt’) PP = [‘CA’, ‘CO’, ‘DA’, ‘DO’, ‘FA’, ‘FO’] for i in range(1, len(p), 2): Ответ: 95 |
||||||||||||||||||
Задание 25. Анализ программы с циклами и условными операторами Назовём маской числа последовательность цифр, в которой также могут Например, маске 123*4?5 соответствуют числа 123405 и 12300405. Среди натуральных чисел, не превышающих 1010, найдите все числа, соответствующие маске 1?2139*4, делящиеся на 2023 без остатка. |
Самый простой способ использовать библиотеку fnmatch. или так полным перебором: y = {»,’0′,’00’,’000′} for x in range (1000): Ответ: 162139404 80148 |
||||||||||||||||||
Задание 26. Анализ программы с циклами и условными операторами В магазине для упаковки подарков есть N кубических коробок. Самой интересной считается упаковка подарка по принципу матрёшки – подарок упаковывается в одну из коробок, та в свою очередь в другую коробку и т.д. |
|||||||||||||||||||
Задание 27. Анализ программы с циклами и условными операторами У медицинской компании есть N пунктов приёма биоматериалов на анализ. Все пункты расположены вдоль автомагистрали и имеют номера, соответствующие расстоянию от нулевой отметки до конкретного пункта. Известно количество пробирок, которое ежедневно принимают в каждом из пунктов. Пробирки перевозят в специальных транспортировочных контейнерах вместимостью не более 36 штук. Каждый транспортировочный контейнер упаковывается в пункте приёма и вскрывается только в лаборатории. Файл А Дано два входных файла (файл A и файл B), каждый из которых в первой строке содержит число N (1 ≤ N ≤ 10 000 000) – количество пунктов приёма биоматериалов. В каждой из следующих N строк находится два числа: номер пункта и количество пробирок в этом пункте (все числа натуральные, количество пробирок в каждом пункте не превышает 1000). Пункты перечислены в порядке их расположения вдоль дороги, начиная от нулевой отметки. Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов. |
Ответ: 51063 5634689219329 |
База данных. Проверяется умение поиска информации в реляционной базе данных. Задание изменено по сравнению с предыдущими годами.
На компьютере прикладывается файл с таблицами, которые связываются в базу данных. Само задание стало интересней.
Рассмотрим задание на рисунке 1.
Рисунок 1 — Задание и схема базы данных
К заданию прикладывается файл.
Таблица «Движение товаров» содержит записи о поставки товаров в магазине в течение первой декады июня 2021 года, а также а также информацию о проданных товаров. Поле «тип операции» содержит значение «поступление» или «продажа», а в соответствующее поле «количество упаковок» занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня.
Далее приводятся заголовки всех трех таблиц (рисунок 1).
Ниже на рисунке приведена схема, указанной базы данных.
Стрелочки, которыми соединены наши таблицы, и некоторые поля таблиц – это и есть связь наших магазинов. ID магазина одинаковое как в таблице «магазин», так и в таблице «движение товаров». А таблица «магазин» связана с таблицей «товар» через поле «Артикул».
Этими связями и будем мы с вами пользоваться.
Теперь внимание вопрос самого задания «Используя информацию из приведенной базы данных, определите, насколько увеличилось количество упаковок яиц диетических, имеющихся в наличии в магазинах Заречного района за период с 01.06 по 10.06 включительно.
Первый этап решения задания
Это задание проще делать сортировкой и фильтрами. Для этого открываем файл Эксель с районами.
Для начала отсортируем только магазины заречного района для этого:
- переходим в таблицу «магазины» (лист «магазин»);
- отсортируем магазины заречного района, чтобы выяснить, какие ID есть в магазинах Заречного района.
Выделяем нужный столбик – переходим «Сортировка» — «Фильтры» и нажимаем на «фильтр». Теперь в этом столбике мы можем фильтровать ячейки. И так, снимаем выделение и оставляем только Заречный район. В результате имеем: ID М11 и М14.
Это те магазины, которые нам нужны.
Дальше, переходим в таблицу «товар». В этой таблице наш интерес простирается на яйца диетические. В этой таблице нам нужно выбрать артикул яиц диетических.
ID магазина и артикул необходим, так как нам необходимо перейти в таблицу «движение товаров» и смогли посчитать эту разницу в количестве упаковок. Только в этой таблице представлено количество упаковок.
Возвращаемся в таблицу «Товары», используя строку поиска, находим «яйцо диетическое». Мы видим, что яйцо диетическое находится только в одной строке, у него артикул – 15.
Зафиксировали или запомнили. Эта таблица нам больше не будет нужна.
Второй этап решения задачи
Переходим в таблицу «Движение товаров». Нужно в данной таблице уточнить дату (с 01.06 по 10.06) и это мы оставляем на потом. Еще необходимо произвести сортировку по ID магазинам, которые мы используем.
Еще раз вернемся в таблицу «Магазины» и выберем необходимые ID: М3,М9,М11,М14.
Выделяем столбик с ID магазинов листа «Движение товаров», ставим фильтр. Снимаем выделение. Нас интересует только М11, М14, М3 и М9.
У нас произошла сортировка по ID магазинов Заречного района.
Выделяем всю таблицу сочетанием клавиш Ctrl+A, создаем новый пустой лист в нашей книге, нажатием на крестик внизу книги. И всю нашу таблицу вставляем Ctrl+V на новый лист.
Теперь в новой таблице мы можем применять новый фильтр. У нашего товара «яйцо диетическое» артикул 15. Значит оставляем только с артикулом 15.
Опять выделяем весь столбик – Сортировка – Фильтр. Активируем фильтр, снимаем со всего столбика выделение и нас интересует только число 15.
Все отсортировалось.
Проверим дату с 01.06 по 10 июня.
Теперь мы можем спокойно посчитать, насколько увеличилось количество. Я считаю сумму всех упаковок, которые поступили и от нее отнимаем все упаковки, которые продажи. Это и будет ответ на вопрос.
Когда проводится работа с фильтрами «Эксель», нужно быть предельно внимательным.
Если я посчитаю сейчас сумму количества упаковок при поступлении. То эта сумма у меня посчитается правильно.
Неверно считать, что, если мы таким же образом посчитаем сумму продажи, отнимаем и получаем результаты. То это не будем верно, т.к. мы пользовались фильтром по артиклю и видим, что когда мы работали с поступлением, то можно обратить внимание на границы номеров моих строк. Мы считали подряд с 300 до …. (продолжение следует)