Егэ информатика задание 4 1125

Для кодирования букв А, Б, В, Г решили использовать двухразрядные последовательные двоичные числа (от 00 до 11, соответственно). Закодируйте таким образом последовательность символов АВГАБ и запишите полученное двоичное число в шестнадцатеричной системе счисления.

Спрятать решение

Решение.

Закодируем последовательность букв: АВГАБ  — 0010110001. Теперь разобьём это представление на четвёрки справа налево и переведём полученный набор чисел сначала в десятичный код, затем в шестнадцатеричный:

00 1011 0001 (к первым двум нулям добавим ещё два нуля и получим 0, но т. к. он первый, то его можно отбросить)  — 11 1  — B1.

Урок посвящен тому, как решать 4 задание ЕГЭ по информатике

Содержание:

  • Кодирование информации
    • Кодирование и расшифровка сообщений
  • Решение 4 заданий ЕГЭ

Кодирование информации

4-е задание: «Кодирование и декодирование информации»

Уровень сложности

— базовый,

Требуется использование специализированного программного обеспечения

— нет,

Максимальный балл

— 1,

Примерное время выполнения

— 2 минуты.

  
Проверяемые элементы содержания: Умение кодировать и декодировать информацию

До ЕГЭ 2021 года — это было задание № 5 ЕГЭ

Типичные ошибки и рекомендации по их предотвращению:

«Из-за невнимательного чтения условия задания экзаменуемые иногда не замечают, что требуется найти кодовое слово минимальной длины с максимальным (минимальным) числовым значением.

Кроме того, если в задании указано, что несколько букв остались без кодовых слов (как, например, в задании демоварианта), то кодовое слово для указанной буквы должно быть подобрано таким образом, чтобы осталась возможность найти кодовые слова, удовлетворяющие условию Фано, и для других букв. Так, например, если мы букву А закодируем нулём, а букву Б единицей, то букву В мы уже никак не сможем закодировать с соблюдением условия Фано, поэтому длину кодового слова для А или Б следует увеличить»

ФГБНУ «Федеральный институт педагогических измерений»

  • Кодирование — это представление информации в форме, удобной для её хранения, передачи и обработки. Правило преобразования информации к такому представлению называется кодом.
  • Кодирование бывает равномерным и неравномерным:
  • при равномерном кодировании всем символам соответствуют коды одинаковой длины;
  • при неравномерном кодировании разным символам соответствуют коды разной длины, это затрудняет декодирование.

Пример: Зашифруем буквы А, Б, В, Г при помощи двоичного кодирования равномерным кодом и посчитаем количество возможных сообщений:
двоичное кодирование

Таким образом, мы получили равномерный код, т.к. длина каждого кодового слова одинакова для всех кодов (2).

Кодирование и расшифровка сообщений

Декодирование (расшифровка) — это восстановление сообщения из последовательности кодов.

Для решения задач с декодированием, необходимо знать условие Фано:

Условие Фано: ни одно кодовое слово не должно являться началом другого кодового слова (что обеспечивает однозначное декодирование сообщений с начала)

Префиксный код — это код, в котором ни одно кодовое слово не совпадает с началом другого кодового слова. Сообщения при использовании такого кода декодируются однозначно.

  • если сообщение декодируется с конца, то его можно однозначно декодировать, если выполняется обратное условие Фано:
  • Обратное условие Фано: никакое кодовое слово не является окончанием другого кодового слова

    Постфиксный код — это код, в котором ни одно кодовое слово не совпадает с концом другого кодового слова. Сообщения при использовании такого кода декодируются однозначно и только с конца.

    постфиксный код

  • условие Фано – это достаточное, но не необходимое условие однозначного декодирования.

Однозначное декодирование обеспечивается:

Однозначное декодирование

Однозначное декодирование

Декодирование

Декодирование

Егифка ©:

решение 4 задания ЕГЭ

Задание демонстрационного варианта 2022 года ФИПИ
Плейлист видеоразборов задания на YouTube:


ЕГЭ 4.1: Для кодирования букв О, В, Д, П, А решили использовать двоичное представление чисел 0, 1, 2, 3 и 4 соответственно (с сохранением одного незначащего нуля в случае одноразрядного представления).

Закодируйте последовательность букв ВОДОПАД таким способом и результат запишите восьмеричным кодом.

✍ Решение:

  • Переведем числа в двоичные коды и поставим их в соответствие нашим буквам:
  • О -> 0 -> 00
    В -> 1 -> 01
    Д -> 2 -> 10
    П -> 3 -> 11
    А -> 4 -> 100
    
  • Теперь закодируем последовательность букв из слова ВОДОПАД:
  • 010010001110010
    
  • Разобьем результат на группы из трех символов справа налево, чтобы перевести их в восьмеричную систему счисления:
  • 010 010 001 110 010
     ↓   ↓   ↓   ↓   ↓
     2   2   1   6   2
    

Результат: 22162

Теоретическое решение ЕГЭ данного задания по информатике, видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь


Рассмотрим еще разбор 4 задания ЕГЭ:

ЕГЭ 4.2: Для 5 букв латинского алфавита заданы их двоичные коды (для некоторых букв — из двух бит, для некоторых — из трех). Эти коды представлены в таблице:

a b c d e
000 110 01 001 10

Какой набор букв закодирован двоичной строкой 1100000100110?

✍ Решение:

  • Во-первых, проверяем условие Фано: никакое кодовое слово не является началом другого кодового слова. Условие верно.
  •  
    ✎ 1 вариант решения:

  • Код разбиваем слева направо согласно данным, представленным в таблице. Затем переведём его в буквы:
  • 110 000 01 001 10
     ↓   ↓   ↓  ↓  ↓
     b   a  c   d  e 
    

Результат: b a c d e.

✎ 2 вариант решения:

    Этот вариант решения 4 задания ЕГЭ более сложен, но тоже верен.

  • Сделаем дерево, согласно кодам в таблице:
  • 1

  • Сопоставим закодированное сообщение с кодами в дереве:
  • 110 000 01 001 10

Результат: b a c d e.

Кроме того, вы можете посмотреть видеорешение этого задания ЕГЭ по информатике (теоретическое решение):

📹 YouTube здесь
📹 Видеорешение на RuTube здесь


Решим следующее 4 задание:

ЕГЭ 4.3:
Для передачи чисел по каналу с помехами используется код проверки четности. Каждая его цифра записывается в двоичном представлении, с добавлением ведущих нулей до длины 4, и к получившейся последовательности дописывается сумма её элементов по модулю 2 (например, если передаём 23, то получим последовательность 0010100110).

Определите, какое число пе­ре­да­ва­лось по ка­на­лу в виде 01100010100100100110.

✍ Решение:

  • Рассмотрим пример из условия задачи:
  • Было 2310
    Стало 00101001102
    
  • Где сами цифры исходного числа (выделим их красным цветом):
  •  0010100110  (0010 - 2, 0011 - 3)
  • Первая добавленная цифра 1 после двоичной двойки — это проверка четности (1 единица в 0010 — значит нечетное), 0 после двоичной тройки — это также проверка нечетности (2 единицы в 0011, значит — четное).
  • Исходя из разбора примера решаем нашу задачу так: поскольку «нужные» нам цифры образуются из групп по 4 числа в каждой плюс одно число на проверку четности, то разобьем закодированное сообщение на группы по 5, и отбросим из каждой группы последний символ:
  • разбиваем по 5:
  • 01100 01010 01001 00110
  • отбрасываем из каждой группы последний символ:
  • 0110 0101 0100 0011
  • Результат переводим в десятичную систему:
  • 0110 0101 0100 0011
     ↓    ↓     ↓    ↓
     6    5     4    3
    

Ответ: 6 5 4 3

Вы можете посмотреть видеорешение этого задания ЕГЭ по информатике, теоретическое решение:

📹 YouTube здесь
📹 Видеорешение на RuTube здесь


ЕГЭ 4.4:

Для кодирования некоторой последовательности, состоящей из букв К, Л, М, Н решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Н использовали кодовое слово 0, для буквы К — кодовое слово 10.

Какова наименьшая возможная суммарная длина всех четырёх кодовых слов?

Подобные задания для тренировки

✍ Решение:

1 вариант решения

основан на логических умозаключениях:

  • Найдём самые короткие возможные кодовые слова для всех букв.
  • Кодовые слова 01 и 00 использовать нельзя, так как тогда нарушается условие Фано (начинаются с 0, а 0 — это Н).
  • Начнем с двухразрядных кодовых слов. Возьмем для буквы Л кодовое слово 11. Тогда для четвёртой буквы нельзя подобрать кодовое слово, не нарушая условие Фано (если потом взять 110 или 111, то они начинаются с 11).
  • Значит, надо использовать трёхзначные кодовые слова. Закодируем буквы Л и М кодовыми словами 110 и 111. Условие Фано соблюдается.
  • Суммарная длина всех четырёх кодовых слов равна:
  • (Н)1 + (К)2 + (Л)3 + (М)3 = 9

2 вариант решения:

  • Будем использовать дерево. Влево откладываем 0, вправо — 1:
  • разбор задания 4 егэ по информатике

  • Теперь выпишем соответствие каждой буквы ее кодового слова согласно дереву:
  • (Н) -> 0   -> 1 символ
    (К) -> 10  -> 2 символа
    (Л) -> 110 -> 3 символа
    (М) -> 111 -> 3 символа
    
  • Суммарная длина всех четырёх кодовых слов равна:
  • (Н)1 + (К)2 + (Л)3 + (М)3 = 9

Ответ: 9


4.5:

По каналу связи передаются сообщения, содержащие только 4 буквы: А, Б, В, Г; для передачи используется двоичный код, допускающий однозначное декодирование. Для букв А, Б, В используются такие кодовые слова:

А: 101010, 
Б: 011011, 
В: 01000

Укажите кратчайшее кодовое слово для буквы Г, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Подобные задания для тренировки

✍ Решение:

  • Наименьшие коды могли бы выглядеть, как 0 и 1 (одноразрядные). Но это не удовлетворяло бы условию Фано (А начинается с единицы — 101010, Б начинается с нуля — 011011).
  • Следующим наименьшим кодом было бы двухбуквенное слово 00. Так как оно не является префиксом ни одного из представленных кодовых слов, то Г = 00.

Результат: 00


4.6:

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать двоичную последовательность, появляющуюся на приемной стороне канала связи. Использовали код:

А - 01 
Б - 00
В - 11
Г - 100

Укажите, каким кодовым словом должна быть закодирована буква Д. Длина этого кодового слова должна быть наименьшей из всех возможных. Код должен удовлетворять свойству однозначного декодирования. Если таких кодов несколько, укажите код с наименьшим числовым значением.

✍ Решение:

  • Так как необходимо найти кодовое слово наименьшей длины, воспользуемся деревом. Влево будем откладывать нули, а вправо — единицы:
  • ЕГЭ по информатике 2017 задание ФИПИ вариант 16 решение

  • Поскольку у нас все ветви завершены листьями, т.е. буквами, кроме одной ветви, то остается единственный вариант, куда можно поставить букву Д:
  • ЕГЭ по информатике 2017 задание ФИПИ вариант 16

  • Перепишем сверху вниз получившееся кодовое слово для Д: 101

Результат: 101

Подробней разбор урока можно посмотреть на видео ЕГЭ по информатике 2017:

📹 YouTube здесь
📹 Видеорешение на RuTube здесь


4.7: Демоверсия ЕГЭ 2018 информатика (ФИПИ):

По каналу связи передаются шифрованные сообщения, содержащие только десять букв: А, Б, Е, И, К, Л, Р, С, Т, У. Для передачи используется неравномерный двоичный код. Для девяти букв используются кодовые слова.
задание 4 егэ информатика 2018

Укажите кратчайшее кодовое слово для буквы Б, при котором код будет удовлетворять условию Фано. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Подобные задания для тренировки

✍ Решение:

  • Для решения будем использовать дерево. Ветви, соответствующие нулю, будем откладывать влево, единице — вправо.
  • задание 4 егэ по информатике решение

  • При рассмотрении дерева видим, что все ветви «закрыты» листьями, кроме одной ветви — 1100:
  • разбор 4 задания егэ демоверсия 2018

Результат: 1100

Подробное теоретическое решение данного 4 (раньше №5) задания из демоверсии ЕГЭ 2018 года смотрите на видео:

📹 Видеорешение на RuTube здесь


4.8:

По каналу связи передаются шифрованные сообщения, содержащие только четыре букв: А, Б, В, Г; для передачи используется двоичный код, допускающий однозначное декодирование. Для букв А, Б, В используются кодовые слова:

А: 00011 
Б: 111 
В: 1010

Укажите кратчайшее кодовое слово для буквы Г, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

✍ Решение:

  • Для решения будем использовать дерево. Ветви, соответствующие нулю, будем откладывать влево, единице — вправо.
  • Поскольку в задании явно не указано о том, что код должен удовлетворять условию Фано, то дерево нужно построить как с начала (по условию Фано), так и с конца (обратное условие Фано).
  • Дерево по условию Фано (однозначно декодируется с начала):
    0

  • Получившееся числовое значение кодового слова для буквы Г01.
  • Дерево по обратному условию Фано (однозначно декодируется с конца):
    0

  • Получившееся числовое значение кодового слова для буквы Г00.
  • После сравнения двух кодовых слов (01 и 00), код с наименьшим числовым значением — это 00.

Результат: 00


4.9:

По каналу связи передаются сообщения, содержащие только буквы: А, Е, Д, К, М, Р; для передачи используется двоичный код, удовлетворяющий условию Фано. Известно, что используются следующие коды:

Е – 000
Д – 10
К – 111

Укажите наименьшую возможную длину закодированного сообщения ДЕДМАКАР.
В ответе напишите число – количество бит.

Подобные задания для тренировки

✍ Решение:

  • С помощью дерева отобразим известные коды для букв:
  • Тренировочный вариант №3 решение

  • В результирующем слове — ДЕДМАКАР — вде буквы А. Значит, для получения наименьшей длины необходимо для буквы А выбрать наименьший код в дереве. Учтем это и достроим дерево для остальных трех букв А, М и Р:
  • 00

  • Расположим буквы в порядке их следования в слове и подставим их кодовые слова:
  • Д   Е   Д   М   А   К   А   Р
    10 000 10  001 01  111 01  110
    
  • Посчитаем количество цифр в итоговом коде и получим 20.

Результат: 20

Смотрите виде решения задания:

📹 YouTube здесь
📹 Видеорешение на RuTube здесь


Привет! Сегодня узнаем, как решать 4 задание из ЕГЭ по информатике нового формата 2021.

Четвёртое задание из ЕГЭ по информатике раскрывает тему кодирование информации. Одним из центральных приёмов при решении задач подобного типа является построение дерева Фано. Рассмотрим на примерах этот метод.

Задача (стандартная)

По каналу связи передаются сообщения, содержащие только шесть букв: А, B, C, D, E, F. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано. Для букв A, B, C используются такие кодовые слова: А — 11, B — 101, C — 0. Укажите кодовое слово наименьшей возможной длины, которое можно использовать для буквы F. Если таких слов несколько, укажите то из них, которое соответствует наименьшему возможному двоичному числу.

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова. Коды, удовлетворяющие условию Фано, допускают однозначное декодирование

Решение:

Т.к. код букв должен удовлетворять условию Фано (т.е. однозначно декодироваться), то
расположим буквы, которые уже имеют код (A, B, C), на Дереве Фано.

Дерево Фано для двоичного кодирования начинается с двух направлений, которые означают 0(ноль) и 1(единицу) (цифры двоичного кодирования).

От каждого направления можно также рисовать только два направления: 0(ноль) и 1(единицу) и т.д. Для удобства будем рисовать 1(единицу) только вправо, а 0(ноль) только влево.

Получается структура похожая на дерево!

В конце каждой ветки можно располагать букву, которую мы хотим закодировать, но если мы расположили букву, от этой ветки больше нельзя делать новых ответвлений.

Такой подход позволяет однозначно декодировать сообщение, состоящее из этих букв.

ЕГЭ по информатике - задание 4 (Дерево Фано)

Буква C заблокировала левую ветку, поэтому будем работать с правой частью нашего дерева.

Если мы расположим какую-нибудь букву на оставшуюся ветку (100), то эта ветка заблокируется, и нам некуда будет писать остальные 2 буквы. Поэтому продолжаем ветку (100) дальше.

ЕГЭ по информатике - задание 4 (Дерево Фано решение)

Теперь свободно уже две ветки, а нам нужно закодировать ещё три буквы. Поэтому должны ещё раз продолжить дерево от какой-нибудь ветки.

Но уже видно, что букве F будет правильно присвоить код 1000, т.к. нам в условии сказано, что код буквы F должен соответствовать наименьшему возможному двоичному числу. Как расположить буквы D и E в данной задаче не принципиально.

ЕГЭ по информатике - задание 4 (Дерево Фано окончательное решение)

Ответ: 1000.

Ещё один важный тип задания 4 из ЕГЭ по информатике нового формата 2021.

Задача (стандартная)

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, И, К, Л, С, Ц. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: Б — 00, К — 010, Л — 111. Какое наименьшее количество двоичных знаков потребуется для кодирования слова АБСЦИССА?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Решение:

Коды букв должны удовлетворять условию Фано. Некоторые буквы уже имеют заданные коды (Б, К, Л). Нам нужно, чтобы слово АБСЦИССА имело как можно меньше двоичных знаков. Заметим, что буква C встречается три раза, а буква A два раза, значит, этим буквам стараемся присвоить как можно меньшую длину!

Отметим на дереве Фано уже известные буквы (Б, К, Л).

ЕГЭ по информатике - задание 4 (стандартная задача Дерево Фано)

У нас осталось 4 (четыре) буквы, а свободных веток 3(три), поэтому мы должны продолжить дерево. но какую ветку продолжить ?

1 вариант

Если продолжить линию 1-0, то получится такая картина :

ЕГЭ по информатике - задание 4 (тренировочная задача Дерево Фано)

Теперь получились 4(четыре) свободные ветки равной длины (3(трём) двоичным символам). Т.к. ветки равной длины, то не важно на какую ветку какую букву расположим.

Посчитаем общую длину слова АБСЦИССА.

ЕГЭ по информатике - задание 4 (тренировочная задача подсчёт длины)

3 + 2 + 3 + 3 + 3 + 3 + 3 + 3 = 23.

2 вариант

Продлим линию 1-1-0 (можно и 0-1-1, не принципиально, т.к. эти ветки имеют одинаковую длину.), то получится:

ЕГЭ по информатике - задание 4 (тренировочная задача дерево фано 2)

С мы присваиваем 1-0, т.к. это буква повторяется в сообщении самое большое количество раз, значит, ей присваиваем самый маленький код, чтобы всё сообщение имело наименьшую длину.

Из этих же соображений букве А присваиваем код из трёх двоичных символов 0-1-1.

Подсчитаем общее количество символов в сообщении.

ЕГЭ по информатике - задание 4 (тренировочная задача подсчёт длины 2)

3 + 2 + 2 + 4 + 4 + 2 + 2 + 3 = 22

Длина получилась меньше, чем в первом варианте. Других вариантов нет, поэтому ответ будет 22.

Ответ: 22.

Задача (не сложная)

Для передачи по каналу связи сообщения, состоящего только из символов А, Б, В и Г, используется неравномерный (по длине) код: А-10, Б-11, В-110, Г-0. Через канал связи передаётся сообщение: ВАГБААГВ. Закодируйте сообщение данным кодом. Полученное двоичное число переведите в восьмеричный вид.

Решение:

В этой задаче ничего не сказано про условие Фано. Здесь уже все буквы закодированы, осталось написать сам код.

Задача сводится к переводу из двоичной системы в восьмеричную систему. На эту тему был урок на моём сайте.

ЕГЭ по информатике - задание 4 (кодирование сообщения)

Ответ: 151646.

На этом всё! Увидимся на следующих занятиях по подготовке к ЕГЭ по информатике.

Этого не знаю. Это просто примерные задачи, которые наиболее часто попадаются в книжках и на сайтах по подготовке к ЕГЭ по информатике.

Здравствуйте, а вот такое задание ПО КАНАЛУ СВЯЗИ ПЕРЕДАЮТСЯ СООБЩЕНИЯ, СОДЕРЖАЩИЕ ТОЛЬКО 4 БУКВЫ : А, Б, В, Г; ДЛЯ ПЕРЕДАЧИ ИСП. ДВОИЧНЫЙ КОД, ДОПУСКАЮЩИЙ ОДНОЗНАЧНОЕ ДЕКОДИРОВАНИЕ. ДЛЯ БУКВ А, Б, В ИСПОЛЬЗУЮТСЯ ТАКИЕ КОДОВЫЕ СЛОВА: А:00011, Б:1001, В: 01100.
УКАЖИТЕ КРАТЧАЙШЕЕ КОДОВОЕ СЛОВО ДЛЯ БУКВЫ Г, ПРИ КОТОРОМ КОД БУДЕТ ДОПУСКАТЬ ОДНОЗНАЧНОЕ ДЕКОДИРОВАНИЕ. ЕСЛИ ТАКИХ КОДОВ НЕСКОЛЬКО, УКАЖИТЕ КОД С НАИМЕНЬШИМ ЧИСЛОВЫМ ЗНАЧЕНИЕМ. В ответе указано число 10. Не могу понять почему. У меня 11.

Здравствуйте, а вот такое задание ПО КАНАЛУ СВЯЗИ ПЕРЕДАЮТСЯ СООБЩЕНИЯ, СОДЕРЖАЩИЕ ТОЛЬКО 4 БУКВЫ : А, Б, В, Г; ДЛЯ ПЕРЕДАЧИ ИСП. ДВОИЧНЫЙ КОД, ДОПУСКАЮЩИЙ ОДНОЗНАЧНОЕ ДЕКОДИРОВАНИЕ. ДЛЯ БУКВ А, Б, В ИСПОЛЬЗУЮТСЯ ТАКИЕ КОДОВЫЕ СЛОВА: А:00011, Б:1001, В: 01100.
УКАЖИТЕ КРАТЧАЙШЕЕ КОДОВОЕ СЛОВО ДЛЯ БУКВЫ Г, ПРИ КОТОРОМ КОД БУДЕТ ДОПУСКАТЬ ОДНОЗНАЧНОЕ ДЕКОДИРОВАНИЕ. ЕСЛИ ТАКИХ КОДОВ НЕСКОЛЬКО, УКАЖИТЕ КОД С НАИМЕНЬШИМ ЧИСЛОВЫМ ЗНАЧЕНИЕМ. В ответе указано число 10. Не могу понять почему. У меня 11.

Ольга Владимировна Сорокина, как я понимаю, суть задания в том, что здесь действует либо прямое, либо обратное условие Фано. (Примечание. Условие Фано означает, что соблюдается одно из двух условий.
Либо никакое кодовое слово не является началом другого кодового слова,
либо никакое кодовое слово не является окончанием другого кодового слова.
Это обеспечивает возможность однозначной расшифровки закодированных
сообщений.)
Поэтому 10 является ответом, так как ни один код для букв не оканчивается на 10 (срабатывает обратное условие Фано)

За это задание ты можешь получить 1 балл. На решение дается около 3 минут. Уровень сложности: базовый.
Средний процент выполнения: 84.4%
Ответом к заданию 4 по информатике может быть цифра (число) или слово.

Разбор сложных заданий в тг-канале

Задачи для практики

Задача 1

По каналу связи передаются сообщения, каждое из которых содержит 15 букв А, 10 букв Б, 7 букв В и 5 букв Г (других букв в сообщениях нет). Каждую букву кодируют двоичной последовательностью.При выборе кода учитывались два требования: а) ни одно кодовое слово не является началом другого (это нужно, чтобы код допускал однозначное декодирование); б) общая длина закодированного сообщения должна быть как можно меньше.

Определите, чему равна длина кодового сообщения для кода, удовлетворяющего перечисленным условиям.

Решение

Условие однозначного декодирования (условие Фано) заключается в том, что однозначное декодирование возможно, только если ни одно кодовое слово не является началом другого кодового слова. В данной задаче требуется получить минимальную длину закодированного сообщения, поэтому кодовые слова следует подбирать так, чтобы самая часто встречающаяся буква кодировалась самым коротким кодовым словом. Исходя из этого, можно построить код следующего вида: А – 00, Б – 01, В – 10, Г – 11. Этот код удовлетворяет условию Фано, и длина всего сообщения, закодированного этим кодом, будет равна 15$·$2+10$·$2+7$·$2+5$·$2=74. Для проверки имеет смысл составить ещё один код, удовлетворяющий условию Фано, который мог бы быть оптимальным для некоторых сообщений. Например, рассмотрим такой код: А – 0, Б – 10, В – 110, Г – 111. Тогда длина закодированного сообщения будет 15$·$1+10$·$2+7$·$3+5$·$3=71. Следовательно, такой вариант нас устраивает, данный код является более выгодным, и длина сообщения, закодированного этими кодовыми словами, рана 71.

Ответ: 71

Задача 2

По каналу связи передаются сообщения, каждое из которых содержит 15 букв А, 14 букв Б, 12 букв В и 4 буквы Г (других букв в сообщениях нет). Каждую букву кодируют двоичной последовательностью.При выборе кода учитывались два требования: а) ни одно кодовое слово не является началом другого (это нужно, чтобы код допускал однозначное декодирование); б) общая длина закодированного сообщения должна быть как можно меньше.

Определите, чему равна длина кодового сообщения для кода, удовлетворяющего перечисленным условиям.

Решение

Условие однозначного декодирования (условие Фано) заключается в том, что однозначное декодирование возможно, только если ни одно кодовое слово не является началом другого кодового слова. В данной задаче требуется получить минимальную длину закодированного сообщения, поэтому кодовые слова следует подбирать так, чтобы самая часто встречающаяся буква кодировалась самым коротким кодовым словом. Исходя из этого, можно построить код следующего вида: А – 00, Б – 01, В – 10, Г – 11. Этот код удовлетворяет условию Фано, и длина всего сообщения, закодированного этим кодом, будет равна 15$·$2+14$·$2+12$·$2+4$·$2=90. Для проверки имеет смысл составить ещё один код, удовлетворяющий условию Фано, который мог бы быть оптимальным для некоторых сообщений. Например, рассмотрим такой код: А – 0, Б – 10, В – 110, Г – 111. Тогда длина закодированного сообщения будет 15$·$1+14$·$2+12$·$3+4$·$3=91. Следовательно, такой вариант нас не устраивает, первый код является более выгодным, и длина сообщения, закодированного этими кодовыми словами, рана 90.

Ответ: 90

Задача 3

По каналу связи передаются сообщения, каждое из которых содержит 20 букв Е, 18 букв И, 16 букв К и 10 букв П (других букв в сообщениях нет). Каждую букву кодируют двоичной последовательностью. При выборе кода учитывались два требования: а) ни одно кодовое слово не является началом другого (это нужно, чтобы код допускал однозначное декодирование); б) общая длина закодированного сообщения должна быть как можно меньше.

Определите, чему равна длина кодового сообщения для кода, удовлетворяющего перечисленным условиям.

Решение

Условие однозначного декодирования (условие Фано) заключается в том, что однозначное декодирование возможно, только если ни одно кодовое слово не является началом другого кодового слова. В данной задаче требуется получить минимальную длину закодированного сообщения, поэтому кодовые слова следует подбирать так, чтобы самая часто встречающаяся буква кодировалась самым коротким кодовым словом. Исходя из этого, можно построить код следующего вида: Е – 00, И – 01, К – 10, П – 11. Этот код удовлетворяет условию Фано, и длина всего сообщения, закодированного этим кодом, будет равна 20$·$2+18$·$2+16$·$2+10$·$2=128. Для проверки имеет смысл составить ещё один код, удовлетворяющий условию Фано, который мог бы быть оптимальным для некоторых сообщений. Например, рассмотрим такой код: Е – 0, И – 10, К – 110, П – 111. Тогда длина закодированного сообщения будет 20$·$1+18$·$2+16$·$3+10$·$3=134. Следовательно, такой вариант нас не устраивает, первый код является более выгодным, и длина сообщения, закодированного этими кодовыми словами, рана 128.

Ответ: 128

Задача 4

По каналу связи передаются сообщения, каждое из которых содержит 18 букв Е, 10 букв И, 8 букв К и 6 букв П (других букв в сообщениях нет). Каждую букву кодируют двоичной последовательностью.При выборе кода учитывались два требования: а) ни одно кодовое слово не является началом другого (это нужно, чтобы код допускал однозначное декодирование); б) общая длина закодированного сообщения должна быть как можно меньше.

Определите, чему равна длина кодового сообщения для кода, удовлетворяющего перечисленным условиям.

Решение

Для решения данной задачи рассмотрим дерево, у которого из корня и любой вершины выходят по две ветви. Сопоставим каждой левой ветви 0, а каждой правой — 1. Тогда, проходя от вершины к каждому из листьев (узлов, из которых не выходят ветви) и выписывая последовательность нулей и единиц, соответствующих обходу дерева, получим набор кодовых слов, образующих префиксный код (код, в котором ни одно кодовое слово не является началом другого). Префиксный код является однозначно декодируемым.

По условию задачи в сообщении используются только 4 различные буквы. Следовательно, для построения кодовых слов возможно использование одного из двух деревьев. При использовании других кодовых деревьев длины кодовых слов будут или совпадать с длинами кодовых слов дерева (в этом случае общая длина кодового сообщения так же будет совпадать), или будут больше, и, следовательно, не будут удовлетворять условию наименьшей длины кодового сообщения.

На основе дерева получим кодовые слова 00, 01, 10 и 11. Все слова имеют длину 2. Учитывая количество вхождений каждой из букв в сообщение, получим, что в этом случае длина закодированного сообщения равна 2 · (18 + 10 + 8 + 6) = 84.

На основе дерева получим кодовые слова 0, 01, 110 и 111.

Чтобы общая длина кодового сообщения была наименьшей, следует назначить букве, встречающейся наибольшее число раз, кодовое слово наименьшей длины. Например, Е — 0, И — 01, К — 110 и П — 111.

В этом коде длины кодовых слов для букв Е, И, К и П равны 1, 2, 3 и 3 соответственно. Учитывая количество вхождений каждой из букв в сообщение, получим, что в этом длина закодированного сообщения равна 1 · 18 + 2 · 10 + 3 · 8 + 3 · 6 = 80.

Следовательно, наименьшая длина кодового сообщения, для кода удовлетворяющего условиям задачи, равна 80.

Ответ: 80

Задача 5

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, в котором ни одно кодовое слово не является началом другого (это нужно, чтобы код допускал однозначное декодирование). Известно, что для двух букв были использованы кодовые слова 10 и 110. Определите наименьшую возможную суммарную длину всех шести кодовых слов.

Решение

Условие однозначного декодирования (условие Фано) заключается в том, что однозначное декодирование возможно, только если ни одно кодовое слово не является началом другого кодового слова. Известны кодовые слова 10 и 110, следовательно, для других кодовых слов мы можем использовать только коды, начинающиеся с 0 или 111. Взять в качестве кодового слова 0 нельзя, т.к. в таком случае невозможно будет найти другие кодовые слова, удовлетворяющие условию Фано для оставшихся сообщений. Таким образом, можем использовать 00, 010, 011, 111. Суммарная длина всех кодовых слов – 16.

Ответ: 16

Задача 6

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, решили использовать неравномерный двоичный код, в котором ни одно кодовое слово не является началом другого (это нужно, чтобы код допускал однозначное декодирование). Известно, что для двух букв были использованы кодовые слова 10 и 111.

Определите наименьшую возможную суммарную длину всех пяти кодовых слов.

Решение

Условие однозначного декодирования (условие Фано) заключается в том, что однозначное декодирование возможно, только если ни одно кодовое слово не является началом другого кодового слова. Известны кодовые слова 10 и 111, следовательно, для других кодовых слов мы можем использовать только коды, начинающиеся с 0 или 110. Взять в качестве кодового слова 0 нельзя, т.к. в таком случае невозможно будет найти другие кодовые слова, удовлетворяющие условию Фано для оставшихся сообщений. Таким образом, можем использовать 00, 01, 110. Суммарная длина всех кодовых слов – 12.

Ответ: 12

Задача 7

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, решили использовать неравномерный двоичный код, в котором ни одно кодовое слово не является началом другого (это нужно, чтобы код допускал однозначное декодирование). Известно, что для двух букв были использованы кодовые слова 1 и 010.

Определите наименьшую возможную суммарную длину всех пяти кодовых слов.

Решение

Для решения данной задачи рассмотрим дерево, у которого из корня и любой вершины выходят по две ветви. Сопоставим каждой левой ветви 0, а каждой правой — 1. Тогда, проходя от вершины к каждому из листьев (узлов, из которых не выходят ветви) и выписывая последовательность нулей и единиц, соответствующих обходу дерева, получим набор кодовых слов, образующих префиксный код (код, в котором ни одно кодовое слово не является началом другого).

Согласно условию задачи, искомый код должен содержать кодовые слова 1 и 010. Значит, узлы, соответствующие эти кодовым словам, должны быть листьями. На основе этих данных построим дерево.

Однако построенное дерево соответствует коду, содержащему только 4 кодовых слова. По условию задачи требуется пять кодовых слов. Для этого следует продолжить построение дерева для одного из узлов: 00 или 011.

Продолжив построение из узла 00, мы получим кодовые слова 000, 001, 010, 011, 1. Суммарная длина всех кодовых слов равна 3 + 3 + 3 + 3 + 1 = 13.

Продолжив построение из узла 0110, мы получим кодовые слова 00, 010, 0011, 0111, 1. Суммарная длина всех кодовых слов равна 2 + 3 + 4 + 4 + 1 = 14.

Следовательно, наименьшая возможная длина всех кодовых слов равна 13.

Ответ: 13

Задача 8

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А − 01, Б − 11, В − 001, Г − 0001, Д − 0000.

Определите букву, для которой можно сократить длину кодового слова так, чтобы код по-прежнему можно было однозначно декодировать. Коды остальных букв меняться не должны. В ответе укажите букву и её сокращенное кодовое слово без пробелов и запятых. Например, А0.

Решение

Условие однозначного декодирования (условие Фано) заключается в том, что однозначное декодирование возможно, только если ни одно кодовое слово не является началом другого кодового слова. В данной задаче нужно просмотреть кодовые слова для каждой из букв и проверить будет ли выполняться условие Фано, если мы каким-нибудь образом сократим данное кодовое слово. Например, рассмотрим букву А – 01. Если заменить её код на 1, то он будет являться началом кода буквы Б. Если заменить код на 0, то он будет являться началом кодов букв В, Г и Д. Таким образом, при любом сокращении кода буквы А условие Фано нарушается. Проверив подобным образом все буквы, приходим к выводу, что можно сократить букву Б, закодировав её словом 1. В таком случае нарушения условия Фано не произойдёт.

Ответ: б1

Задача 9

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код:А − 01, Б − 10, В − 110, Г − 001, Д − 000.

Определите букву, для которой можно сократить длину кодового слова так, чтобы код по-прежнему можно было однозначно декодировать. Коды остальных букв меняться не должны.

В ответе укажите букву и её сокращенное кодовое слово без пробелов и запятых. Например, А0.

Решение

Условие однозначного декодирования (условие Фано) заключается в том, что однозначное декодирование возможно, только если ни одно кодовое слово не является началом другого кодового слова. В данной задаче нужно просмотреть кодовые слова для каждой из букв и проверить будет ли выполняться условие Фано, если мы каким-нибудь образом сократим данное кодовое слово. Например, рассмотрим букву А – 01. Если заменить её код на 1, то он будет являться началом кодов букв Б и В. Если заменить код на 0, то он будет являться началом кодов букв Г и Д. Таким образом, при любом сокращении кода буквы А условие Фано нарушается. Проверив подобным образом все буквы, приходим к выводу, что можно сократить букву В, закодировав её словом 11. В таком случае нарушения условия Фано не произойдёт.

Ответ: в11

Задача 10

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А − 01, Б − 11, В − 001, Г − 101, Д − 100.

Определите букву, для которой можно сократить длину кодового слова так, чтобы код по-прежнему можно было однозначно декодировать. Коды остальных букв меняться не должны. В ответе укажите букву и её сокращенное кодовое слово без пробелов и запятых. Например, А0.

Решение

Условие однозначного декодирования (условие Фано) заключается в том, что однозначное декодирование возможно, только если ни одно кодовое слово не является началом другого кодового слова. В данной задаче нужно просмотреть кодовые слова для каждой из букв и проверить будет ли выполняться условие Фано, если мы каким-нибудь образом сократим данное кодовое слово. Например, рассмотрим букву А – 01. Если заменить её код на 1, то он будет являться началом кодов букв Б, Г и Д. Если заменить код на 0, то он будет являться началом кода буквы В. Таким образом, при любом сокращении кода буквы А условие Фано нарушается. Проверив подобным образом все буквы, приходим к выводу, что можно сократить букву В, закодировав её словом 00. В таком случае нарушения условия Фано не произойдёт.

Ответ: в00

Задача 11

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А − 00, Б − 01, В − 110, Г − 101, Д − 111.

Определите букву, для которой можно сократить длину кодового слова так, чтобы код по-прежнему можно было однозначно декодировать. Коды остальных букв меняться не должны. В ответе укажите букву и её сокращенное кодовое слово без пробелов и запятых. Например, А0.

Решение

Для решения данной задачи построим дерево, у которого из корня и любой вершины выходят по две ветви. Сопоставим каждой левой ветви 0, а каждой правой — 1. Тогда, проходя от вершины к каждому из листьев (узлов, из которых не выходят ветви) и выписывая последовательность нулей и единиц, соответствующих обходу дерева, получим набор кодовых слов, образующих префиксный код (код, в котором ни одно кодовое слово не является началом другого). Префиксный код является однозначно декодируемым. На рисунке представлено дерево, соответствующее заданному коду.

При сокращении кодового слова в дереве нужно заменить один из полученных листьев узлом более высокого уровня. Такая возможность есть только для кодового слова буквы Г. Вместо листа 100 можно взять узел более высокого уровня 10.

В этом случае полученный код: А — 00, Б — 01, В — 110, Г — 10, Д — 111 — будет префиксным и однозначно декодируемым.

Ответ: г10

Задача 12

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, решили использовать неравномерный двоичный код, допускающий однозначное декодирование. Для букв А, Б, В и Г используются следующие кодовые слова: А − 10, Б − 11, В − 000, Г − 001. Укажите, каким кодовым словом может быть закодирована буква Д, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Решение

Условие однозначного декодирования (условие Фано) заключается в том, что однозначное декодирование возможно, только если ни одно кодовое слово не является началом другого кодового слова. Известны кодовые слова 10, 11, 000, 001, следовательно, для других кодовых слов мы можем использовать только коды, начинающиеся с 01. Слово 01 можно использовать в качестве кодового, т.к. условие Фано для него выполняется. Это кодовое слово является минимальным, т.к. любой код меньший длины в данном случае не будет удовлетворять условию Фано.

Ответ: 01

Задача 13

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, решили использовать неравномерный двоичный код, допускающий однозначное декодирование. Для букв А, Б, В и Г используются следующие кодовые слова: А − 00, Б − 011, В − 010, Г − 10. Укажите, каким кодовым словом может быть закодирована буква Д, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Решение

Условие однозначного декодирования (условие Фано) заключается в том, что однозначное декодирование возможно, только если ни одно кодовое слово не является началом другого кодового слова. Известны кодовые слова 00, 011, 010, 10, следовательно, для других кодовых слов мы можем использовать только коды, начинающиеся с 11. Слово 11 можно использовать в качестве кодового, т.к. условие Фано для него выполняется. Это кодовое слово является минимальным, т.к. любой код меньший длины в данном случае не будет удовлетворять условию Фано.

Ответ: 11

Задача 14

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, решили использовать неравномерный двоичный код, допускающий однозначное декодирование. Для букв А, Б, В и Г используются следующие кодовые слова: А − 000, Б − 001, В − 010, Г − 011. Укажите, каким кодовым словом может быть закодирована буква Д, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Решение

Условие однозначного декодирования (условие Фано) заключается в том, что однозначное декодирование возможно, только если ни одно кодовое слово не является началом другого кодового слова. Известны кодовые слова 000, 001, 010, 011, следовательно, для других кодовых слов мы можем использовать только коды, начинающиеся с 1. Слово 1 можно использовать в качестве кодового, т.к. условие Фано для него выполняется.

Ответ: 1

Задача 15

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Известно, что для двух букв были использованы кодовые слова 00 и 10. Определите наименьшую возможную суммарную длину всех кодовых слов.

Задача 16

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы А использовали кодовое слово 1, для буквы Б — кодовое слово 01. Какова наименьшая возможная сумма длин всех шести кодовых слов?

Примечание: Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки кодированных сообщений.

Задача 17

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы А использовали кодовое слово 100, для буквы Б — кодовое слово 01. Укажите наименьшую сумму длин кодовых слов для букв В, Г, Д и Е, при котором код будет допускать однозначное декодирование.

Примечание: Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки кодированных сообщений.

Рекомендуемые курсы подготовки

ЕГЭ информатика 4 задание разбор, теория, как решать

Кодирование и декодирование информации, (Б) — 1 балл

Е4.41 Какое количество двоичных знаков потребуется для кодирования слова КАЗАЧКА

По каналу связи передаются сообщения, содержащие только буквы из набора: А, З, К, Н, Ч. Для передачи используется двоичный код, удовлетворяющий прямому условию Фано, согласно которому никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: Н – 1111, З – 110. …

Читать далее

Е4.40 Определите наименьшую возможную сумму длин всех семи кодовых слов

Для кодирования некоторой последовательности, состоящей из букв N, P, R, Q, X, W, Z, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв Q и R использовали кодовые слова 11 и 100 соответственно. Определите наименьшую возможную сумму длин всех семи кодовых слов, учитывая, что кодовые слова оставшихся букв имеют одинаковую длину. Примечание. Условие Фано …

Читать далее

Е4.39 Какую наименьшую длину может иметь код слова ВОДОПРОВОД

Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова первых букв алфавита: А – 001, Б – 011, В – 110. Какую наименьшую длину может иметь код слова ВОДОПРОВОД? Ответ:   СтатГрад Вариант …

Читать далее

Е4.38 слово КАШКА закодировали с помощью последовательности 1110110011101

Известно, что слово КАШКА закодировали с помощью последовательности 1110110011101. При этом код удовлетворяет условию Фано. Найдите минимальную длину кодовой последовательности для слова ПАМПУШКА? Известно, что другие буквы в кодируемой последовательности встретиться не могут. Ответ:   «Некрыловские варианты» от Евгения Джобса — Вариант 5

Читать далее

Е4.37 Какой код соответствует слову СУП?

Заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известно, что все кодовые слова содержат не меньше двух двоичных знаков, а слову СПУСК соответствует код 01010110010111. Какой код соответствует слову СУП? Ответ:   СтатГрад Вариант ИН2010401 17.03.2021– …

Читать далее

Е4.36 а слову БАРАН соответствует код 10011111011010

Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известно, что все кодовые слова содержат не меньше двух двоичных знаков, а слову БАРАН соответствует код 10011111011010. Какое наименьшее количество двоичных знаков может содержать сообщение, кодирующее слово …

Читать далее

Е4.35 Какой код соответствует слову ШОК

Заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известно, что все кодовые слова содержат не меньше двух двоичных знаков, а слову КОШКА соответствует код 10101001101000. Какой код соответствует слову ШОК? Ответ:   СтатГрад Вариант ИН2010401 17.03.2021– …

Читать далее

Е4.34 Какое наименьшее количество двоичных знаков может содержать код слова ПАНАМА?

Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: П – 00, Е – 01, Н – 110. Какое наименьшее количество двоичных знаков может содержать код слова ПАНАМА? Ответ:   …

Читать далее

Е4.33 наименьшую возможную длину закодированной последовательности для слова СУСТАВ

Укажите наименьшую возможную длину закодированной последовательности для слова СУСТАВ. По каналу связи передаются сообщения, содержащие только шесть букв: А, В, Г, У, С, Т; для передачи используется двоичный код, удовлетворяющий условию Фано. Буквы Т, У, С, А имеют коды 10, 000, 11, 001 соответственно. Укажите наименьшую возможную длину закодированной последовательности для слова СУСТАВ. Ответ:   …

Читать далее

Е4.32 Для букв А, Б, В, Г использовали соответственно кодовые слова 000, 001, 010, 011

Для букв А, Б, В, Г использовали соответственно кодовые слова 000, 001, 010, 011. Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В, Г использовали соответственно кодовые слова 000, 001, 010, 011. Укажите кратчайшее возможное кодовое слово для буквы …

Читать далее

Пробники ЕГЭ

Математика,
Физика,
Информатика,
Химия,
Русский,
Обществознание,
Литература,
История,
Иностранные языки,
География,
Биология

19 января 2022

В закладки

Обсудить

Жалоба

36 разноплановых задач.

Умение кодировать и декодировать информацию.

z4inf.pdf

Из демоверсии 2022

Для кодирования некоторой последовательности, состоящей из букв Л, М, Н, П, Р, решили использовать неравномерный двоичный код, удовлетворяющий условию, что никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Для букв Л, М, Н использовали соответственно кодовые слова 00, 01, 11. Для двух оставшихся букв П и Р кодовые слова неизвестны.

Укажите кратчайшее возможное кодовое слово для буквы П, при котором код будет удовлетворять указанному условию. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Ответ: 100.

Источник: vk.com/inform_web

В решение заданий демо-версии используется язык программирования Python.

Задание 1. Анализ информационных моделей

На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта D в пункт В и из пункта F в пункт A. В ответе запишите целое число.

На графе расставим веса вершин.
Мы видим, что вершина В уникальна, имеет вес 2 и связана с двумя «тройками по весу».
Из таблицы видим, В это 4, далее видим, что «тройки по весу» это вершины 2 и 7. 
7 вершина связана кроме В, еще с двумя «тройками по весу», значит D это 7, а F это 2. 

Далее 2 и 7 вершины ведут нас к 5, значит А это 5, оставшаяся «тройка» это вершина Е под номером 6.
Рассуждая дальше видим, что С это 1, G это 2.

Сумма дорог BD + AF = 53 + 5 = 58

 

Ответ: 58 

Задание 2.  Построение таблиц истинности логических выражений

Миша заполнял таблицу истинности логической функции F 

F= ¬(y → x) v (z→ w) v ¬z , но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z. 

Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z. В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно. 

Пример. Функция задана выражением ¬x v y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид. В этом случае первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе следует написать yx. 

¬(y → x) v (z→ w) v ¬z=0. Следовательно y → x =1, z→ w=0,  z=1. Значит третий столбец z. z→ w=0, значит w=0, и это может быть только 4 столбец. y → x =1, следовательно из второй строки мы видим, что первый столбец может быть только у, а второй х.

y  x  z w
0 0 1 0
0 1 1 0
1 1 1 0

Решение на Python

  Ответ: YXZW 

Задание выполняется с использованием прилагаемых файлов

Задание 3.  Базы данных. Файловая система 

В прикрепленном файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в
магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня.

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите общий вес
(в кг) крахмала картофельного, поступившего в магазины Заречного района
за период с 1 по 8 июня включительно. В ответе запишите только число.

На третьем листе книги применим фильтр по району и получим ID четырех магазинов. 

На втором листе применим фильтр по товару и получим ID товара.

На первом листе применим фильтры по ID товара и ID магазинов и типу операции. Все даты попадают в интервал от 1 до 8 июня. Получим:

Поступило в продажу 710 упаковок. В упаковке 0,5 кг. Получим 355 кг.

Ответ: 355 

Задание 4.  Кодирование и декодирование информации

По каналу связи передаются сообщения, содержащие только буквы из набора: А, З, К, Н, Ч. Для передачи используется двоичный код,удовлетворяющий прямому условию Фано, согласно которому никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений.

Кодовые слова для некоторых букв известны: Н – 1111, З – 110. Для трёх оставшихся букв А, К и Ч кодовые слова неизвестны. Какое количество двоичных знаков потребуется для кодирования слова КАЗАЧКА, если известно, что оно закодировано минимально возможным количеством двоичных знаков?

 

Ответ: 14

Задание 5.  Анализ и построение алгоритмов для исполнителей

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему
новое число R следующим образом.

1. Строится двоичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если сумма цифр в двоичной записи числа чётная, то к этой записи справа дописывается 0, а затем два левых разряда заменяются на 10;
б) если сумма цифр в двоичной записи числа нечётная, то к этой записи справа дописывается 1, а затем два левых разряда заменяются на 11. 

Полученная таким образом запись является двоичной записью искомого числа R.Например, для исходного числа 610 = 1102 результатом является число
10002 = 810, а для исходного числа 410 = 1002 результатом является число 11012 = 1310.
Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 40. В ответе запишите это число в десятичной системе счисления.

Минимальное R, большее 40, это 41.
В результате выполнения алгоритма число R должно либо начинаться на 10 и оканчиваться 0, либо начинаться на 11 и оканчиваться 1.
Из чисел, больших 41, это 42, 44, 46, 49, и т.д.
Мы должны найти минимальное N, из которого данное число получено.
Поскольку первые цифры заменялись, то мы видим, что данные числа могли быть получены из чисел 29, 30, 23, 16. 
Из которых 16 минимальное, и меньше уже быть не может.

ИЛИ программное решение

Ответ: 16

 

Задание 6.  Определение результатов работы простейших алгоритмов

Исполнитель Черепаха действует на плоскости с декартовой системой координат.
В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды:
Вперёд n (где n–целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке.
Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. 

Черепахе был дан для исполнения следующий алгоритм:
Повтори 7 [Вперёд 10 Направо 120].
Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.


  ИЛИ

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 5 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n– целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n– целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m– целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. 

Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз.

Черепахе был дан для исполнения следующий алгоритм:
Повтори 2 [Вперёд 10 Направо 90 Вперёд 20 Направо 90]
Поднять хвост
Вперёд 3 Направо 90 Вперёд 5 Налево 90
Опустить хвост
Повтори 2 [Вперёд 70 Направо 90 Вперёд 80 Направо 90]

Определите, сколько точек с целочисленными координатами будут находиться внутри пересечения фигур, ограниченных заданными алгоритмом линиями, включая точки на границах этого пересечения. 

Сначала нужно построить фигуру. 
Это можно сделать к примеру, на тетрадном листе, при помощи библиотеки Turtle или в Excel.

 

Далее мы находим уравнения прямых, которыми ограничена фигура и решаем
систему уравнений программно.

ИЛИ
Фигуру можно построить программно или к примеру, в Excel.
Далее анализируем и считаем точки.

Ответ: 1 задание  — 38, 2 задание — 128

Задание 7.  Кодирование и декодирование информации. Передача информации

Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 28 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован с разрешением в 3,5 раза выше и частотой дискретизации в 2 раза меньше, чем в первый раз. Сжатие данных не производилось. Укажите размер полученного при повторной записи файла в Мбайт. В ответе запишите только целое число, единицу измерения писать не нужно.

I = ν ⋅ i ⋅ t ⋅ k, где ν — частота дискретизации (Гц),

 i — разрешение (бит), t — время (с), k — количество дорожек (1 -моно, 2- стерео, 4 — квадро)

I1 = ν ⋅ i ⋅ t 
I2 = ν/2 ⋅ 3,5 ⋅ i ⋅ t ⋅ 2 = 3,5 ⋅ I1

I2 = 3,5 · 28 = 98 

 Ответ: 98

Задание 8. Перебор слов и системы счисления

Определите количество пятизначных чисел, записанных в восьмеричной системе счисления, в записи которых только одна цифра 6, при этом никакая нечётная цифра не стоит рядом с цифрой 6.

* * * * * — пятизначное число
В восьмеричной системе счисления в алфавите 8 цифр: 0..7.
Первая цифра 0 быть не может.
Цифра 6 — одна, при этом стоит рядом только с четными цифрами — 0, 2 или 4.
Получим:

6 * * * * — вариантов 3 ⋅ 7 ⋅ 7 ⋅ 7 = 1029
* 6 * * * — вариантов 2 ⋅ 3 ⋅ 7 ⋅ 7 = 294
* * 6 * * — вариантов 6 ⋅ 3 ⋅ 3 ⋅ 7 = 378
* * * 6 * — вариантов 6 ⋅ 7 ⋅ 3 ⋅ 3 = 378
* * * * 6 — вариантов 6 ⋅ 7 ⋅ 7 ⋅ 3 = 882

Ответ: 2961

Задание выполняется с использованием прилагаемых файлов

Задание 9. Работа с таблицами

Файл с данными

Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– в строке только одно число повторяется дважды;
– среднее арифметическое неповторяющихся чисел строки не больше суммы повторяющихся чисел.
В ответе запишите только число.

Для решения этой задачи понадобится 10 вспомогательных столбцов. Сначала мы посчитаем количество повторяющихся чисел в каждой строке.

Затем сумму каждой строки диапазона H:M. Если повторений нет, то эта сумма равна 6.

  Далее мы найдем среднее арифметическое неповторяющихся значений.

Затем найдем сумму повторяющихся значений.

Затем проверим соблюдение двух условий. И подсчитаем количество строк, в которых соблюдаются оба условия.

Ответ: 2241

Задание выполняется с использованием прилагаемых файлов

Задание 10. Поиск символов в текстовом редакторе

Файл с данными

Текст произведения Льва Николаевича Толстого «Севастопольские рассказы» представлен в виде файлов различных форматов. Откройте один из файлов и определите, сколько раз встречается в тексте отдельное слово «теперь» со строчной буквы. Другие формы этого слова учитывать не следует.
В ответе запишите только число.

В текстовом редакторе используем инструмент найти (по умолчанию он не учитывает регистр, в расширенном поиске есть кнопка больше, где можно проверить настройки). Ищем слово целиком. Ставим галочку учитывать регистр. Слово теперь со строчной буквы встречается 45 раз.

Ответ: 45

Задание 11. Вычисление количества информации

При регистрации в компьютерной системе каждому объекту присваивается идентификатор, состоящий из 250 символов и содержащий только десятичные цифры и символы из 1650-символьного специального алфавита. В базе данных для хранения каждого идентификатора отведено одинаковое и минимально возможное целое число байт. При этом используется посимвольное кодирование идентификаторов, все символы кодируются одинаковым и минимально возможным количеством бит. Определите объём памяти (в Кбайт), необходимый для хранения 65 536 идентификаторов. В ответе запишите только целое число – количество Кбайт.

 

I = K · i,    N = 2 i

ID : ****….**** – всего 250 различных символов в наборе

N = 10 + 1650 = 1660,  1024<1660<2048, 2048 = 211, значит  для кодирования одного символа нужно 11 бит.

IID = 250 · 11 = 2750 бит = 343,75 байт ≈ 344 байт – отводится на идентификатор целое число байт

I65536 = 65536 ⋅ 344 = 22544384 байта = 22016 Кбайт– всего

Ответ: 22016

Задание 12. Выполнение алгоритмов для исполнителей

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А) заменить (v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. 
Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б) нашлось (v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

 Цикл
    ПОКА условие
        последовательность команд
    КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

    ЕСЛИ условие
        ТО команда 1
    КОНЕЦ ЕСЛИ

выполняется команда 1 (если условие истинно).

В конструкции

    ЕСЛИ условие
        ТО команда 1
        ИНАЧЕ команда 2
    КОНЕЦ ЕСЛИ

выполняется команда 1 (если условие истинно) или команда 2 (если условие ложно).

Дана программа для Редактора:
НАЧАЛО
     ПОКА нашлось (>1) ИЛИ нашлось (>2) ИЛИ нашлось (>0)
          ЕСЛИ нашлось (>1)
              ТО заменить (>1, 22>)
          КОНЕЦ ЕСЛИ
          ЕСЛИ нашлось (>2)
              ТО заменить (>2, 2>)
          КОНЕЦ ЕСЛИ
          ЕСЛИ нашлось (>0)
              ТО заменить (>0, 1>)
          КОНЕЦ ЕСЛИ
     КОНЕЦ ПОКА
КОНЕЦ
На вход приведённой выше программе поступает строка, начинающаяся с символа «>», а затем содержащая 39 цифр «0», n цифр «1» и 39 цифр «2», расположенных в произвольном порядке. Определите наименьшее значение n, при котором сумма числовых значений цифр строки, получившейся в результате выполнения программы, является простым числом.

def pr(n): #функция определяет простое ли число
    for i in range(2,int(n**0.5)+1):
        if (n%i) == 0:
            return False
    return True   

for n in range(100): #перебираем n
    s=’>’ + 39*’0′ + n*’1′ + 39*’2′
    while ‘>1’ in s or ‘>2’ in s or ‘>0’ in s:
        if ‘>1’ in s:
            s=s.replace(‘>1′,’22>’,1)

        if ‘>2’ in s:
            s=s.replace(‘>2′,’2>’,1)

        if ‘>0’ in s:
            s=s.replace(‘>0′,’1>’,1)

    sum_s = 0
    for i in s[:-1]: #считаем сумму цифр в строке
        sum_s += int(i)
    if pr(sum_s): #проверяем на простоту
        print(n)
        break

Ответ: 5

Задание 13. Поиск путей в графе

На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой.
Определите количество различных путей ненулевой длины, которые начинаются и заканчиваются в городе Е, не содержат этот город в качестве промежуточного пункта и проходят через промежуточные города не более одного раза.

Начнем подсчет из вершины Е налево через В и возвращаемся в Е через Л.

 

Ответ: 21

Задание 14. Кодирование чисел. Системы счисления

Операнды арифметического выражения записаны в системе счисления с основанием 15. 
123
x515 + 1x23315
В записи чисел переменной x обозначена неизвестная цифра из алфавита 15-ричной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 14. Для найденного значения x вычислите частное от деления значения арифметического выражения на 14 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.

for x in range(15):
    s1=’123’+ str(x) +’5′
    s2=’1’+ str(x) +’233′
    n= int(s1,15)+ int(s2,15)

    if n%14 == 0:
        print(n//14)
        break

Ответ: 8767

Задание 15. Преобразование логических выражений

На числовой прямой даны два отрезка: D = [17; 58] и C = [29; 80]. Укажите наименьшую возможную длину такого отрезка A, для которого логическое выражение
(x ∈ D) → ((¬(x ∈ C) & ¬(x ∈ A)) → ¬(x ∈ D)) истинно (т.е. принимает значение 1) при любом значении переменной х.

  def deli(n,m):
    if n%m == 0:
        return True

for A in range(1,1000):
    Ok = True
    for x in range(1,10000):
        Ok*=( (not(deli(x,2)) or (not(deli(x,3)))) or ((x+A)>=100) )

    if Ok:
        print(A)
        break

Ответ: 94

Задание 16. Рекурсивные алгоритмы

Алгоритм вычисления значения функции F(n), где n – натуральное число,
задан следующими соотношениями:
F(n) = 1 при n = 1;
F(n) = n × F(n — 1), если n > 1.
Чему равно значение выражения
F(2023) / F(2020)?

F(2023) = 2023! = 2023 ⋅ 2022!

F(2023)/F(2020) = (2023 ⋅ 2022 ⋅ 2021 ⋅ 2020!)/2020! = 2023 ⋅ 2022 ⋅ 2021 =

= 8266912626

Ответ: 8266912626

Задание выполняется с использованием прилагаемых файлов

Задание 17. Проверка на делимость

Файл с данными

В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –10 000 до 10 000 включительно. Определите количество пар последовательности, в которых
только одно число оканчивается на 3, а сумма квадратов элементов пары не меньше квадрата максимального элемента последовательности, оканчивающегося на 3. В ответе запишите два числа: сначала количество найденных пар, затем максимальную из сумм квадратов элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.

 f= open(’17.txt’)
p=[int(i) for i in f]
f.close()

k = 0
PP = 0
M3 = 0

for i in p:
    if (abs(i))%10 == 3:
        M3 = max(i, M3)

for i in range(1,len(p)): #Осторожно, скобки!
    if ( ((abs(p[i-1])%10 == 3) + ((abs(p[i])% 10 == 3)) ==1 ) and ((p[i-1]**2 + p[i]**2) >= M3**2) ):
        k+=1
        PP = max(PP, p[i-1]**2 + p[i]**2)

print(k,PP)

Ответ: 180  190360573

Задание выполняется с использованием прилагаемых файлов

Задание 18. Робот-сборщик монет

Файл с данными

Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.Пример входных данных: 

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

Сначала скопируем таблицу рядом, начиная со столбца АА, можно уменьшить ширину столбца до 4-5. Ячейка АА1=А1. Ячейка АВ1 = АА1+В1, протягиваем ее до АТ1. Ячейка АА2 = АА1 + А2, протягиваем ее до АА20. Далее ячейка АВ2 = В2+МАКС(АА2;АВ1), протягиваем ее на весь оставшийся диапазон, копируем только значения, не трогая стен. 

 

Справа от стен формулы повторяют крайний левый рял, столбец АА, снизу от стен формулы копируют верхнюю строку 1.

Далее делаем замену всех формул МАКС на МИН.

Ответ: 1099 1026

Задание 19. Выигрышная стратегия. Задание 1

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 129. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу из 129 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 128. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

При значениях S < 64 у Пети есть возможность сделать такой ход, что Ваня не сможет выиграть своим первым ходом. При значении S = 64 Петя своим первым ходом может получить 65 или 128 камней в куче. Во всех случаях Ваня увеличивает количество камней в куче в два раза и выигрывает своим первым ходом.

Ответ: 64

Задание 20. Выигрышная стратегия. Задание 2

 Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причем одновременно выполняются два условия:

  • Петя не может выиграть за один ход;
  • Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в порядке возрастания.

 Значение S должно быть меньше 64, поскольку иначе Ваня сможет выиграть своим первым ходом.

 

Ответ: 32    63

Задание 21. Выигрышная стратегия. Задание 3

Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

  • у Вани есть выигрышная стратегия, позволяющая ему выиграть
    первым или вторым ходом при любой игре Пети;
  • у Вани нет стратегии, которая позволит ему гарантированно выиграть
    первым ходом.

Если найдено несколько значений S, в ответе запишите минимальное из них.

 

 

Ответ: 62

Задание 22. Многопроцессорные системы 

В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы – время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
Типовой пример организации данных в файле:

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемого файла.

В независимых процессах время считается от 0,
в зависимых прибавляется к времени процесса, от которого зависит.

 

Ответ: 17

Задание 23. Анализ программы с циклами и условными операторами

Исполнитель преобразует число на экране.
У исполнителя есть две команды, которые обозначены латинскими буквами:
A. Прибавить 1
B. Умножить на 2
Программа для исполнителя – это последовательность команд. Сколько существует программ, для которых при исходном числе 1 результатом является число 35, при этом траектория вычислений содержит число 10 и не содержит 17?
Траектория вычислений программы – это последовательность результатов
выполнения всех команд программы.
Например, для программы ABA при
исходном числе 7 траектория будет состоять из чисел 8, 16, 17.

def f(x, y):
    if x == y:
        return 1
    if x > y or x == 17:
        return 0
    else:
        return f(x + 1, y) + f (2 * x, y)

print (f(1,10) * f(10, 35))

Ответ: 98

Задание выполняется с использованием прилагаемых файлов

Задание 24. Анализ программы с циклами и условными операторами

Файл с данными

Текстовый файл состоит из символов A, C, D, F и O. Определите максимальное количество идущих подряд пар символов вида согласная + гласная
в прилагаемом файле. Для выполнения этого задания следует написать программу.

f=open(’24.txt’) 
p= f.readline()
f.close()

PP = [‘CA’, ‘CO’, ‘DA’, ‘DO’, ‘FA’, ‘FO’]
M=k=0

for i in range(1, len(p), 2):
    x = p[i-1] + p[i]
    if x in PP:
        k += 1
    else:
        k = 0    
    M=max(M,k)
print(M)

Ответ: 95

Задание 25. Анализ программы с циклами и условными операторами

Назовём маской числа последовательность цифр, в которой также могут
встречаться следующие символы:
– символ «?» означает ровно одну произвольную цифру;
– символ «*» означает любую последовательность цифр произвольной длины;
в том числе «*» может задавать и пустую последовательность.

Например, маске 123*4?5 соответствуют числа 123405 и 12300405. 

Среди натуральных чисел, не превышающих 1010, найдите все числа, соответствующие маске 1?2139*4, делящиеся на 2023 без остатка.
В ответе запишите в первом столбце таблицы все найденные числа в порядке возрастания, а во втором столбце – соответствующие им результаты деления этих чисел на 2023. Количество строк в таблице для ответа избыточно.

Самый простой способ использовать библиотеку fnmatch.
Функция fnmatch() проверяет, соответствует ли строка шаблонной строке, возвращая True или False

или так полным перебором:

y = {»,’0′,’00’,’000′}
for x in y:
    for j in range(10):
        s = ‘1’ + str(j) + ‘2139’ + x + ‘4’
        if int(s) % 2023 == 0:
            print (s, int(s)//2023)

for x in range (1000):
    for j in range(10):
        s = ‘1’ + str(j) + ‘2139’ + str(x) + ‘4’
        if int(s) % 2023 == 0:
            print (s, int(s)//2023

Ответ: 162139404 80148
1321399324 653188
1421396214 702618
1521393104 752048

Задание выполняется с использованием прилагаемых файлов

Задание 26. Анализ программы с циклами и условными операторами

В магазине для упаковки подарков есть N кубических коробок. Самой интересной считается упаковка подарка по принципу матрёшки – подарок упаковывается в одну из коробок, та в свою очередь в другую коробку и т.д.
Одну коробку можно поместить в другую, если длина её стороны хотя бы на 3 единицы меньше длины стороны другой коробки. Определите наибольшее количество коробок, которое можно использовать для упаковки одного подарка, и максимально возможную длину стороны самой маленькой коробки, где будет находиться подарок. Размер подарка позволяет поместить его в самую маленькую коробку.
Входные данные
В первой строке входного файла находится число N – количество коробок в магазине (натуральное число, не превышающее 10 000). В следующих N строках находятся значения длин сторон коробок (все числа натуральные, не превышающие 10 000), каждое – в отдельной строке.
Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе.
Типовой пример организации данных во входном файле
5
43
40
32
40
30
Пример входного файла приведён для пяти коробок и случая, когда минимальная допустимая разница между длинами сторон коробок, подходящих для упаковки «матрёшкой», составляет 3 единицы. При таких исходных данных условию задачи удовлетворяют наборы коробок с длинами сторон 30, 40 и 43 или 32, 40 и 43 соответственно, т.е. количество коробок равно 3, а длина стороны самой маленькой коробки равна 32.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.

Задание выполняется с использованием прилагаемых файлов

Задание 27. Анализ программы с циклами и условными операторами

У медицинской компании есть N пунктов приёма биоматериалов на анализ. Все пункты расположены вдоль автомагистрали и имеют номера, соответствующие расстоянию от нулевой отметки до конкретного пункта. Известно количество пробирок, которое ежедневно принимают в каждом из пунктов. Пробирки перевозят в специальных транспортировочных контейнерах вместимостью не более 36 штук. Каждый транспортировочный контейнер упаковывается в пункте приёма и вскрывается только в лаборатории.
Стоимость перевозки биоматериалов равна произведению расстояния от пункта до лаборатории на количество контейнеров с пробирками. Общая стоимость перевозки за день равна сумме стоимостей перевозок из каждого пункта в лабораторию. Лабораторию расположили в одном из пунктов приёма биоматериалов таким образом, что общая стоимость доставки биоматериалов из всех пунктов минимальна.
Определите минимальную общую стоимость доставки биоматериалов из всех пунктов приёма в лабораторию.
Входные данные

Файл А
Файл В

Дано два входных файла (файл A и файл B), каждый из которых в первой строке содержит число N (1 ≤ N ≤ 10 000 000) – количество пунктов приёма биоматериалов. В каждой из следующих N строк находится два числа: номер пункта и количество пробирок в этом пункте (все числа натуральные, количество пробирок в каждом пункте не превышает 1000). Пункты перечислены в порядке их расположения вдоль дороги, начиная от нулевой отметки.
В ответе укажите два числа: сначала значение искомой величины для файла
А, затем – для файла B.
Типовой пример организации данных во входном файле
6
1 100
2 200
5 4
7 3
8 2
10 190
При таких исходных данных и вместимости транспортировочного контейнера, составляющей 96 пробирок, компании выгодно открыть лабораторию в пункте 2. В этом случае сумма транспортных затрат составит: 1 ∙ 2 + 3 ∙ 1 + 5 ∙ 1 + 6 ∙ 1 + 8 ∙ 2.

Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов. 
Предупреждение:
для обработки файла B не следует использовать переборный алгоритм, вычисляющий сумму для всех возможных вариантов, поскольку написанная по такому алгоритму программа будет выполняться слишком долго.

Ответ: 51063 5634689219329 

Понравилась статья? Поделить с друзьями:
  • Егэ информатика 2020 крылов сборник
  • Егэ информатика задание 15 графики
  • Егэ информатика 2020 гроб
  • Егэ информатика задание 14218
  • Егэ информатика 2018 сборник